
Richard Purdie, Linux Foundation
<richard.purdie@linuxfoundation.org>

by Richard Purdie
Copyright © 2007-2012 Linux Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Share Alike 2.0 UK: England & Wales [http://creativecommons.org/licenses/by-sa/2.0/uk/] as published
by Creative Commons.

Note
Due to production processes, there could be differences between the Yocto Project documentation
bundled in the release tarball and The Yocto Project Reference Manual [http://www.yoctoproject.org/
docs/1.1.1/poky-ref-manual/poky-ref-manual.html] on the Yocto Project [http://www.yoctoproject.org]
website. For the latest version of this manual, see the manual on the website.

http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://www.yoctoproject.org/docs/1.1.1/poky-ref-manual/poky-ref-manual.html
http://www.yoctoproject.org/docs/1.1.1/poky-ref-manual/poky-ref-manual.html
http://www.yoctoproject.org/docs/1.1.1/poky-ref-manual/poky-ref-manual.html
http://www.yoctoproject.org
http://www.yoctoproject.org

iii

Table of Contents
1. Introduction ... 1

1.1. Introduction .. 1
1.2. Documentation Overview .. 1
1.3. System Requirements ... 1
1.4. Obtaining the Yocto Project ... 2
1.5. Development Checkouts ... 2

2. Using the Yocto Project .. 3
2.1. Running a Build .. 3

2.1.1. Build Overview ... 3
2.1.2. Building an Image Using GPL Components .. 3

2.2. Installing and Using the Result .. 3
2.3. Debugging Build Failures ... 3

2.3.1. Task Failures .. 4
2.3.2. Running Specific Tasks ... 4
2.3.3. Dependency Graphs ... 4
2.3.4. General BitBake Problems .. 4
2.3.5. Building with No Dependencies .. 5
2.3.6. Variables .. 5
2.3.7. Recipe Logging Mechanisms ... 5
2.3.8. Other Tips .. 6

3. Common Tasks .. 7
3.1. Adding a Package ... 7

3.1.1. Single .c File Package (Hello World!) ... 7
3.1.2. Autotooled Package ... 7
3.1.3. Makefile-Based Package ... 8
3.1.4. Splitting an Application into Multiple Packages .. 8
3.1.5. Including Static Library Files ... 9
3.1.6. Post Install Scripts .. 10

3.2. Customizing Images .. 10
3.2.1. Customizing Images Using Custom .bb Files .. 10
3.2.2. Customizing Images Using Custom Tasks .. 11
3.2.3. Customizing Images Using Custom IMAGE_FEATURES and
EXTRA_IMAGE_FEATURES ... 11
3.2.4. Customizing Images Using local.conf ... 12

3.3. Porting the Yocto Project to a New Machine ... 12
3.3.1. Adding the Machine Configuration File .. 12
3.3.2. Adding a Kernel for the Machine ... 13
3.3.3. Adding a Formfactor Configuration File ... 13

3.4. Modifying Package Source Code .. 13
3.5. Modifying Package Source Code with Quilt ... 14
3.6. Combining Multiple Versions of Library Files into One Image 14

3.6.1. Preparing to use Multilib .. 15
3.6.2. Using Multilib ... 15
3.6.3. Additional Implementation Details .. 15

3.7. Tracking License Changes ... 16
3.7.1. Specifying the LIC_FILES_CHKSUM Variable ... 16
3.7.2. Explanation of Syntax .. 16

3.8. Handling a Package Name Alias .. 17
3.9. Making and Maintaining Changes .. 17

3.9.1. BitBake Layers ... 17
3.9.2. Committing Changes .. 18
3.9.3. Package Revision Incrementing ... 19
3.9.4. Using The Yocto Project in a Team Environment ... 19
3.9.5. Updating Existing Images ... 20

4. Technical Details .. 21
4.1. Yocto Project Components ... 21

4.1.1. BitBake .. 21
4.1.2. Metadata (Recipes) .. 22
4.1.3. Classes .. 22
4.1.4. Configuration ... 22

4.2. Shared State Cache .. 22

iv

4.2.1. Overall Architecture ... 22
4.2.2. Checksums (Signatures) ... 23
4.2.3. Shared State .. 24
4.2.4. Tips and Tricks ... 25

5. Board Support Packages (BSP) - Developer's Guide .. 27
5.1. Example Filesystem Layout ... 27

5.1.1. License Files .. 28
5.1.2. README File .. 29
5.1.3. Pre-built User Binaries .. 29
5.1.4. Layer Configuration File .. 29
5.1.5. Hardware Configuration Options ... 30
5.1.6. Miscellaneous Recipe Files .. 30
5.1.7. Core Recipe Files .. 31
5.1.8. Display Support Files .. 31
5.1.9. Linux Kernel Configuration .. 31

5.2. BSP 'Click-Through' Licensing Procedure .. 33
6. Platform Development with the Yocto Project ... 35

6.1. Application Development Using the Yocto Project ... 35
6.1.1. External Development Using the Meta-Toolchain .. 35
6.1.2. External Development Using the Eclipse Plug-in .. 35
6.1.3. External Development Using the QEMU Emulator .. 36
6.1.4. Development Using Yocto Project Directly ... 36
6.1.5. Development Within a Development Shell .. 37
6.1.6. Development Within Yocto Project for a Package that Uses an External SCM 37

6.2. Debugging With the GNU Project Debugger (GDB) Remotely 38
6.2.1. Launching Gdbserver on the Target .. 38
6.2.2. Launching GDB on the Host Computer .. 39

6.3. Profiling with OProfile .. 40
6.3.1. Profiling on the Target .. 41
6.3.2. Using OProfileUI ... 41

A. Reference: Directory Structure ... 44
A.1. Top level core components .. 44

A.1.1. bitbake/ ... 44
A.1.2. build/ ... 44
A.1.3. documentation .. 44
A.1.4. meta/ .. 44
A.1.5. meta-demoapps/ .. 44
A.1.6. meta-rt/ ... 44
A.1.7. meta-skeleton/ .. 44
A.1.8. scripts/ ... 45
A.1.9. oe-init-build-env ... 45
A.1.10. LICENSE, README, and README.hardware .. 45

A.2. The Build Directory - build/ ... 45
A.2.1. build/pseudodone ... 45
A.2.2. build/conf/local.conf .. 45
A.2.3. build/conf/bblayers.conf .. 45
A.2.4. build/conf/sanity_info .. 45
A.2.5. build/downloads/ ... 45
A.2.6. build/sstate-cache/ ... 46
A.2.7. build/tmp/ ... 46
A.2.8. build/tmp/buildstats/ .. 46
A.2.9. build/tmp/cache/ ... 46
A.2.10. build/tmp/deploy/ ... 46
A.2.11. build/tmp/deploy/deb/ .. 46
A.2.12. build/tmp/deploy/rpm/ .. 46
A.2.13. build/tmp/deploy/images/ ... 46
A.2.14. build/tmp/deploy/ipk/ .. 46
A.2.15. build/tmp/sysroots/ ... 46
A.2.16. build/tmp/stamps/ ... 46
A.2.17. build/tmp/log/ .. 47
A.2.18. build/tmp/pkgdata/ ... 47
A.2.19. build/tmp/work/ ... 47

A.3. The Metadata - meta/ ... 47
A.3.1. meta/classes/ .. 47

v

A.3.2. meta/conf/ ... 47
A.3.3. meta/conf/machine/ ... 47
A.3.4. meta/conf/distro/ ... 48
A.3.5. meta/recipes-bsp/ ... 48
A.3.6. meta/recipes-connectivity/ ... 48
A.3.7. meta/recipes-core/ ... 48
A.3.8. meta/recipes-devtools/ .. 48
A.3.9. meta/recipes-extended/ .. 48
A.3.10. meta/recipes-gnome/ ... 48
A.3.11. meta/recipes-graphics/ .. 48
A.3.12. meta/recipes-kernel/ .. 48
A.3.13. meta/recipes-multimedia/ ... 48
A.3.14. meta/recipes-qt/ ... 48
A.3.15. meta/recipes-sato/ ... 48
A.3.16. meta/recipes-support/ .. 49
A.3.17. meta/site/ .. 49
A.3.18. meta/recipes.txt/ ... 49

B. Reference: BitBake .. 50
B.1. Parsing ... 50
B.2. Preferences and Providers ... 50
B.3. Dependencies ... 51
B.4. The Task List .. 51
B.5. Running a Task ... 51
B.6. BitBake Command Line ... 52
B.7. Fetchers ... 53

C. Reference: Classes .. 54
C.1. The base class - base.bbclass ... 54
C.2. Autotooled Packages - autotools.bbclass ... 54
C.3. Alternatives - update-alternatives.bbclass ... 54
C.4. Initscripts - update-rc.d.bbclass .. 55
C.5. Binary config scripts - binconfig.bbclass .. 55
C.6. Debian renaming - debian.bbclass .. 55
C.7. Pkg-config - pkgconfig.bbclass ... 55
C.8. Distribution of sources - src_distribute_local.bbclass ... 55
C.9. Perl modules - cpan.bbclass .. 55
C.10. Python extensions - distutils.bbclass ... 56
C.11. Developer Shell - devshell.bbclass .. 56
C.12. Packaging - package*.bbclass ... 56
C.13. Building kernels - kernel.bbclass .. 56
C.14. Creating images - image.bbclass and rootfs*.bbclass ... 57
C.15. Host System sanity checks - sanity.bbclass ... 57
C.16. Generated output quality assurance checks - insane.bbclass 57
C.17. Autotools configuration data cache - siteinfo.bbclass .. 58
C.18. Adding Users - useradd.bbclass .. 58
C.19. Other Classes ... 58

D. Reference: Images ... 59
E. Reference: Features ... 61

E.1. Distro ... 61
E.2. Machine .. 61
E.3. Reference: Images .. 62

F. Reference: Variables Glossary ... 63
G. Reference: Variable Context .. 75

G.1. Configuration .. 75
G.1.1. Distribution (Distro) ... 75
G.1.2. Machine ... 75
G.1.3. Local ... 75

G.2. Recipes .. 76
G.2.1. Required .. 76
G.2.2. Dependencies .. 76
G.2.3. Paths ... 76
G.2.4. Extra Build Information .. 76

H. FAQ ... 78
I. Contributing to the Yocto Project ... 83

I.1. Introduction ... 83

vi

I.2. Tracking Bugs .. 83
I.3. Mailing lists ... 83
I.4. Internet Relay Chat (IRC) ... 83
I.5. Links .. 83
I.6. Contributions ... 84

1

Chapter 1. Introduction
1.1. Introduction
This manual provides reference information for the current release of the Yocto Project. The Yocto
Project is an open-source collaboration project focused on embedded Linux developers. Amongst
other things, the Yocto Project uses the Poky build tool to construct complete Linux images. You can
find complete introductory and getting started information on the Yocto Project by reading the Yocto
Project Quick Start [http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html].
For task-based information using the Yocto Project, see The Yocto Project Development Manual [http://
www.yoctoproject.org/docs/1.1.1//dev-manual/dev-manual.html]. You can also find lots of information
on the Yocto Project on the Yocto Project website [http://www.yoctoproject.org].

1.2. Documentation Overview
This reference manual consists of the following:

• Using the Yocto Project: This chapter provides an overview of the components that make up the
Yocto Project followed by information about debugging images created in the Yocto Project.

• Extending the Yocto Project: This chapter provides information about how to extend and customize
the Yocto Project along with advice on how to manage these changes.

• Technical Details: This chapter describes fundamental Yocto Project components as well as an
explanation behind how the Yocto Project uses shared state (sstate) cache to speed build time.

• Board Support Packages (BSP) - Developer's Guide: This chapter describes the example filesystem
layout for BSP development and the click-through licensing scheme.

• Platform Development With the Yocto Project: This chapter describes application development,
debugging, and profiling using the Yocto Project.

• Reference: Directory Structure: This appendix describes the directory structure of the Yocto Project
files. The Yocto Project files represent the file structure or Git repository created as a result of setting
up the Yocto Project on your host development system.

• Reference: BitBake: This appendix provides an overview of the BitBake tool and its role within the
Yocto Project.

• Reference: Classes: This appendix describes the classes used in the Yocto Project.

• Reference: Images: This appendix describes the standard images that the Yocto Project supports.

• Reference: Features: This appendix describes mechanisms for creating distribution, machine, and
image features during the build process using the Yocto Project.

• Reference: Variables Glossary: This appendix presents most Yocto Project variables. Entries
describe the function of the variable and how to apply them.

• Reference: Variable Context: This appendix provides variable locality or context.

• Reference: FAQ: This appendix provides answers for commonly asked questions in the Yocto Project
development environment.

• Reference: Contributing to the Yocto Project: This appendix provides guidance on how you can
contribute back to the Yocto Project.

1.3. System Requirements
For system Yocto Project system requirements, see the What You Need and How You Get
It [http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#resources] section
in the Yocto Project Quick Start [http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-
project-qs.html].

http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1//dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1//dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1//dev-manual/dev-manual.html
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#resources
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#resources
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#resources
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html

Introduction

2

1.4. Obtaining the Yocto Project
The Yocto Project development team makes the Yocto Project available through a number of methods:

• Releases: Stable, tested releases are available through http://downloads.yoctoproject.org/releases/
yocto/.

• Nightly Builds: These releases are available at http://autobuilder.yoctoproject.org/nightly. These
builds include Yocto Project releases, meta-toolchain tarballs, and experimental builds.

• Yocto Project Website: You can find releases of the Yocto Project and supported BSPs at the Yocto
Project website [http://www.yoctoproject.org]. Along with these downloads, you can find lots of
other information at this site.

1.5. Development Checkouts
Development using the Yocto Project requires a local copy of the Yocto Project files. You can get these
files by downloading a Yocto Project release tarball and unpacking it, or by establishing a Git repository
of the files. For information on both these methods, see Getting Setup [http://www.yoctoproject.org/
docs/1.1.1/dev-manual/dev-manual.html#getting-setup] section in The Yocto Project Development
Manual [http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html].

http://downloads.yoctoproject.org/releases/yocto/
http://downloads.yoctoproject.org/releases/yocto/
http://autobuilder.yoctoproject.org/nightly
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#getting-setup
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#getting-setup
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#getting-setup
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html

3

Chapter 2. Using the Yocto Project
This chapter describes common usage for the Yocto Project. The information is introductory in nature
as other manuals in the Yocto Project provide more details on how to use the Yocto Project.

2.1. Running a Build
You can find general information on how to build an image using the Yocto Project in the Building
an Image [http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#building-
image] section of the Yocto Project Quick Start [http://www.yoctoproject.org/docs/1.1.1/yocto-project-
qs/yocto-project-qs.html]. This section provides a summary of the build process and provides
information for less obvious aspects of the build process.

2.1.1. Build Overview
The first thing you need to do is set up the Yocto Project build environment by sourcing the
environment setup script as follows:

 $ source oe-init-build-env [build_dir]

The build_dir is optional and specifies the directory Yocto Project uses for the build. If you do not
specify a build directory it defaults to build in your current working directory. A common practice is
to use a different build directory for different targets. For example, ~/build/x86 for a qemux86 target,
and ~/build/arm for a qemuarm target. See oe-init-build-env for more information on this script.

Once the Yocto Project build environment is set up, you can build a target using:

 $ bitbake <target>

The target is the name of the recipe you want to build. Common targets are the images in meta/
recipes-core/images, /meta/recipes-sato/images, etc. all found in the Yocto Project files. Or, the
target can be the name of a recipe for a specific piece of software such as busybox. For more details
about the images Yocto Project supports, see the 'Reference: Images' appendix.

Note
Building an image without GNU Public License Version 3 (GPLv3) components is only
supported for minimal and base images. See 'Reference: Images' for more information.

2.1.2. Building an Image Using GPL Components
When building an image using GPL components, you need to maintain your original settings and
not switch back and forth applying different versions of the GNU Public License. If you rebuild using
different versions of GPL, dependency errors might occur due to some components not being rebuilt.

2.2. Installing and Using the Result
Once an image has been built, it often needs to be installed. The images and kernels built by the
Yocto Project are placed in the build directory in tmp/deploy/images. For information on how to run
pre-built images such as qemux86 and qemuarm, see the Using Pre-Built Binaries and QEMU [http://
www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#using-pre-built] section in
the Yocto Project Quick Start [http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-
qs.html]. For information about how to install these images, see the documentation for your particular
board/machine.

2.3. Debugging Build Failures
The exact method for debugging Yocto Project build failures depends on the nature of the problem
and on the system's area from which the bug originates. Standard debugging practices such as

http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#building-image
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#building-image
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#building-image
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#building-image
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#using-pre-built
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#using-pre-built
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#using-pre-built
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html

Using the Yocto Project

4

comparison against the last known working version with examination of the changes and the re-
application of steps to identify the one causing the problem are valid for Yocto Project just as they
are for any other system. Even though it is impossible to detail every possible potential failure, this
section provides some general tips to aid in debugging.

2.3.1. Task Failures
The log file for shell tasks is available in ${WORKDIR}/temp/log.do_taskname.pid. For example,
the compile task for the QEMU minimal image for the x86 machine (qemux86) might be tmp/work/
qemux86-poky-linux/core-image-minimal-1.0-r0/temp/log.do_compile.20830. To see what
BitBake runs to generate that log, look at the corresponding run.do_taskname.pid file located in
the same directory.

Presently, the output from Python tasks is sent directly to the console.

2.3.2. Running Specific Tasks
Any given package consists of a set of tasks. The standard BitBake behavior in most cases is: fetch,
unpack, patch, configure, compile, install, package, package_write, and build. The default task
is build and any tasks on which it depends build first. Some tasks exist, such as devshell, that are
not part of the default build chain. If you wish to run a task that is not part of the default build chain,
you can use the -c option in BitBake as follows:

 $ bitbake matchbox-desktop -c devshell

If you wish to rerun a task, use the -f force option. For example, the following sequence forces
recompilation after changing files in the working directory.

 $ bitbake matchbox-desktop
 .
 .
 [make some changes to the source code in the working directory]
 .
 .
 $ bitbake matchbox-desktop -c compile -f
 $ bitbake matchbox-desktop

This sequence first builds matchbox-desktop and then recompiles it. The last command reruns all
tasks (basically the packaging tasks) after the compile. BitBake recognizes that the compile task was
rerun and therefore understands that the other tasks also need to be run again.

You can view a list of tasks in a given package by running the listtasks task as follows:

 $ bitbake matchbox-desktop -c

The results are in the file ${WORKDIR}/temp/log.do_listtasks.

2.3.3. Dependency Graphs
Sometimes it can be hard to see why BitBake wants to build some other packages before a given
package you have specified. The bitbake -g targetname command creates the depends.dot and
task-depends.dot files in the current directory. These files show the package and task dependencies
and are useful for debugging problems. You can use the bitbake -g -u depexp targetname
command to display the results in a more human-readable form.

2.3.4. General BitBake Problems
You can see debug output from BitBake by using the -D option. The debug output gives more
information about what BitBake is doing and the reason behind it. Each -D option you use increases
the logging level. The most common usage is -DDD.

Using the Yocto Project

5

The output from bitbake -DDD -v targetname can reveal why BitBake chose a certain version of a
package or why BitBake picked a certain provider. This command could also help you in a situation
where you think BitBake did something unexpected.

2.3.5. Building with No Dependencies
If you really want to build a specific .bb file, you can use the command form bitbake -b <somepath/
somefile.bb>. This command form does not check for dependencies so you should use it only when
you know its dependencies already exist. You can also specify fragments of the filename. In this case,
BitBake checks for a unique match.

2.3.6. Variables
The -e option dumps the resulting environment for either the configuration (no package specified)
or for a specific package when specified; or -b recipename to show the environment from parsing
a single recipe file only.

2.3.7. Recipe Logging Mechanisms
Best practices exist while writing recipes that both log build progress and act on build conditions such
as warnings and errors. Both Python and Bash language bindings exist for the logging mechanism:

• Python: For Python functions, BitBake supports several loglevels: bb.fatal, bb.error, bb.warn,
bb.note, bb.plain, and bb.debug.

• Bash: For Bash functions, the same set of loglevels exist and are accessed with a similar syntax:
bbfatal, bberror, bbwarn, bbnote, bbplain, and bbdebug.

For guidance on how logging is handled in both Python and Bash recipes, see the logging.bbclass
file in the meta/classes directory of the Yocto Project files.

2.3.7.1. Logging With Python

When creating recipes using Python and inserting code that handles build logs keep in mind the goal
is to have informative logs while keeping the console as "silent" as possible. Also, if you want status
messages in the log use the "debug" loglevel.

Following is an example written in Python. The code handles logging for a function that determines
the number of tasks needed to be run:

 python do_listtasks() {
 bb.debug(2, "Starting to figure out the task list")
 if noteworthy_condition:
 bb.note("There are 47 tasks to run")
 bb.debug(2, "Got to point xyz")
 if warning_trigger:
 bb.warn("Detected warning_trigger, this might be a problem later.")
 if recoverable_error:
 bb.error("Hit recoverable_error, you really need to fix this!")
 if fatal_error:
 bb.fatal("fatal_error detected, unable to print the task list")
 bb.plain("The tasks present are abc")
 bb.debug(2, "Finished figureing out the tasklist")
 }

2.3.7.2. Logging With Bash

When creating recipes using Bash and inserting code that handles build logs you have the same goals
- informative with minimal console output. The syntax you use for recipes written in Bash is similar
to that of recipes written in Python described in the previous section.

Following is an example written in Bash. The code logs the progress of the do_my_function function.

Using the Yocto Project

6

 do_my_function() {
 bbdebug 2 "Running do_my_function"
 if [exceptional_condition]; then
 bbnote "Hit exceptional_condition"
 fi
 bbdebug 2 "Got to point xyz"
 if [warning_trigger]; then
 bbwarn "Detected warning_trigger, this might cause a problem later."
 fi
 if [recoverable_error]; then
 bberror "Hit recoverable_error, correcting"
 fi
 if [fatal_error]; then
 bbfatal "fatal_error detected"
 fi
 bbdebug 2 "Completed do_my_function"
 }

2.3.8. Other Tips
Here are some other tips that you might find useful:

• When adding new packages, it is worth watching for undesirable items making their way into
compiler command lines. For example, you do not want references to local system files like /usr/
lib/ or /usr/include/.

• If you want to remove the psplash boot splashscreen, add psplash=false to the kernel command
line. Doing so prevents psplash from loading and thus allows you to see the console. It is also
possible to switch out of the splashscreen by switching the virtual console (e.g. Fn+Left or Fn+Right
on a Zaurus).

7

Chapter 3. Common Tasks
This chapter describes standard tasks such as adding new software packages, extending or
customizing images or porting the Yocto Project to new hardware (adding a new machine). The chapter
also describes ways to modify package source code, combine multiple versions of library files into a
single image, track license changes, and handle a package name alias. Finally, the chapter contains
advice about how to make changes to the Yocto Project to achieve the best results.

3.1. Adding a Package
To add a package into the Yocto Project you need to write a recipe for it. Writing a recipe means
creating a .bb file that sets some variables. For information on variables that are useful for recipes
and for information about recipe naming issues, see the Required section for recipe variables.

Before writing a recipe from scratch, it is often useful to check whether someone else has written
one already. OpenEmbedded is a good place to look as it has a wider scope and range of packages.
Because the Yocto Project aims to be compatible with OpenEmbedded, most recipes you find there
should work in Yocto Project.

For new packages, the simplest way to add a recipe is to base it on a similar pre-existing recipe. The
sections that follow provide some examples that show how to add standard types of packages.

3.1.1. Single .c File Package (Hello World!)
Building an application from a single file that is stored locally (e.g. under files/) requires a recipe that
has the file listed in the SRC_URI variable. Additionally, you need to manually write the do_compile
and do_install tasks. The S variable defines the directory containing the source code, which is set
to WORKDIR in this case - the directory BitBake uses for the build.

 DESCRIPTION = "Simple helloworld application"
 SECTION = "examples"
 LICENSE = "MIT"
 LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"
 PR = "r0"

 SRC_URI = "file://helloworld.c"

 S = "${WORKDIR}"

 do_compile() {
 ${CC} helloworld.c -o helloworld
 }

 do_install() {
 install -d ${D}${bindir}
 install -m 0755 helloworld ${D}${bindir}
 }

By default, the helloworld, helloworld-dbg, and helloworld-dev packages are built. For
information on how to customize the packaging process, see the "Splitting an Application into Multiple
Packages" section.

3.1.2. Autotooled Package
Applications that use Autotools such as autoconf and automake require a recipe that has a
source archive listed in SRC_URI and also inherits Autotools, which instructs BitBake to use the
autotools.bbclass file, which contains the definitions of all the steps needed to build an Autotool-
based application. The result of the build is automatically packaged. And, if the application uses NLS
for localization, packages with local information are generated (one package per language). Following
is one example: (hello_2.3.bb)

Common Tasks

8

 DESCRIPTION = "GNU Helloworld application"
 SECTION = "examples"
 LICENSE = "GPLv2+"
 LIC_FILES_CHKSUM = "file://COPYING;md5=751419260aa954499f7abaabaa882bbe"
 PR = "r0"

 SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"

 inherit autotools gettext

The variable LIC_FILES_CHKSUM is used to track source license changes as described in the Track
License Change section. You can quickly create Autotool-based recipes in a manner similar to the
previous example.

3.1.3. Makefile-Based Package
Applications that use GNU make also require a recipe that has the source archive listed in SRC_URI. You
do not need to add a do_compile step since by default BitBake starts the make command to compile
the application. If you need additional make options you should store them in the EXTRA_OEMAKE
variable. BitBake passes these options into the make GNU invocation. Note that a do_install task is
still required. Otherwise BitBake runs an empty do_install task by default.

Some applications might require extra parameters to be passed to the compiler. For example, the
application might need an additional header path. You can accomplish this by adding to the CFLAGS
variable. The following example shows this:

 CFLAGS_prepend = "-I ${S}/include "

In the following example, mtd-utils is a makefile-based package:

 DESCRIPTION = "Tools for managing memory technology devices."
 SECTION = "base"
 DEPENDS = "zlib lzo e2fsprogs util-linux"
 HOMEPAGE = "http://www.linux-mtd.infradead.org/"
 LICENSE = "GPLv2"
 LIC_FILES_CHKSUM = "file://COPYING;md5=0636e73ff0215e8d672dc4c32c317bb3 \
 file://include/common.h;beginline=1;endline=17;md5=ba05b07912a44ea2bf81ce409380049c"

 SRC_URI = "git://git.infradead.org/mtd-utils.git;protocol=git;tag=v${PV}"

 S = "${WORKDIR}/git/"

 EXTRA_OEMAKE = "'CC=${CC}' 'CFLAGS=${CFLAGS} -I${S}/include -DWITHOUT_XATTR' \
 'BUILDDIR=${S}'"

 do_install () {
 oe_runmake install DESTDIR=${D} SBINDIR=${sbindir} MANDIR=${mandir} \
 INCLUDEDIR=${includedir}
 install -d ${D}${includedir}/mtd/
 for f in ${S}/include/mtd/*.h; do
 install -m 0644 $f ${D}${includedir}/mtd/
 done
 }

3.1.4. Splitting an Application into Multiple Packages
You can use the variables PACKAGES and FILES to split an application into multiple packages.

Following is an example that uses the libXpm recipe. By default, this recipe generates a single
package that contains the library along with a few binaries. You can modify the recipe to split the
binaries into separate packages:

Common Tasks

9

 require xorg-lib-common.inc

 DESCRIPTION = "X11 Pixmap library"
 LICENSE = "X-BSD"
 LIC_FILES_CHKSUM = "file://COPYING;md5=3e07763d16963c3af12db271a31abaa5"
 DEPENDS += "libxext libsm libxt"
 PR = "r3"
 PE = "1"

 XORG_PN = "libXpm"

 PACKAGES =+ "sxpm cxpm"
 FILES_cxpm = "${bindir}/cxpm"
 FILES_sxpm = "${bindir}/sxpm"

In the previous example, we want to ship the sxpm and cxpm binaries in separate packages. Since
bindir would be packaged into the main PN package by default, we prepend the PACKAGES variable
so additional package names are added to the start of list. This results in the extra FILES_* variables
then containing information that define which files and directories go into which packages. Files
included by earlier packages are skipped by latter packages. Thus, the main PN package does not
include the above listed files.

3.1.5. Including Static Library Files

If you are building a library and the library offers static linking, you can control which static library
files (*.a files) get included in the built library.

The PACKAGES and FILES_* variables in the meta/conf/bitbake.conf configuration file define how
files installed by the do_install task are packaged. By default, the PACKAGES variable contains
${PN}-staticdev, which includes all static library files.

Note
Previously released versions of the Yocto Project defined the static library files through ${PN}-
dev.

Following, is part of the BitBake configuration file. You can see where the static library files are defined:

 PACKAGES = "${PN}-dbg ${PN} ${PN}-doc ${PN}-dev ${PN}-staticdev ${PN}-locale"
 PACKAGES_DYNAMIC = "${PN}-locale-*"
 FILES = ""

 FILES_${PN} = "${bindir}/* ${sbindir}/* ${libexecdir}/* ${libdir}/lib*${SOLIBS} \
 ${sysconfdir} ${sharedstatedir} ${localstatedir} \
 ${base_bindir}/* ${base_sbindir}/* \
 ${base_libdir}/*${SOLIBS} \
 ${datadir}/${BPN} ${libdir}/${BPN}/* \
 ${datadir}/pixmaps ${datadir}/applications \
 ${datadir}/idl ${datadir}/omf ${datadir}/sounds \
 ${libdir}/bonobo/servers"

 FILES_${PN}-doc = "${docdir} ${mandir} ${infodir} ${datadir}/gtk-doc \
 ${datadir}/gnome/help"
 SECTION_${PN}-doc = "doc"

 FILES_${PN}-dev = "${includedir} ${libdir}/lib*${SOLIBSDEV} ${libdir}/*.la \
 ${libdir}/*.o ${libdir}/pkgconfig ${datadir}/pkgconfig \
 ${datadir}/aclocal ${base_libdir}/*.o"
 SECTION_${PN}-dev = "devel"
 ALLOW_EMPTY_${PN}-dev = "1"
 RDEPENDS_${PN}-dev = "${PN} (= ${EXTENDPKGV})"

 FILES_${PN}-staticdev = "${libdir}/*.a ${base_libdir}/*.a"

Common Tasks

10

 SECTION_${PN}-staticdev = "devel"
 RDEPENDS_${PN}-staticdev = "${PN}-dev (= ${EXTENDPKGV})"

3.1.6. Post Install Scripts
To add a post-installation script to a package, add a pkg_postinst_PACKAGENAME() function to the
.bb file and use PACKAGENAME as the name of the package you want to attach to the postinst script.
Normally PN can be used, which automatically expands to PACKAGENAME. A post-installation function
has the following structure:

 pkg_postinst_PACKAGENAME () {
 #!/bin/sh -e
 # Commands to carry out
 }

The script defined in the post-installation function is called when the root filesystem is created. If
the script succeeds, the package is marked as installed. If the script fails, the package is marked as
unpacked and the script is executed when the image boots again.

Sometimes it is necessary for the execution of a post-installation script to be delayed until the first
boot. For example, the script might need to be executed on the device itself. To delay script execution
until boot time, use the following structure in the post-installation script:

 pkg_postinst_PACKAGENAME () {
 #!/bin/sh -e
 if [x"$D" = "x"]; then
 # Actions to carry out on the device go here
 else
 exit 1
 fi
 }

The previous example delays execution until the image boots again because the D variable points
to the directory containing the image when the root filesystem is created at build time but is unset
when executed on the first boot.

3.2. Customizing Images
You can customize Yocto Project images to satisfy particular requirements. This section describes
several methods and provides guidelines for each.

3.2.1. Customizing Images Using Custom .bb Files
One way to get additional software into an image is to create a custom image. The following example
shows the form for the two lines you need:

 IMAGE_INSTALL = "task-core-x11-base package1 package2"

 inherit core-image

By creating a custom image, a developer has total control over the contents of the image. It is
important to use the correct names of packages in the IMAGE_INSTALL variable. You must use the
OpenEmbedded notation and not the Debian notation for the names (e.g. eglibc-dev instead of
libc6-dev).

The other method for creating a custom image is to modify an existing image. For example, if a
developer wants to add strace into the core-image-sato image, they can use the following recipe:

Common Tasks

11

 require core-image-sato.bb

 IMAGE_INSTALL += "strace"

3.2.2. Customizing Images Using Custom Tasks
For complex custom images, the best approach is to create a custom task package that is used to
build the image or images. A good example of a tasks package is meta/recipes-sato/tasks/task-
poky.bb. The PACKAGES variable lists the task packages to build along with the complementary -dbg
and -dev packages. For each package added, you can use RDEPENDS and RRECOMMENDS entries to
provide a list of packages the parent task package should contain. Following is an example:

 DESCRIPTION = "My Custom Tasks"

 PACKAGES = "\
 task-custom-apps \
 task-custom-apps-dbg \
 task-custom-apps-dev \
 task-custom-tools \
 task-custom-tools-dbg \
 task-custom-tools-dev \
 "

 RDEPENDS_task-custom-apps = "\
 dropbear \
 portmap \
 psplash"

 RDEPENDS_task-custom-tools = "\
 oprofile \
 oprofileui-server \
 lttng-control \
 lttng-viewer"

 RRECOMMENDS_task-custom-tools = "\
 kernel-module-oprofile"

In the previous example, two task packages are created with their dependencies and their
recommended package dependencies listed: task-custom-apps, and task-custom-tools. To build
an image using these task packages, you need to add task-custom-apps and/or task-custom-tools
to IMAGE_INSTALL. For other forms of image dependencies see the other areas of this section.

3.2.3. Customizing Images Using Custom
IMAGE_FEATURES and EXTRA_IMAGE_FEATURES
Ultimately users might want to add extra image features to the set used by Yocto Project with
the IMAGE_FEATURES variable. To create these features, the best reference is meta/classes/core-
image.bbclass, which shows how the Yocto Project achieves this. In summary, the file looks at the
contents of the IMAGE_FEATURES variable and then maps that into a set of tasks or packages. Based
on this information the IMAGE_INSTALL variable is generated automatically. Users can add extra
features by extending the class or creating a custom class for use with specialized image .bb files. You
can also add more features by configuring the EXTRA_IMAGE_FEATURES variable in the local.conf
file found in the Yocto Project files located in the build directory.

The Yocto Project ships with two SSH servers you can use in your images: Dropbear and OpenSSH.
Dropbear is a minimal SSH server appropriate for resource-constrained environments, while OpenSSH
is a well-known standard SSH server implementation. By default, the core-image-sato image
is configured to use Dropbear. The core-image-basic and core-image-lsb images both include
OpenSSH. To change these defaults, edit the IMAGE_FEATURES variable so that it sets the image you
are working with to include ssh-server-dropbear or ssh-server-openssh.

Common Tasks

12

3.2.4. Customizing Images Using local.conf

It is possible to customize image contents by using variables used by distribution maintainers in
the local.conf found in the Yocto Project build directory. This method only allows the addition of
packages and is not recommended.

For example, to add the strace package into the image, you would add this package to the
local.conf file:

 DISTRO_EXTRA_RDEPENDS += "strace"

However, since the DISTRO_EXTRA_RDEPENDS variable is for distribution maintainers, adding packages
using this method is not as simple as adding them using a custom .bb file. Using the local.conf
file method could result in some packages needing to be recreated. For example, if packages were
previously created and the image was rebuilt, then the packages would need to be recreated.

Cleaning task-* packages are required because they use the DISTRO_EXTRA_RDEPENDS variable. You
do not have to build them by hand because Yocto Project images depend on the packages they
contain. This means dependencies are automatically built when the image builds. For this reason we
do not use the rebuild task. In this case the rebuild task does not care about dependencies - it
only rebuilds the specified package.

 $ bitbake -c clean task-boot task-base task-poky
 $ bitbake core-image-sato

3.3. Porting the Yocto Project to a New Machine
Adding a new machine to the Yocto Project is a straightforward process. This section provides
information that gives you an idea of the changes you must make. The information covers adding
machines similar to those the Yocto Project already supports. Although well within the capabilities of
the Yocto Project, adding a totally new architecture might require changes to gcc/eglibc and to the
site information, which is beyond the scope of this manual.

For a complete example that shows how to add a new machine to the Yocto Project, see the BSP
Development Example [http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#dev-
manual-bsp-appendix] in Appendix A of The Yocto Project Development Manual [http://
www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html].

3.3.1. Adding the Machine Configuration File

To add a machine configuration you need to add a .conf file with details of the device being added to
the conf/machine/ file. The name of the file determines the name the Yocto Project uses to reference
the new machine.

The most important variables to set in this file are as follows:

• TARGET_ARCH (e.g. "arm")

• PREFERRED_PROVIDER_virtual/kernel (see below)

• MACHINE_FEATURES (e.g. "kernel26 apm screen wifi")

You might also need these variables:

• SERIAL_CONSOLE (e.g. "115200 ttyS0")

• KERNEL_IMAGETYPE (e.g. "zImage")

• IMAGE_FSTYPES (e.g. "tar.gz jffs2")

http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#dev-manual-bsp-appendix
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#dev-manual-bsp-appendix
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#dev-manual-bsp-appendix
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#dev-manual-bsp-appendix
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html

Common Tasks

13

You can find full details on these variables in the reference section. You can leverage many existing
machine .conf files from meta/conf/machine/.

3.3.2. Adding a Kernel for the Machine
The Yocto Project needs to be able to build a kernel for the machine. You need to either create a new
kernel recipe for this machine, or extend an existing recipe. You can find several kernel examples in
the Yocto Project file's meta/recipes-kernel/linux directory that you can use as references.

If you are creating a new recipe, normal recipe-writing rules apply for setting up a SRC_URI. Thus,
you need to specify any necessary patches and set S to point at the source code. You need to create
a configure task that configures the unpacked kernel with a defconfig. You can do this by using a
make defconfig command or, more commonly, by copying in a suitable defconfig file and and then
running make oldconfig. By making use of inherit kernel and potentially some of the linux-
*.inc files, most other functionality is centralized and the the defaults of the class normally work well.

If you are extending an existing kernel, it is usually a matter of adding a suitable defconfig file. The
file needs to be added into a location similar to defconfig files used for other machines in a given
kernel. A possible way to do this is by listing the file in the SRC_URI and adding the machine to the
expression in COMPATIBLE_MACHINE:

 COMPATIBLE_MACHINE = '(qemux86|qemumips)'

3.3.3. Adding a Formfactor Configuration File
A formfactor configuration file provides information about the target hardware for which the Yocto
Project is building and information that the Yocto Project cannot obtain from other sources such as the
kernel. Some examples of information contained in a formfactor configuration file include framebuffer
orientation, whether or not the system has a keyboard, the positioning of the keyboard in relation to
the screen, and the screen resolution.

The Yocto Project uses reasonable defaults in most cases, but if customization is necessary you
need to create a machconfig file in the Yocto Project file's meta/recipes-bsp/formfactor/files
directory. This directory contains directories for specific machines such as qemuarm and qemux86. For
information about the settings available and the defaults, see the meta/recipes-bsp/formfactor/
files/config file found in the same area. Following is an example for qemuarm:

 HAVE_TOUCHSCREEN=1
 HAVE_KEYBOARD=1

 DISPLAY_CAN_ROTATE=0
 DISPLAY_ORIENTATION=0
 #DISPLAY_WIDTH_PIXELS=640
 #DISPLAY_HEIGHT_PIXELS=480
 #DISPLAY_BPP=16
 DISPLAY_DPI=150
 DISPLAY_SUBPIXEL_ORDER=vrgb

3.4. Modifying Package Source Code
Although the Yocto Project is usually used to build software, you can use it to modify software.

During a build, source is available in the WORKDIR directory. The actual location depends on the type
of package and the architecture of the target device. For a standard recipe not related to MACHINE,
the location is tmp/work/PACKAGE_ARCH-poky-TARGET_OS/PN-PV-PR/. For target device-dependent
packages, you should use the MACHINE variable instead of PACKAGE_ARCH in the directory name.

Tip
Be sure the package recipe sets the S variable to something other than the standard WORKDIR/
PN-PV/ value.

Common Tasks

14

After building a package, you can modify the package source code without problems. The easiest way
to test your changes is by calling the compile task as shown in the following example:

 $ bitbake -c compile -f NAME_OF_PACKAGE

The -f or --force option forces re-execution of the specified task. You can call other tasks this way
as well. But note that all the modifications in WORKDIR are gone once you execute -c clean for a
package.

3.5. Modifying Package Source Code with Quilt
By default Poky uses Quilt [http://savannah.nongnu.org/projects/quilt] to manage patches in the
do_patch task. This is a powerful tool that you can use to track all modifications to package sources.

Before modifying source code, it is important to notify Quilt so it can track the changes into the new
patch file:

 $ quilt new NAME-OF-PATCH.patch

After notifying Quilt, add all modified files into that patch:

 $ quilt add file1 file2 file3

You can now start editing. Once you are done editing, you need to use Quilt to generate the final
patch that will contain all your modifications.

 $ quilt refresh

You can find the resulting patch file in the patches/ subdirectory of the source (S) directory. For future
builds, you should copy the patch into the Yocto Project metadata and add it into the SRC_URI of a
recipe. Here is an example:

 SRC_URI += "file://NAME-OF-PATCH.patch"

Finally, don't forget to 'bump' the PR value in the same recipe since the resulting packages have
changed.

3.6. Combining Multiple Versions of Library Files
into One Image
The build system offers the ability to build libraries with different target optimizations or architecture
formats and combine these together into one system image. You can link different binaries in the
image against the different libraries as needed for specific use cases. This feature is called "Multilib."

An example would be where you have most of a system compiled in 32-bit mode using 32-bit libraries,
but you have something large, like a database engine, that needs to be a 64-bit application and use
64-bit libraries. Multilib allows you to get the best of both 32-bit and 64-bit libraries.

While the Multilib feature is most commonly used for 32 and 64-bit differences, the approach the
build system uses facilitates different target optimizations. You could compile some binaries to use
one set of libraries and other binaries to use other different sets of libraries. The libraries could differ
in architecture, compiler options, or other optimizations.

This section overviews the Multilib process only. For more details on how to implement Multilib, see
the Multilib [https://wiki.yoctoproject.org/wiki/Multilib] wiki page.

http://savannah.nongnu.org/projects/quilt
http://savannah.nongnu.org/projects/quilt
https://wiki.yoctoproject.org/wiki/Multilib
https://wiki.yoctoproject.org/wiki/Multilib

Common Tasks

15

3.6.1. Preparing to use Multilib
User-specific requirements drive the Multilib feature, Consequently, there is no one "out-of-the-box"
configuration that likely exists to meet your needs.

In order to enable Multilib, you first need to ensure your recipe is extended to support multiple
libraries. Many standard recipes are already extended and support multiple libraries. You can check
in the meta/conf/multilib.conf configuration file in the Yocto Project files directory to see how this
is done using the BBCLASSEXTEND variable. Eventually, all recipes will be covered and this list will
be unneeded.

For the most part, the Multilib class extension works automatically to extend the package name
from ${PN} to ${MLPREFIX}${PN}, where MLPREFIX is the particular multilib (e.g. "lib32-" or
"lib64-"). Standard variables such as DEPENDS, RDEPENDS, RPROVIDES, RRECOMMENDS, PACKAGES, and
PACKAGES_DYNAMIC are automatically extended by the system. If you are extending any manual code
in the recipe, you can use the ${MLPREFIX} variable to ensure those names are extended correctly.
This automatic extension code resides in multilib.bbclass.

3.6.2. Using Multilib
After you have set up the recipes, you need to define the actual combination of multiple libraries you
want to build. You accomplish this through your local.conf configuration file in the Yocto Project
build directory. An example configuration would be as follows:

 MACHINE = "qemux86-64"
 require conf/multilib.conf
 MULTILIBS = "multilib:lib32"
 DEFAULTTUNE_virtclass-multilib-lib32 = "x86"
 MULTILIB_IMAGE_INSTALL = "lib32-connman"

This example enables an additional library named lib32 alongside the normal target packages. When
combining these "lib32" alternatives, the example uses "x86" for tuning. For information on this
particular tuning, see meta/conf/machine/include/ia32/arch-ia32.inc.

The example then includes lib32-connman in all the images, which illustrates one method of including
a multiple library dependency. You can use a normal image build to include this dependency, for
example:

 $ bitbake core-image-sato

You can also build Multilib packages specifically with a command like this:

 $ bitbake lib32-connman

3.6.3. Additional Implementation Details
Different packaging systems have different levels of native Multilib support. For the RPM Package
Management System, the following implementation details exist:

• A unique architecture is defined for the Multilib packages, along with creating a unique deploy
folder under tmp/deploy/rpm in the Yocto Project build directory. For example, consider lib32
in a qemux86-64 image. The possible architectures in the system are "all", "qemux86_64",
"lib32_qemux86_64", and "lib32_x86".

• The ${MLPREFIX} variable is stripped from ${PN} during RPM packaging. The naming for a normal
RPM package and a Multilib RPM package in a qemux86-64 system resolves to something similar to
bash-4.1-r2.x86_64.rpm and bash-4.1.r2.lib32_x86.rpm, respectively.

• When installing a Multilib image, the RPM backend first installs the base image and then installs
the Multilib libraries.

Common Tasks

16

• The build system relies on RPM to resolve the identical files in the two (or more) Multilib packages.

For the IPK Package Management System, the following implementation details exist:

• The ${MLPREFIX} is not stripped from ${PN} during IPK packaging. The naming for a normal RPM
package and a Multilib IPK package in a qemux86-64 system resolves to something like bash_4.1-
r2.x86_64.ipk and lib32-bash_4.1-rw_x86.ipk, respectively.

• The IPK deploy folder is not modified with ${MLPREFIX} because packages with and without the
Multilib feature can exist in the same folder due to the ${PN} differences.

• IPK defines a sanity check for Multilib installation using certain rules for file comparison, overridden,
etc.

3.7. Tracking License Changes
The license of an upstream project might change in the future. In order to prevent these changes
going unnoticed, the Yocto Project provides a LIC_FILES_CHKSUM variable to track changes to the
license text. The checksums are validated at the end of the configure step, and if the checksums do
not match, the build will fail.

3.7.1. Specifying the LIC_FILES_CHKSUM Variable

The LIC_FILES_CHKSUM variable contains checksums of the license text in the source code for the
recipe. Following is an example of how to specify LIC_FILES_CHKSUM:

 LIC_FILES_CHKSUM = "file://COPYING;md5=xxxx \
 file://licfile1.txt;beginline=5;endline=29;md5=yyyy \
 file://licfile2.txt;endline=50;md5=zzzz \
 ..."

The Yocto Project uses the S variable as the default directory used when searching files listed in
LIC_FILES_CHKSUM. The previous example employs the default directory.

You can also use relative paths as shown in the following example:

 LIC_FILES_CHKSUM = "file://src/ls.c;startline=5;endline=16;\
 md5=bb14ed3c4cda583abc85401304b5cd4e"
 LIC_FILES_CHKSUM = "file://../license.html;md5=5c94767cedb5d6987c902ac850ded2c6"

In this example, the first line locates a file in S/src/ls.c. The second line refers to a file in WORKDIR,
which is the parent of S.

Note that this variable is mandatory for all recipes, unless the LICENSE variable is set to "CLOSED".

3.7.2. Explanation of Syntax

As mentioned in the previous section, the LIC_FILES_CHKSUM variable lists all the important files that
contain the license text for the source code. It is possible to specify a checksum for an entire file, or
a specific section of a file (specified by beginning and ending line numbers with the "beginline" and
"endline" parameters, respectively). The latter is useful for source files with a license notice header,
README documents, and so forth. If you do not use the "beginline" parameter, then it is assumed
that the text begins on the first line of the file. Similarly, if you do not use the "endline" parameter,
it is assumed that the license text ends with the last line of the file.

The "md5" parameter stores the md5 checksum of the license text. If the license text changes in any
way as compared to this parameter then a mismatch occurs. This mismatch triggers a build failure
and notifies the developer. Notification allows the developer to review and address the license text
changes. Also note that if a mismatch occurs during the build, the correct md5 checksum is placed
in the build log and can be easily copied to the recipe.

Common Tasks

17

There is no limit to how many files you can specify using the LIC_FILES_CHKSUM variable. Generally,
however, every project requires a few specifications for license tracking. Many projects have a
"COPYING" file that stores the license information for all the source code files. This practice allows
you to just track the "COPYING" file as long as it is kept up to date.

Tip
If you specify an empty or invalid "md5" parameter, BitBake returns an md5 mis-match error
and displays the correct "md5" parameter value during the build. The correct parameter is
also captured in the build log.

Tip
If the whole file contains only license text, you do not need to use the "beginline" and "endline"
parameters.

3.8. Handling a Package Name Alias
Sometimes a package name you are using might exist under an alias or as a similarly named package
in a different distribution. The Yocto Project implements a distro_check task that automatically
connects to major distributions and checks for these situations. If the package exists under a different
name in a different distribution, you get a distro_check mismatch. You can resolve this problem by
defining a per-distro recipe name alias using the DISTRO_PN_ALIAS variable.

Following is an example that shows how you specify the DISTRO_PN_ALIAS variable:

 DISTRO_PN_ALIAS_pn-PACKAGENAME = "distro1=package_name_alias1 \
 distro2=package_name_alias2 \
 distro3=package_name_alias3 \
 ..."

If you have more than one distribution alias, separate them with a space. Note that the Yocto Project
currently automatically checks the Fedora, OpenSuSE, Debian, Ubuntu, and Mandriva distributions
for source package recipes without having to specify them using the DISTRO_PN_ALIAS variable. For
example, the following command generates a report that lists the Linux distributions that include the
sources for each of the Yocto Project recipes.

 $ bitbake world -f -c distro_check

The results are stored in the build/tmp/log/distro_check-${DATETIME}.results file found in the
Yocto Project files area.

3.9. Making and Maintaining Changes
Because the Yocto Project is extremely configurable and flexible, we recognize that developers will
want to extend, configure or optimize it for their specific uses. To best keep pace with future Yocto
Project changes, we recommend you make controlled changes to the Yocto Project.

The Yocto Project supports a "layers" concept. If you use layers properly, you can ease future upgrades
and allow segregation between the Yocto Project core and a given developer's changes. The following
section provides more advice on managing changes to the Yocto Project.

3.9.1. BitBake Layers
Often, developers want to extend the Yocto Project either by adding packages or by overriding files
contained within the Yocto Project to add their own functionality. BitBake has a powerful mechanism
called "layers", which provides a way to handle this extension in a fully supported and non-invasive
fashion.

The Yocto Project files include several additional layers such as meta-rt and meta-yocto that
demonstrate this functionality. The meta-rt layer is not enabled by default. However, the meta-yocto
layer is.

Common Tasks

18

To enable a layer, you simply add the layer's path to the BBLAYERS variable in your bblayers.conf
file, which is found in the Yocto Project file's build directory. The following example shows how to
enable the meta-rt:

 LCONF_VERSION = "1"

 BBFILES ?= ""
 BBLAYERS = " \
 /path/to/poky/meta \
 /path/to/poky/meta-yocto \
 /path/to/poky/meta-rt \
 "

BitBake parses each conf/layer.conf file for each layer in BBLAYERS and adds the recipes, classes
and configurations contained within the layer to the Yocto Project. To create your own layer,
independent of the Yocto Project files, simply create a directory with a conf/layer.conf file and add
the directory to your bblayers.conf file.

The meta-yocto/conf/layer.conf file demonstrates the required syntax:

 # We have a conf and classes directory, add to BBPATH
 BBPATH := "${BBPATH}:${LAYERDIR}"

 # We have a packages directory, add to BBFILES
 BBFILES := "${BBFILES} ${LAYERDIR}/recipes-*/*/*.bb \
 ${LAYERDIR}/recipes-*/*/*.bbappend"

 BBFILE_COLLECTIONS += "yocto"
 BBFILE_PATTERN_yocto := "^${LAYERDIR}/"
 BBFILE_PRIORITY_yocto = "5"

In the previous example, the recipes for the layers are added to BBFILES. The BBFILE_COLLECTIONS
variable is then appended with the layer name. The BBFILE_PATTERN variable immediately expands
with a regular expression used to match files from BBFILES into a particular layer, in this case by
using the base pathname. The BBFILE_PRIORITY variable then assigns different priorities to the files
in different layers. Applying priorities is useful in situations where the same package might appear in
multiple layers and allows you to choose what layer should take precedence.

Note the use of the LAYERDIR variable with the immediate expansion operator. The LAYERDIR variable
expands to the directory of the current layer and requires the immediate expansion operator so that
BitBake does not wait to expand the variable when it's parsing a different directory.

BitBake can locate where other .bbclass and configuration files are applied through the BBPATH
environment variable. For these cases, BitBake uses the first file with the matching name found in
BBPATH. This is similar to the way the PATH variable is used for binaries. We recommend, therefore,
that you use unique .bbclass and configuration file names in your custom layer.

We also recommend the following:

• Store custom layers in a Git repository that uses the meta-prvt-XXXX format.

• Clone the repository alongside other meta directories in the Yocto Project source files area.

Following these recommendations keeps your Yocto Project files area and its configuration entirely
inside the Yocto Project's core base.

3.9.2. Committing Changes
Modifications to the Yocto Project are often managed under some kind of source revision control
system. Because some simple practices can significantly improve usability, policy for committing
changes is important. It helps to use a consistent documentation style when committing changes.
The Yocto Project development team has found the following practices work well:

Common Tasks

19

• The first line of the commit summarizes the change and begins with the name of the affected
package or packages. However, not all changes apply to specific packages. Consequently, the prefix
could also be a machine name or class name.

• The second part of the commit (if needed) is a longer more detailed description of the changes.
Placing a blank line between the first and second parts helps with readability.

Following is an example commit:

 bitbake/data.py: Add emit_func() and generate_dependencies() functions

 These functions allow generation of dependency data between functions and
 variables allowing moves to be made towards generating checksums and allowing
 use of the dependency information in other parts of BitBake.

 Signed-off-by: Richard Purdie richard.purdie@linuxfoundation.org

All commits should be self-contained such that they leave the metadata in a consistent state that
builds both before and after the commit is made. Besides being a good practice to follow, it helps
ensure autobuilder test results are valid.

3.9.3. Package Revision Incrementing
If a committed change results in changing the package output, then the value of the PR variable
needs to be increased (or "bumped") as part of that commit. This means that for new recipes you
must be sure to add the PR variable and set its initial value equal to "r0". Failing to define PR makes
it easy to miss when you bump a package. Note that you can only use integer values following the
"r" in the PR variable.

If you are sharing a common .inc file with multiple recipes, you can also use the INC_PR variable to
ensure that the recipes sharing the .inc file are rebuilt when the .inc file itself is changed. The .inc
file must set INC_PR (initially to "r0"), and all recipes referring to it should set PR to "$(INC_PR).0"
initially, incrementing the last number when the recipe is changed. If the .inc file is changed then
its INC_PR should be incremented.

When upgrading the version of a package, assuming the PV changes, the PR variable should be reset
to "r0" (or "$(INC_PR).0" if you are using INC_PR).

Usually, version increases occur only to packages. However, if for some reason PV changes but does
not increase, you can increase the PE variable (Package Epoch). The PE variable defaults to "0".

Version numbering strives to follow the Debian Version Field Policy Guidelines [http://www.debian.org/
doc/debian-policy/ch-controlfields.html]. These guidelines define how versions are compared and
what "increasing" a version means.

There are two reasons for following the previously mentioned guidelines. First, to ensure that when
a developer updates and rebuilds, they get all the changes to the repository and do not have to
remember to rebuild any sections. Second, to ensure that target users are able to upgrade their
devices using package manager commands such as opkg upgrade (or similar commands for dpkg/
apt or rpm-based systems).

The goal is to ensure the Yocto Project has packages that can be upgraded in all cases.

3.9.4. Using The Yocto Project in a Team Environment
It might not be immediately clear how you can use the Yocto Project in a team environment, or scale
it for a large team of developers. The specifics of any situation determine the best solution. Granted
that the Yocto Project offers immense flexibility regarding this, practices do exist that experience has
shown work well.

The core component of any development effort with the Yocto Project is often an automated build
and testing framework along with an image generation process. You can use these core components
to check that the metadata can be built, highlight when commits break the build, and provide up-
to-date images that allow developers to test the end result and use it as a base platform for further

http://www.debian.org/doc/debian-policy/ch-controlfields.html
http://www.debian.org/doc/debian-policy/ch-controlfields.html
http://www.debian.org/doc/debian-policy/ch-controlfields.html

Common Tasks

20

development. Experience shows that buildbot is a good fit for this role. What works well is to configure
buildbot to make two types of builds: incremental and full (from scratch). See the buildbot for the
Yocto Project [http://www.yoctoproject.org:8010] for an example implementation that uses buildbot.

You can tie incremental builds to a commit hook that triggers the build each time a commit is made
to the metadata. This practice results in useful acid tests that determine whether a given commit
breaks the build in some serious way. Associating a build to a commit can catch a lot of simple errors.
Furthermore, the tests are fast so developers can get quick feedback on changes.

Full builds build and test everything from the ground up. These types of builds usually happen at
predetermined times like during the night when the machine load is low.

Most teams have many pieces of software undergoing active development at any given time. You
can derive large benefits by putting these pieces under the control of a source control system that
is compatible with the Yocto Project (i.e. Git or Subversion (SVN). You can then set the autobuilder
to pull the latest revisions of the packages and test the latest commits by the builds. This practice
quickly highlights issues. The Yocto Project easily supports testing configurations that use both a
stable known good revision and a floating revision. The Yocto Project can also take just the changes
from specific source control branches. This capability allows you to track and test specific changes.

Perhaps the hardest part of setting this up is defining the software project or the Yocto Project
metadata policies that surround the different source control systems. Of course circumstances will
be different in each case. However, this situation reveals one of the Yocto Project's advantages - the
system itself does not force any particular policy on users, unlike a lot of build systems. The system
allows the best policies to be chosen for the given circumstances.

3.9.5. Updating Existing Images
Often, rather than re-flashing a new image, you might wish to install updated packages into an
existing running system. You can do this by first sharing the tmp/deploy/ipk/ directory through a web
server and then by changing /etc/opkg/base-feeds.conf to point at the shared server. Following
is an example:

 $ src/gz all http://www.mysite.com/somedir/deploy/ipk/all
 $ src/gz armv7a http://www.mysite.com/somedir/deploy/ipk/armv7a
 $ src/gz beagleboard http://www.mysite.com/somedir/deploy/ipk/beagleboard

http://www.yoctoproject.org:8010
http://www.yoctoproject.org:8010
http://www.yoctoproject.org:8010

21

Chapter 4. Technical Details
This chapter provides technical details for various parts of the Yocto Project. Currently, topics include
Yocto Project components and shared state (sstate) cache.

4.1. Yocto Project Components
The BitBake task executor together with various types of configuration files form the Yocto Project
core. This section overviews the BitBake task executor and the configuration files by describing what
they are used for and how they interact.

BitBake handles the parsing and execution of the data files. The data itself is of various types:

• Recipes: Provides details about particular pieces of software

• Class Data: An abstraction of common build information (e.g. how to build a Linux kernel).

• Configuration Data: Defines machine-specific settings, policy decisions, etc. Configuration data acts
as the glue to bind everything together.

For more information on data, see the Yocto Project Terms [http://www.yoctoproject.org/docs/1.1.1//
dev-manual/dev-manual.html#yocto-project-terms] section in The Yocto Project Development
Manual [http://www.yoctoproject.org/docs/1.1.1//dev-manual/dev-manual.html].

BitBake knows how to combine multiple data sources together and refers to each data source as a
"layer".

Following are some brief details on these core components. For more detailed information on these
components see the 'Reference: Directory Structure' appendix.

4.1.1. BitBake
BitBake is the tool at the heart of the Yocto Project and is responsible for parsing the metadata,
generating a list of tasks from it, and then executing those tasks. To see a list of the options BitBake
supports, use the following help command:

 $ bitbake --help

The most common usage for BitBake is bitbake <packagename>, where packagename is the name of
the package you want to build (referred to as the "target" in this manual). The target often equates
to the first part of a .bb filename. So, to run the matchbox-desktop_1.2.3.bb file, you might type
the following:

 $ bitbake matchbox-desktop

Several different versions of matchbox-desktop might exist. BitBake chooses the one selected by
the distribution configuration. You can get more details about how BitBake chooses between different
target versions and providers in the Preferences and Providers section.

BitBake also tries to execute any dependent tasks first. So for example, before building matchbox-
desktop, BitBake would build a cross compiler and eglibc if they had not already been built.

Note
This release of the Yocto Project does not support the glibc GNU version of the Unix standard
C library. By default, the Yocto Project builds with eglibc.

A useful BitBake option to consider is the -k or --continue option. This option instructs BitBake to
try and continue processing the job as much as possible even after encountering an error. When an
error occurs, the target that failed and those that depend on it cannot be remade. However, when
you use this option other dependencies can still be processed.

http://www.yoctoproject.org/docs/1.1.1//dev-manual/dev-manual.html#yocto-project-terms
http://www.yoctoproject.org/docs/1.1.1//dev-manual/dev-manual.html#yocto-project-terms
http://www.yoctoproject.org/docs/1.1.1//dev-manual/dev-manual.html#yocto-project-terms
http://www.yoctoproject.org/docs/1.1.1//dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1//dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1//dev-manual/dev-manual.html

Technical Details

22

4.1.2. Metadata (Recipes)
The .bb files are usually referred to as "recipes." In general, a recipe contains information about a
single piece of software. The information includes the location from which to download the source
patches (if any are needed), which special configuration options to apply, how to compile the source
files, and how to package the compiled output.

The term "package" can also be used to describe recipes. However, since the same word is used for
the packaged output from the Yocto Project (i.e. .ipk or .deb files), this document avoids using the
term "package" when refering to recipes.

4.1.3. Classes
Class files (.bbclass) contain information that is useful to share between metadata files. An example
is the Autotools class, which contains common settings for any application that Autotools uses. The
Reference: Classes appendix provides details about common classes and how to use them.

4.1.4. Configuration
The configuration files (.conf) define various configuration variables that govern the Yocto Project
build process. These files fall into several areas that define machine configuration options, distribution
configuration options, compiler tuning options, general common configuration options and user
configuration options (local.conf, which is found in the Yocto Project files build directory).

4.2. Shared State Cache
By design, the Yocto Project build system builds everything from scratch unless BitBake can determine
that parts don't need to be rebuilt. Fundamentally, building from scratch is attractive as it means
all parts are built fresh and there is no possibility of stale data causing problems. When developers
hit problems, they typically default back to building from scratch so they know the state of things
from the start.

Building an image from scratch is both an advantage and a disadvantage to the process. As mentioned
in the previous paragraph, building from scratch ensures that everything is current and starts from a
known state. However, building from scratch also takes much longer as it generally means rebuiding
things that don't necessarily need rebuilt.

The Yocto Project implements shared state code that supports incremental builds. The implementation
of the shared state code answers the following questions that were fundamental roadblocks within
the Yocto Project incremental build support system:

• What pieces of the system have changed and what pieces have not changed?

• How are changed pieces of software removed and replaced?

• How are pre-built components that don't need to be rebuilt from scratch used when they are
available?

For the first question, the build system detects changes in the "inputs" to a given task by creating a
checksum (or signature) of the task's inputs. If the checksum changes, the system assumes the inputs
have changed and the task needs to be rerun. For the second question, the shared state (sstate) code
tracks which tasks add which output to the build process. This means the output from a given task
can be removed, upgraded or otherwise manipulated. The third question is partly addressed by the
solution for the second question assuming the build system can fetch the sstate objects from remote
locations and install them if they are deemed to be valid.

The rest of this section goes into detail about the overall incremental build architecture, the
checksums (signatures), shared state, and some tips and tricks.

4.2.1. Overall Architecture
When determining what parts of the system need to be built, BitBake uses a per-task basis and does
not use a per-recipe basis. You might wonder why using a per-task basis is preferred over a per-recipe
basis. To help explain, consider having the IPK packaging backend enabled and then switching to DEB.

Technical Details

23

In this case, do_install and do_package output are still valid. However, with a per-recipe approach,
the build would not include the .deb files. Consequently, you would have to invalidate the whole
build and rerun it. Rerunning everything is not the best situation. Also in this case, the core must be
"taught" much about specific tasks. This methodology does not scale well and does not allow users
to easily add new tasks in layers or as external recipes without touching the packaged-staging core.

4.2.2. Checksums (Signatures)
The shared state code uses a checksum, which is a unique signature of a task's inputs, to determine
if a task needs to be run again. Because it is a change in a task's inputs that triggers a rerun, the
process needs to detect all the inputs to a given task. For shell tasks, this turns out to be fairly easy
because the build process generates a "run" shell script for each task and it is possible to create a
checksum that gives you a good idea of when the task's data changes.

To complicate the problem, there are things that should not be included in the checksum. First, there is
the actual specific build path of a given task - the WORKDIR. It does not matter if the working directory
changes because it should not affect the output for target packages. Also, the build process has the
objective of making native/cross packages relocatable. The checksum therefore needs to exclude
WORKDIR. The simplistic approach for excluding the worknig directory is to set WORKDIR to some fixed
value and create the checksum for the "run" script.

Another problem results from the "run" scripts containing functions that might or might not get called.
The incremental build solution contains code that figures out dependencies between shell functions.
This code is used to prune the "run" scripts down to the minimum set, thereby alleviating this problem
and making the "run" scripts much more readable as a bonus.

So far we have solutions for shell scripts. What about python tasks? The same approach applies
even though these tasks are more difficult. The process needs to figure out what variables a python
function accesses and what functions it calls. Again, the incremental build solution contains code that
first figures out the variable and function dependencies, and then creates a checksum for the data
used as the input to the task.

Like the WORKDIR case, situations exist where dependencies should be ignored. For these cases, you
can instruct the build process to ignore a dependency by using a line like the following:

 PACKAGE_ARCHS[vardepsexclude] = "MACHINE"

This example ensures that the PACKAGE_ARCHS variable does not depend on the value of MACHINE,
even if it does reference it.

Equally, there are cases where we need to add dependencies BitBake is not able to find. You can
accomplish this by using a line like the following:

 PACKAGE_ARCHS[vardeps] = "MACHINE"

This example explicitly adds the MACHINE variable as a dependency for PACKAGE_ARCHS.

Consider a case with inline python, for example, where BitBake is not able to figure out dependencies.
When running in debug mode (i.e. using -DDD), BitBake produces output when it discovers something
for which it cannot figure out dependencies. The Yocto Project team has currently not managed to
cover those dependencies in detail and is aware of the need to fix this situation.

Thus far, this section has limited discussion to the direct inputs into a task. Information based on
direct inputs is referred to as the "basehash" in the code. However, there is still the question of a task's
indirect inputs, the things that were already built and present in the build directory. The checksum (or
signature) for a particular task needs to add the hashes of all the tasks on which the particular task
depends. Choosing which dependencies to add is a policy decision. However, the effect is to generate
a master checksum that combines the basehash and the hashes of the task's dependencies.

While figuring out the dependencies and creating these checksums is good, what does the Yocto
Project build system do with the checksum information? The build system uses a signature handler
that is responsible for processing the checksum information. By default, there is a dummy "noop"

Technical Details

24

signature handler enabled in BitBake. This means that behaviour is unchanged from previous
versions. OECore uses the "basic" signature handler through this setting in the bitbake.conf file:

 BB_SIGNATURE_HANDLER ?= "basic"

Also within the BitBake configuration file, we can give BitBake some extra information to help it handle
this information. The following statements effectively result in a list of global variable dependency
excludes - variables never included in any checksum:

 BB_HASHBASE_WHITELIST ?= "TMPDIR FILE PATH PWD BB_TASKHASH BBPATH"
 BB_HASHBASE_WHITELIST += "DL_DIR SSTATE_DIR THISDIR FILESEXTRAPATHS"
 BB_HASHBASE_WHITELIST += "FILE_DIRNAME HOME LOGNAME SHELL TERM USER"
 BB_HASHBASE_WHITELIST += "FILESPATH USERNAME STAGING_DIR_HOST STAGING_DIR_TARGET"
 BB_HASHTASK_WHITELIST += "(.*-cross$|.*-native$|.*-cross-initial$| \
 .*-cross-intermediate$|^virtual:native:.*|^virtual:nativesdk:.*)"

This example is actually where WORKDIR is excluded since WORKDIR is constructed as a path within
TMPDIR, which is on the whitelist.

The BB_HASHTASK_WHITELIST covers dependent tasks and excludes certain kinds of tasks from the
dependency chains. The effect of the previous example is to isolate the native, target, and cross-
components. So, for example, toolchain changes do not force a rebuild of the whole system.

The end result of the "basic" handler is to make some dependency and hash information available
to the build. This includes:

 BB_BASEHASH_task-<taskname> - the base hashes for each task in the recipe
 BB_BASEHASH_<filename:taskname> - the base hashes for each dependent task
 BBHASHDEPS_<filename:taskname> - The task dependencies for each task
 BB_TASKHASH - the hash of the currently running task

There is also a "basichash" BB_SIGNATURE_HANDLER, which is the same as the basic version but adds
the task hash to the stamp files. This results in any metadata change that changes the task hash,
automatically causing the task to be run again. This removes the need to bump PR values and changes
to metadata automatically ripple across the build. Currently, this behavior is not the default behavior.
However, it is likely that the Yocto Project team will go forward with this behavior in the future since
all the functionality exists. The reason for the delay is the potential impact to the distribution feed
creation as they need increasing PR fields and the Yocto Project currently lacks a mechanism to
automate incrementing this field.

4.2.3. Shared State
Checksums and dependencies, as discussed in the previous section, solve half the problem. The other
part of the problem is being able to use checksum information during the build and being able to
reuse or rebuild specific components.

The shared state class (sstate.bbclass) is a relatively generic implementation of how to "capture"
a snapshot of a given task. The idea is that the build process does not care about the source of a
task's output. Output could be freshly built or it could be downloaded and unpacked from somewhere
- the build process doesn't need to worry about its source.

There are two types of output, one is just about creating a directory in WORKDIR. A good example is
the output of either do_install or do_package. The other type of output occurs when a set of data
is merged into a shared directory tree such as the sysroot.

The Yocto Project team has tried to keep the details of the implementation hidden in sstate.bbclass.
From a user's perspective, adding shared state wrapping to a task is as simple as this do_deploy
example taken from do_deploy.bbclass:

 DEPLOYDIR = "${WORKDIR}/deploy-${PN}"

Technical Details

25

 SSTATETASKS += "do_deploy"
 do_deploy[sstate-name] = "deploy"
 do_deploy[sstate-inputdirs] = "${DEPLOYDIR}"
 do_deploy[sstate-outputdirs] = "${DEPLOY_DIR_IMAGE}"

 python do_deploy_setscene () {
 sstate_setscene(d)
 }
 addtask do_deploy_setscene

In the example, we add some extra flags to the task, a name field ("deploy"), an input directory where
the task sends data, and the output directory where the data from the task should eventually be
copied. We also add a _setscene variant of the task and add the task name to the SSTATETASKS list.

If you have a directory whose contents you need to preserve, you can do this with a line like the
following:

 do_package[sstate-plaindirs] = "${PKGD} ${PKGDEST}"

This method, as well as the following example, also works for mutliple directories.

 do_package[sstate-inputdirs] = "${PKGDESTWORK} ${SHLIBSWORKDIR}"
 do_package[sstate-outputdirs] = "${PKGDATA_DIR} ${SHLIBSDIR}"
 do_package[sstate-lockfile] = "${PACKAGELOCK}"

These methods also include the ability to take a lockfile when manipulating shared state directory
structures since some cases are sensitive to file additions or removals.

Behind the scenes, the shared state code works by looking in SSTATE_DIR and SSTATE_MIRRORS for
shared state files. Here is an example:

 SSTATE_MIRRORS ?= "\
 file://.* http://someserver.tld/share/sstate/ \n \
 file://.* file:///some/local/dir/sstate/"

The shared state package validity can be detected just by looking at the filename since the filename
contains the task checksum (or signature) as described earlier in this section. If a valid shared state
package is found, the build process downloads it and uses it to accelerate the task.

The build processes uses the *_setscene tasks for the task acceleration phase. BitBake goes through
this phase before the main execution code and tries to accelerate any tasks for which it can find
shared state packages. If a shared state package for a task is available, the shared state package is
used. This means the task and any tasks on which it is dependent are not executed.

As a real world example, the aim is when building an IPK-based image, only the
do_package_write_ipk tasks would have their shared state packages fetched and extracted. Since
the sysroot is not used, it would never get extracted. This is another reason why a task-based
approach is preferred over a recipe-based approach, which would have to install the output from
every task.

4.2.4. Tips and Tricks
The code in the Yocto Project that supports incremental builds is not simple code. This section presents
some tips and tricks that help you work around issues related to shared state code.

4.2.4.1. Debugging

When things go wrong, debugging needs to be straightforward. Because of this, the Yocto Project
team included strong debugging tools:

Technical Details

26

• Whenever a shared state package is written out, so is a corresponding .siginfo file. This practice
results in a pickled python database of all the metadata that went into creating the hash for a given
shared state package.

• If BitBake is run with the --dump-signatures (or -S) option, BitBake dumps out .siginfo files in
the stamp directory for every task it would have executed instead of building the specified target
package.

• There is a bitbake-diffsigs command that can process these .siginfo files. If one file is
specified, it will dump out the dependency information in the file. If two files are specified, it will
compare the two files and dump out the differences between the two. This allows the question of
"What changed between X and Y?" to be answered easily.

4.2.4.2. Invalidating Shared State

The shared state code uses checksums and shared state memory cache to avoid unnecessarily
rebuilding tasks. As with all schemes, this one has some drawbacks. It is possible that you could make
implicit changes that are not factored into the checksum calculation, but do affect a task's output.
A good example is perhaps when a tool changes its output. Let's say that the output of rpmdeps
needed to change. The result of the change should be that all the "package", "package_write_rpm",
and "package_deploy-rpm" shared state cache items would become invalid. But, because this is a
change that is external to the code and therefore implicit, the associated shared state cache items
do not become invalidated. In this case, the build process would use the cached items rather than
running the task again. Obviously, these types of implicit changes can cause problems.

To avoid these problems during the build, you need to understand the effects of any change you
make. Note that any changes you make directly to a function automatically are factored into the
checksum calculation and thus, will invalidate the associated area of sstate cache. You need to be
aware of any implicit changes that are not obvious changes to the code and could affect the output
of a given task. Once you are aware of such a change, you can take steps to invalidate the cache
and force the task to run. The step to take is as simple as changing a function's comments in the
source code. For example, to invalidate package shared state files, change the comment statments
of do_package or the comments of one of the functions it calls. The change is purely cosmetic, but it
causes the checksum to be recalculated and forces the task to be run again.

Note
For an example of a commit that makes a cosmetic change to invalidate a shared state, see
this commit [http://git.yoctoproject.org/cgit.cgi/poky/commit/meta/classes/package.bbclass?
id=737f8bbb4f27b4837047cb9b4fbfe01dfde36d54].

http://git.yoctoproject.org/cgit.cgi/poky/commit/meta/classes/package.bbclass?id=737f8bbb4f27b4837047cb9b4fbfe01dfde36d54
http://git.yoctoproject.org/cgit.cgi/poky/commit/meta/classes/package.bbclass?id=737f8bbb4f27b4837047cb9b4fbfe01dfde36d54
http://git.yoctoproject.org/cgit.cgi/poky/commit/meta/classes/package.bbclass?id=737f8bbb4f27b4837047cb9b4fbfe01dfde36d54

27

Chapter 5. Board Support Packages
(BSP) - Developer's Guide
A Board Support Package (BSP) is a collection of information that defines how to support a particular
hardware device, set of devices, or hardware platform. The BSP includes information about the
hardware features present on the device and kernel configuration information along with any
additional hardware drivers required. The BSP also lists any additional software components required
in addition to a generic Linux software stack for both essential and optional platform features.

This section (or document if you are reading the BSP Developer's Guide) defines a structure for
these components so that BSPs follow a commonly understood layout. Providing a common form
allows end-users to understand and become familiar with the layout. A common form also encourages
standardization of software support of hardware.

Note
The information here does not provide an example of how to create a BSP. For examples
on how to create a BSP, see the BSP Development Example [http://www.yoctoproject.org/
docs/1.1.1/dev-manual/dev-manual.html#dev-manual-bsp-appendix] in The Yocto
Project Development Manual [http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-
manual.html]. You can also see the wiki page [https://wiki.yoctoproject.org/wiki/
Transcript:_creating_one_generic_Atom_BSP_from_another].

The proposed format does have elements that are specific to the Yocto Project and OpenEmbedded
build systems. It is intended that this information can be used by other systems besides Yocto Project
and OpenEmbedded and that it will be simple to extract information and convert it to other formats
if required. Yocto Project, through its standard layers mechanism, can directly accept the format
described as a layer. The BSP captures all the hardware-specific details in one place in a standard
format, which is useful for any person wishing to use the hardware platform regardless of the build
system they are using.

The BSP specification does not include a build system or other tools - it is concerned with the
hardware-specific components only. At the end distribution point you can ship the BSP combined with
a build system and other tools. However, it is important to maintain the distinction that these are
separate components that happen to be combined in certain end products.

5.1. Example Filesystem Layout
The BSP consists of a file structure inside a base directory, which uses the following naming
convention:

 meta-<bsp_name>

"bsp_name" is a placeholder for the machine or platform name. Here are some example base directory
names:

 meta-emenlow
 meta-n450
 meta-beagleboard

The base directory (meta-<bsp_name>) is the root of the BSP layer. This root is what you add to
the BBLAYERS variable in the build/conf/bblayers.conf file found in the Yocto Project file's build
directory. Adding the root allows the Yocto Project build system to recognize the BSP definition and
from it build an image. Here is an example:

 BBLAYERS = " \
 /usr/local/src/yocto/meta \
 /usr/local/src/yocto/meta-yocto \

http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#dev-manual-bsp-appendix
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#dev-manual-bsp-appendix
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#dev-manual-bsp-appendix
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
https://wiki.yoctoproject.org/wiki/Transcript:_creating_one_generic_Atom_BSP_from_another
https://wiki.yoctoproject.org/wiki/Transcript:_creating_one_generic_Atom_BSP_from_another
https://wiki.yoctoproject.org/wiki/Transcript:_creating_one_generic_Atom_BSP_from_another

Board Support Packages (BSP) - Developer's Guide

28

 /usr/local/src/yocto/meta-<bsp_name> \
 "

For more detailed information on layers, see the "BitBake Layers [http://www.yoctoproject.org/
docs/1.1.1/poky-ref-manual/poky-ref-manual.html#usingpoky-changes-layers]" section of the Yocto
Project Reference Manual. You can also see the detailed examples in the appendices of The Yocto
Project Development Manual [http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html].

Below is the common form for the file structure inside a base directory. While you can use this basic
form for the standard, realize that the actual structures for specific BSPs could differ.

 meta-<bsp_name>/
 meta-<bsp_name>/<bsp_license_file>
 meta-<bsp_name>/README
 meta-<bsp_name>/binary/<bootable_images>
 meta-<bsp_name>/conf/layer.conf
 meta-<bsp_name>/conf/machine/*.conf
 meta-<bsp_name>/recipes-bsp/*
 meta-<bsp_name>/recipes-graphics/*
 meta-<bsp_name>/recipes-kernel/linux/linux-yocto_<kernel_rev>.bbappend

Below is an example of the Crown Bay BSP:

 meta-crownbay/COPYING.MIT
 meta-crownbay/README
 meta-crownbay/binary
 meta-crownbay/conf/
 meta-crownbay/conf/layer.conf
 meta-crownbay/conf/machine/
 meta-crownbay/conf/machine/crownbay.conf
 meta-crownbay/conf/machine/crownbay-noemgd.conf
 meta-crownbay/recipes-bsp/
 meta-crownbay/recipes-bsp/formfactor/
 meta-crownbay/recipes-bsp/formfactor/formfactor_0.0.bbappend
 meta-crownbay/recipes-bsp/formfactor/formfactor/
 meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay/
 meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay/machconfig
 meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay-noemgd/
 meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay-noemgd/machconfig
 meta-crownbay/recipes-core
 meta-crownbay/recipes-core/tasks
 meta-crownbay/recipes-core/tasks/task-core-tools.bbappend
 meta-crownbay/recipes-graphics/
 meta-crownbay/recipes-graphics/xorg-xserver/
 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config_0.1.bbappend
 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/
 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay/
 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay/xorg.conf
 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay-noemgd/
 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay-noemgd/xorg.conf
 meta-crownbay/recipes-kernel/
 meta-crownbay/recipes-kernel/linux/
 meta-crownbay/recipes-kernel/linux/linux-yocto_2.6.34.bbappend
 meta-crownbay/recipes-kernel/linux/linux-yocto_2.6.37.bbappend
 meta-crownbay/recipes-kernel/linux/linux-yocto_3.0.bbappend

The following sections describe each part of the proposed BSP format.

5.1.1. License Files
You can find these files in the Yocto Project file's directory structure at:

http://www.yoctoproject.org/docs/1.1.1/poky-ref-manual/poky-ref-manual.html#usingpoky-changes-layers
http://www.yoctoproject.org/docs/1.1.1/poky-ref-manual/poky-ref-manual.html#usingpoky-changes-layers
http://www.yoctoproject.org/docs/1.1.1/poky-ref-manual/poky-ref-manual.html#usingpoky-changes-layers
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html

Board Support Packages (BSP) - Developer's Guide

29

 meta-<bsp_name>/<bsp_license_file>

These optional files satisfy licensing requirements for the BSP. The type or types of files here can
vary depending on the licensing requirements. For example, in the Crown Bay BSP all licensing
requirements are handled with the COPYING.MIT file.

Licensing files can be MIT, BSD, GPLv*, and so forth. These files are recommended for the BSP but
are optional and totally up to the BSP developer.

5.1.2. README File
You can find these files in the Yocto Project file's directory structure at:

 meta-<bsp_name>/README

This file provides information on how to boot the live images that are optionally included in the /
binary directory. The README file also provides special information needed for building the image.

Technically speaking a README is optional but it is highly recommended that every BSP has one.

5.1.3. Pre-built User Binaries
You can find these files in the Yocto Project file's directory structure at:

 meta-<bsp_name>/binary/<bootable_images>

This optional area contains useful pre-built kernels and user-space filesystem images appropriate
to the target system. This directory typically contains graphical (e.g. sato) and minimal live images
when the BSP tarball has been created and made available in the Yocto Project website. You can use
these kernels and images to get a system running and quickly get started on development tasks.

The exact types of binaries present are highly hardware-dependent. However, a README file should
be present in the BSP file structure that explains how to use the kernels and images with the target
hardware. If pre-built binaries are present, source code to meet licensing requirements must also be
provided in some form.

5.1.4. Layer Configuration File
You can find this file in the Yocto Project file's directory structure at:

 meta-<bsp_name>/conf/layer.conf

The conf/layer.conf file identifies the file structure as a Yocto Project layer, identifies the contents
of the layer, and contains information about how Yocto Project should use it. Generally, a standard
boilerplate file such as the following works. In the following example you would replace "bsp" and
"_bsp" with the actual name of the BSP (i.e. <bsp_name> from the example template).

 # We have a conf directory, add to BBPATH
 BBPATH := "${BBPATH}:${LAYERDIR}"

 # We have a recipes directory containing .bb and .bbappend files, add to BBFILES
 BBFILES := "${BBFILES} ${LAYERDIR}/recipes/*/*.bb \
 ${LAYERDIR}/recipes/*/*.bbappend"

 BBFILE_COLLECTIONS += "bsp"
 BBFILE_PATTERN_bsp := "^${LAYERDIR}/"

Board Support Packages (BSP) - Developer's Guide

30

 BBFILE_PRIORITY_bsp = "5"

This file simply makes BitBake aware of the recipes and configuration directories. This file must exist
so that the Yocto Project build system can recognize the BSP.

5.1.5. Hardware Configuration Options
You can find these files in the Yocto Project file's directory structure at:

 meta-<bsp_name>/conf/machine/*.conf

The machine files bind together all the information contained elsewhere in the BSP into a format
that the Yocto Project build system can understand. If the BSP supports multiple machines, multiple
machine configuration files can be present. These filenames correspond to the values to which users
have set the MACHINE variable.

These files define things such as the kernel package to use (PREFERRED_PROVIDER of virtual/kernel),
the hardware drivers to include in different types of images, any special software components that
are needed, any bootloader information, and also any special image format requirements.

At least one machine file is required for a BSP layer. However, you can supply more than one file. For
example, in the Crown Bay BSP shown earlier in this section, the conf/machine directory contains
two configuration files: crownbay.conf and crownbay-noemgd.conf. The crownbay.conf file is used
for the Crown Bay BSP that supports the Intel® Embedded Media and Graphics Driver (Intel® EMGD),
while the crownbay-noemgd.conf file is used for the Crown Bay BSP that does not support the Intel®
EMGD.

This crownbay.conf file could also include a hardware "tuning" file that is commonly used to define
the the package architecture and specify optimization flags, which are carefully chosen to give best
performance on a given processor.

Tuning files are found in the meta/conf/machine/include directory. To use them, you simply include
them in the machine configuration file. For example, the Crown Bay BSP crownbay.conf has the
following statement:

 include conf/machine/include/tune-atom.inc

5.1.6. Miscellaneous Recipe Files
You can find these files in the Yocto Project file's directory structure at:

 meta-<bsp_name>/recipes-bsp/*

This optional directory contains miscellaneous recipe files for the BSP. Most notably would be the
formfactor files. For example, in the Crown Bay BSP there is the formfactor_0.0.bbappend file, which
is an append file used to augment the recipe that starts the build. Furthermore, there are machine-
specific settings used during the build that are defined by the machconfig files. In the Crown Bay
example, two machconfig files exist: one that supports the Intel EMGD and one that does not:

 meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay/machconfig
 meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay-noemgd/machconfig
 meta-crownbay/recipes-bsp/formfactor/formfactor_0.0.bbappend

Note

If a BSP does not have a formfactor entry, defaults are established according to the
configuration script.

Board Support Packages (BSP) - Developer's Guide

31

5.1.7. Core Recipe Files
You can find these files in the Yocto Project file's directory structure at:

 meta-<bsp_name>/recipes-core/*

This directory contains recipe files for the core. For example, in the Crown Bay BSP there is the task-
core-tools.bbappend file, which is an append file used to recommend that the SystemTap package
be included as a package when the image is built.

5.1.8. Display Support Files
You can find these files in the Yocto Project file's directory structure at:

 meta-<bsp_name>/recipes-graphics/*

This optional directory contains recipes for the BSP if it has special requirements for graphics support.
All files that are needed for the BSP to support a display are kept here. For example, the Crown Bay
BSP contains the following files that support building a BSP that supports and does not support the
Intel EMGD:

 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config_0.1.bbappend
 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay/xorg.conf
 meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay-noemgd/xorg.conf

5.1.9. Linux Kernel Configuration
You can find these files in the Yocto Project file's directory structure at:

 meta-<bsp_name>/recipes-kernel/linux/linux-yocto_*.bbappend

These files append your specific changes to the kernel you are using.

For your BSP, you typically want to use an existing Yocto Project kernel found in the Yocto Project
repository at meta/recipes-kernel/linux. You can append your specific changes to the kernel
recipe by using a similarly named append file, which is located in the meta-<bsp_name>/recipes-
kernel/linux directory.

Suppose you use a BSP that uses the linux-yocto_3.0.bb kernel, which is the preferred kernel to
use for developing a new BSP using the Yocto Project. In other words, you have selected the kernel
in your <bsp_name>.conf file by adding the following statements:

 PREFERRED_PROVIDER_virtual/kernel ?= "linux-yocto"
 PREFERRED_VERSION_linux-yocto = "3.0%"

You would use the linux-yocto_3.0.bbappend file to append specific BSP settings to the kernel, thus
configuring the kernel for your particular BSP.

As an example, look at the existing Crown Bay BSP. The append file used is:

 meta-crownbay/recipes-kernel/linux/linux-yocto_3.0.bbappend

The file contains the following:

Board Support Packages (BSP) - Developer's Guide

32

 FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

 COMPATIBLE_MACHINE_crownbay = "crownbay"
 KMACHINE_crownbay = "yocto/standard/crownbay"
 KERNEL_FEATURES_append_crownbay += " cfg/smp.scc"

 COMPATIBLE_MACHINE_crownbay-noemgd = "crownbay-noemgd"
 KMACHINE_crownbay-noemgd = "yocto/standard/crownbay"
 KERNEL_FEATURES_append_crownbay-noemgd += " cfg/smp.scc"

 SRCREV_machine_pn-linux-yocto_crownbay ?= "2247da9131ea7e46ed4766a69bb1353dba22f873"
 SRCREV_meta_pn-linux-yocto_crownbay ?= "d05450e4aef02c1b7137398ab3a9f8f96da74f52"

 SRCREV_machine_pn-linux-yocto_crownbay-noemgd ?= "2247da9131ea7e46ed4766a69bb1353dba22f873"
 SRCREV_meta_pn-linux-yocto_crownbay-noemgd ?= "d05450e4aef02c1b7137398ab3a9f8f96da74f52"

This append file contains statements used to support the Crown Bay BSP for both Intel EMGD and
non-EMGD. The build process, in this case, recognizes and uses only the statements that apply to
the defined machine name - crownbay in this case. So, the applicable statements in the linux-
yocto_3.0.bbappend file are follows:

 FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

 COMPATIBLE_MACHINE_crownbay = "crownbay"
 KMACHINE_crownbay = "yocto/standard/crownbay"
 KERNEL_FEATURES_append_crownbay += " cfg/smp.scc"

 SRCREV_machine_pn-linux-yocto_crownbay ?= "2247da9131ea7e46ed4766a69bb1353dba22f873"
 SRCREV_meta_pn-linux-yocto_crownbay ?= "d05450e4aef02c1b7137398ab3a9f8f96da74f52"

The append file defines crownbay as the compatible machine, defines the KMACHINE, points to some
configuration fragments to use by setting the KERNEL_FEATURES variable, and then points to the
specific commits in the Yocto Project files Git repository and the meta Git repository branches to
identify the exact kernel needed to build the Crown Bay BSP.

One thing missing in this particular BSP, which you will typically need when developing a BSP, is the
kernel configuration file (.config) for your BSP. When developing a BSP, you probably have a kernel
configuration file or a set of kernel configuration files that, when taken together, define the kernel
configuration for your BSP. You can accomplish this definition by putting the configurations in a file
or a set of files inside a directory located at the same level as your append file and having the same
name as the kernel. With all these conditions met simply reference those files in a SRC_URI statement
in the append file.

For example, suppose you had a set of configuration options in a file called defconfig. If you put
that file inside a directory named /linux-yocto and then added a SRC_URI statement such as the
following to the append file, those configuration options will be picked up and applied when the kernel
is built.

 SRC_URI += "file://defconfig"

As mentioned earlier, you can group related configurations into multiple files and name them all in
the SRC_URI statement as well. For example, you could group separate configurations specifically
for Ethernet and graphics into their own files and add those by using a SRC_URI statement like the
following in your append file:

 SRC_URI += "file://defconfig \
 file://eth.cfg \
 file://gfx.cfg"

Board Support Packages (BSP) - Developer's Guide

33

The FILESEXTRAPATHS variable is in boilerplate form here in order to make it easy to do that. It
basically allows those configuration files to be found by the build process.

Note

Other methods exist to accomplish grouping and defining configuration options. For example,
you could directly add configuration options to the Yocto kernel meta branch for your BSP.
The configuration options will likely end up in that location anyway if the BSP gets added
to the Yocto Project. For information on how to add these configurations directly, see The
Yocto Project Kernel Architecture and Use Manual [http://yoctoproject.org/docs/1.1.1/kernel-
manual/kernel-manual.html].

In general, however, the Yocto Project maintainers take care of moving the SRC_URI-specified
configuration options to the meta branch. Not only is it easier for BSP developers to not
have to worry about putting those configurations in the branch, but having the maintainers
do it allows them to apply 'global' knowledge about the kinds of common configuration
options multiple BSPs in the tree are typically using. This allows for promotion of common
configurations into common features.

5.2. BSP 'Click-Through' Licensing Procedure

Note
This section describes how click-through licensing is expected to work. Currently, this
functionality is not yet implemented.

In some cases, a BSP contains separately licensed IP (Intellectual Property) for a component that
imposes upon the user a requirement to accept the terms of a 'click-through' license. Once the license
is accepted the Yocto Project build system can then build and include the corresponding component
in the final BSP image. Some affected components might be essential to the normal functioning of
the system and have no 'free' replacement (i.e. the resulting system would be non-functional without
them). On the other hand, other components might be simply 'good-to-have' or purely elective, or
if essential nonetheless have a 'free' (possibly less-capable) version that could be used as a in the
BSP recipe.

For cases where you can substitute something and still maintain functionality,
the Yocto Project website's BSP Download Page [http://www.yoctoproject.org/download/all?
keys=&download_type=1&download_version=] makes available 'de-featured' BSPs that are
completely free of any IP encumbrances. For these cases you can use the substitution directly and
without any further licensing requirements. If present, these fully 'de-featured' BSPs are named
appropriately different as compared to the names of the respective encumbered BSPs. If available,
these substitutions are the simplest and most preferred options. This, of course, assumes the resulting
functionality meets requirements.

If however, a non-encumbered version is unavailable or the 'free' version would provide unsuitable
functionality or quality, you can use an encumbered version.

Several methods exist within the Yocto Project build system to satisfy the licensing requirements for
an encumbered BSP. The following list describes them in preferential order:

1. Get a license key (or keys) for the encumbered BSP by visiting a website and providing the name
of the BSP and your email address through a web form.

After agreeing to any applicable license terms, the BSP key(s) will be immediately sent to the
address you gave and you can use them by specifying BSPKEY_<keydomain> environment
variables when building the image:

 $ BSPKEY_<keydomain>=<key> bitbake core-image-sato

These steps allow the encumbered image to be built with no change at all to the normal build
process.

Equivalently and probably more conveniently, a line for each key can instead be put into the user's
local.conf file found in the Yocto Project file's build directory.

http://yoctoproject.org/docs/1.1.1/kernel-manual/kernel-manual.html
http://yoctoproject.org/docs/1.1.1/kernel-manual/kernel-manual.html
http://yoctoproject.org/docs/1.1.1/kernel-manual/kernel-manual.html
http://yoctoproject.org/docs/1.1.1/kernel-manual/kernel-manual.html
http://www.yoctoproject.org/download/all?keys=&download_type=1&download_version=
http://www.yoctoproject.org/download/all?keys=&download_type=1&download_version=
http://www.yoctoproject.org/download/all?keys=&download_type=1&download_version=

Board Support Packages (BSP) - Developer's Guide

34

The <keydomain> component of the BSPKEY_<keydomain> is required because there might be
multiple licenses in effect for a given BSP. In such cases, a given <keydomain> corresponds to a
particular license. In order for an encumbered BSP that encompasses multiple key domains to be
built successfully, a <keydomain> entry for each applicable license must be present in local.conf
or supplied on the command-line.

2. Do nothing - build as you normally would. When a license is needed the build will stop and prompt
you with instructions. Follow the license prompts that originate from the encumbered BSP. These
prompts usually take the form of instructions needed to manually fetch the encumbered package(s)
and md5 sums into the required directory (e.g. the yocto/build/downloads). Once the manual
package fetch has been completed, restart the build to continue where it left off. During the build
the prompt will not appear again since you have satisfied the requirement.

3. Get a full-featured BSP recipe rather than a key. You can do this by visiting the applicable BSP
download page from the Yocto Project website at http://yoctoproject.org/download/board-support-
package-bsp-downloads. BSP tarballs that have proprietary information can be downloaded after
agreeing to licensing requirements as part of the download process. Obtaining the code this way
allows you to build an encumbered image with no changes at all as compared to the normal build.

Note that the third method is also the only option available when downloading pre-compiled images
generated from non-free BSPs. Those images are likewise available at from the Yocto Project website.

http://yoctoproject.org/download/board-support-package-bsp-downloads
http://yoctoproject.org/download/board-support-package-bsp-downloads

35

Chapter 6. Platform Development
with the Yocto Project
6.1. Application Development Using the Yocto
Project
The Yocto Project supports several methods of application development through which you can create
user-space software designed to run on an embedded device that uses a Linux Yocto image developed
with the Yocto Project. This flexibility allows you to choose the method that works best for you. This
chapter describes each development method.

6.1.1. External Development Using the Meta-Toolchain
The Yocto Project provides toolchains that allow you to develop your application outside of the Yocto
Project build system for specific hardware. These toolchains (called meta-toolchains) contain cross-
development tools such as compilers, linkers, and debuggers that build your application for your
target device. The Yocto Project also provides images that have toolchains for supported architectures
included within the image. This allows you to compile, debug, or profile applications directly on the
target device. See Appendix D, Reference: Images for a listing of the image types that Yocto Project
supports.

Using the BitBake tool you can build a meta-toolchain or meta-toolchain-sdk target, which generates
a tarball. Unpacking this tarball into the /opt/poky directory on your host produces a setup script
(e.g. /opt/poky/environment-setup-i586-poky-linux) that you can source to initialize your build
environment. Sourcing this script adds the compiler, QEMU scripts, QEMU binary, a special version of
pkgconfig and other useful utilities to the PATH variable used by the Yocto Project build environment.
Variables to assist pkgconfig and Autotools are also defined so that, for example, configure can
find pre-generated test results for tests that need target hardware on which to run.

Using the toolchain with Autotool-enabled packages is straightforward - just pass the appropriate
host option to configure. Following is an example:

 $./configure --host=arm-poky-linux-gnueabi

For projects that are not Autotool-enabled, it is usually just a case of ensuring you point to and
use the cross-toolchain. For example, the following two lines of code in a Makefile that builds your
application specify to use the cross-compiler arm-poky-linux-gnueabi-gcc and linker arm-poky-
linux-gnueabi-ld, which are part of the meta-toolchain you would have previously established:

 CC=arm-poky-linux-gnueabi-gcc;
 LD=arm-poky-linux-gnueabi-ld;

6.1.2. External Development Using the Eclipse Plug-in
The current release of the Yocto Project supports the Eclipse IDE plug-in to make developing software
easier for the application developer. The plug-in provides capability extensions to the graphical IDE
to allow for cross compilation, deployment and execution of the application within a QEMU emulation
session. Support of the Eclipse plug-in also allows for cross debugging and profiling. Additionally, the
Eclipse plug-in provides a suite of tools that allows the developer to perform remote profiling, tracing,
collection of power consumption data, collection of latency data and collection of performance data.

Note
The current release of the Yocto Project no longer supports the Anjuta plug-in. However, the
Poky Anjuta Plug-in is available to download directly from the Poky Git repository located
through the web interface at http://git.yoctoproject.org/ under IDE Plugins. The community is
free to continue supporting it beyond the Yocto Project 0.9 Release.

http://git.yoctoproject.org/

Platform Development with the Yocto Project

36

To use the Eclipse plug-in you need the Eclipse Framework (Helios 3.6.1) along with other
plug-ins installed into the Eclipse IDE. Once you have your environment setup you need to
configure the Eclipse plug-in. For information on how to install and configure the Eclipse
plug-in, see the "Working Within Eclipse" [http://www.yoctoproject.org/docs/1.1.1/adt-manual/adt-
manual.html#adt-eclipse] chapter in the "Application Development Toolkit (ADT) User's Guide."
[http://www.yoctoproject.org/docs/1.1.1/adt-manual/adt-manual.html]

6.1.3. External Development Using the QEMU Emulator
Running Poky QEMU images is covered in the Yocto Project Quick Start [http://www.yoctoproject.org/
docs/1.1.1/yocto-project-qs/yocto-project-qs.html] in the "A Quick Test Run" section.

The QEMU images shipped with the Yocto Project contain complete toolchains native to their target
architectures. This support allows you to develop applications within QEMU similar to the way you
would using a normal host development system.

Speed can be an issue depending on the target and host architecture mix. For example, using the
qemux86 image in the emulator on an Intel-based 32-bit (x86) host machine is fast because the target
and host architectures match. On the other hand, using the qemuarm image on the same Intel-based
host can be slower. But, you still achieve faithful emulation of ARM-specific issues.

To speed things up, the QEMU images support using distcc to call a cross-compiler outside the
emulated system. If you used runqemu to start QEMU, and distccd is present on the host system, any
BitBake cross-compiling toolchain available from the build system is automatically used from within
QEMU simply by calling distcc. You can accomplish this by defining the cross-compiler variable (e.g.
export CC="distcc"). Alternatively, if a suitable SDK/toolchain is present in /opt/poky the toolchain
is also automatically used.

Several mechanisms exist that let you connect to the system running on the QEMU emulator:

• QEMU provides a framebuffer interface that makes standard consoles available.

• Generally, headless embedded devices have a serial port. If so, you can configure the operating
system of the running image to use that port to run a console. The connection uses standard IP
networking.

• The QEMU images have a Dropbear secure shell (ssh) server that runs with the root password
disabled. This allows you to use standard ssh and scp commands.

• The QEMU images also contain an embedded Network Files System (NFS) server that exports the
image's root filesystem. This allows you to make the filesystem available to the host.

6.1.4. Development Using Yocto Project Directly
Working directly with the Yocto Project is a fast and effective development technique. The idea is that
you can directly edit files in a working directory (WORKDIR) or the source directory (S) and then force
specific tasks to rerun in order to test the changes. An example session working on the matchbox-
desktop package might look like this:

 $ bitbake matchbox-desktop
 $ sh
 $ cd tmp/work/armv5te-poky-linux-gnueabi/matchbox-desktop-2.0+svnr1708-r0/
 $ cd matchbox-desktop-2
 $ vi src/main.c
 .
 .
 [Make your changes]
 .
 .
 $ exit
 $ bitbake matchbox-desktop -c compile -f
 $ bitbake matchbox-desktop

This example builds the matchbox-desktop package, creates a new terminal, changes into the work
directory for the package, changes a file, exits out of the terminal, and then recompiles the package.

http://www.yoctoproject.org/docs/1.1.1/adt-manual/adt-manual.html#adt-eclipse
http://www.yoctoproject.org/docs/1.1.1/adt-manual/adt-manual.html#adt-eclipse
http://www.yoctoproject.org/docs/1.1.1/adt-manual/adt-manual.html#adt-eclipse
http://www.yoctoproject.org/docs/1.1.1/adt-manual/adt-manual.html
http://www.yoctoproject.org/docs/1.1.1/adt-manual/adt-manual.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html

Platform Development with the Yocto Project

37

Instead of using sh, you can also use two different terminals. However, the risk of using two terminals
is that a command like unpack could destroy your changes in the work directory. Consequently, you
need to work carefully.

It is useful when making changes directly to the work directory files to do so using the Quilt tool as
detailed in the Modifying Package Source Code with Quilt section. Using Quilt, you can copy patches
into the recipe directory and use the patches directly through use of the SRC_URI variable.

For a review of the skills used in this section, see the BitBake and Running Specific Tasks sections
in this manual.

6.1.5. Development Within a Development Shell
When debugging certain commands or even when just editing packages, devshell can be a useful
tool. Using devshell differs from the example shown in the previous section in that when you invoke
devshell source files are extracted into your working directory and patches are applied. Then, a new
terminal is opened and you are placed in the working directory. In the new terminal all the Yocto Project
build-related environment variables are still defined so you can use commands such as configure
and make. The commands execute just as if the Yocto Project build system were executing them.
Consequently, workng this way can be helpful when debugging a build or preparing software to be
used with the Yocto Project build system.

Following is an example that uses devshell on a target named matchbox-desktop:

 $ bitbake matchbox-desktop -c devshell

This command opens a terminal with a shell prompt within the Poky environment. The following
occurs:

• The PATH variable includes the cross-toolchain.

• The pkgconfig variables find the correct .pc files.

• The configure command finds the Yocto Project site files as well as any other necessary files.

Within this environment, you can run configure or compile commands as if they were being run
by the Yocto Project build system itself. As noted earlier, the working directory also automatically
changes to the source directory (S).

When you are finished, you just exit the shell or close the terminal window.

The default shell used by devshell is xterm. You can use other terminal forms by setting the
TERMCMD and TERMCMDRUN variables in the Yocto Project's local.conf file found in the build
directory. For examples of the other options available, see the "UI/Interaction Configuration" section
of the meta/conf/bitbake.conf configuration file in the Yocto Project files.

Because an external shell is launched rather than opening directly into the original terminal window,
it allows easier interaction with Bitbake's multiple threads as well as accomodates a future client/
server split.

Note

It is worth remembering that when using devshell you need to use the full compiler
name such as arm-poky-linux-gnueabi-gcc instead of just using gcc. The same applies
to other applications such as binutils, libtool and so forth. The Yocto Project has setup
environment variables such as CC to assist applications, such as make to find the correct tools.

It is also worth noting that devshell still works over X11 forwarding and similar situations

6.1.6. Development Within Yocto Project for a Package
that Uses an External SCM
If you're working on a recipe that pulls from an external Source Code Manager (SCM), it is possible to
have the Yocto Project build system notice new changes added to the SCM and then build the package

Platform Development with the Yocto Project

38

that depends on them using the latest version. This only works for SCMs from which it is possible
to get a sensible revision number for changes. Currently, you can do this with Apache Subversion
(SVN), Git, and Bazaar (BZR) repositories.

To enable this behavior, simply add the following to the local.conf configuration file in the build
directory of the Yocto Project files:

 SRCREV_pn-<PN> = "${AUTOREV}"

where PN is the name of the package for which you want to enable automatic source revision updating.

6.2. Debugging With the GNU Project Debugger
(GDB) Remotely
GDB allows you to examine running programs, which in turn help you to understand and fix problems.
It also allows you to perform post-mortem style analysis of program crashes. GDB is available as a
package within the Yocto Project and by default is installed in sdk images. See Appendix D, Reference:
Images for a description of these images. You can find information on GDB at http://sourceware.org/
gdb/.

Tip
For best results, install -dbg packages for the applications you are going to debug. Doing so
makes available extra debug symbols that give you more meaningful output.

Sometimes, due to memory or disk space constraints, it is not possible to use GDB directly on
the remote target to debug applications. These constraints arise because GDB needs to load the
debugging information and the binaries of the process being debugged. Additionally, GDB needs
to perform many computations to locate information such as function names, variable names
and values, stack traces and so forth - even before starting the debugging process. These extra
computations place more load on the target system and can alter the characteristics of the program
being debugged.

To help get past the previously mentioned constraints, you can use Gdbserver. Gdbserver runs on
the remote target and does not load any debugging information from the debugged process. Instead,
a GDB instance processes the debugging information that is run on a remote computer - the host
GDB. The host GDB then sends control commands to Gdbserver to make it stop or start the debugged
program, as well as read or write memory regions of that debugged program. All the debugging
information loaded and processed as well as all the heavy debugging is done by the host GDB.
Offloading these processes gives the Gdbserver running on the target a chance to remain small and
fast.

Because the host GDB is responsible for loading the debugging information and for doing the
necessary processing to make actual debugging happen, the user has to make sure the host can
access the unstripped binaries complete with their debugging information and also be sure the target
is compiled with no optimizations. The host GDB must also have local access to all the libraries used
by the debugged program. Because Gdbserver does not need any local debugging information, the
binaries on the remote target can remain stripped. However, the binaries must also be compiled
without optimization so they match the host's binaries.

To remain consistent with GDB documentation and terminology, the binary being debugged on the
remote target machine is referred to as the "inferior" binary. For documentation on GDB see the GDB
site [http://sourceware.org/gdb/documentation/].

6.2.1. Launching Gdbserver on the Target
First, make sure Gdbserver is installed on the target. If it is not, install the package gdbserver, which
needs the libthread-db1 package.

As an example, to launch Gdbserver on the target and make it ready to "debug" a program located
at /path/to/inferior, connect to the target and launch:

http://sourceware.org/gdb/
http://sourceware.org/gdb/
http://sourceware.org/gdb/documentation/
http://sourceware.org/gdb/documentation/
http://sourceware.org/gdb/documentation/

Platform Development with the Yocto Project

39

 $ gdbserver localhost:2345 /path/to/inferior

Gdbserver should now be listening on port 2345 for debugging commands coming from a remote
GDB process that is running on the host computer. Communication between Gdbserver and the
host GDB are done using TCP. To use other communication protocols, please refer to the Gdbserver
documentation [http://www.gnu.org/software/gdb/].

6.2.2. Launching GDB on the Host Computer
Running GDB on the host computer takes a number of stages. This section describes those stages.

6.2.2.1. Building the Cross-GDB Package

A suitable GDB cross-binary is required that runs on your host computer but also knows about the
the ABI of the remote target. You can get this binary from the the Yocto Project meta-toolchain. Here
is an example:

 /usr/local/poky/eabi-glibc/arm/bin/arm-poky-linux-gnueabi-gdb

where arm is the target architecture and linux-gnueabi the target ABI.

Alternatively, the Yocto Project can build the gdb-cross binary. Here is an example:

 $ bitbake gdb-cross

Once the binary is built, you can find it here:

 tmp/sysroots/<host-arch>/usr/bin/<target-abi>-gdb

6.2.2.2. Making the Inferior Binaries Available

The inferior binary (complete with all debugging symbols) as well as any libraries (and their debugging
symbols) on which the inferior binary depends need to be available. There are a number of ways you
can make these available.

Perhaps the easiest way is to have an 'sdk' image that corresponds to the plain image installed on the
device. In the case of core-image-sato, core-image-sdk would contain suitable symbols. Because
the sdk images already have the debugging symbols installed, it is just a question of expanding the
archive to some location and then informing GDB.

Alternatively, Yocto Project can build a custom directory of files for a specific debugging purpose by
reusing its tmp/rootfs directory. This directory contains the contents of the last built image. This
process assumes two things:

• The image running on the target was the last image to be built by the Yocto Project.

• The package (foo in the following example) that contains the inferior binary to be debugged has
been built without optimization and has debugging information available.

The following steps show how to build the custom directory of files:

1. Install the package (foo in this case) to tmp/rootfs:

 $ tmp/sysroots/i686-linux/usr/bin/opkg-cl -f \
 tmp/work/<target-abi>/core-image-sato-1.0-r0/temp/opkg.conf -o \
 tmp/rootfs/ update

2. Install the debugging information:

http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/

Platform Development with the Yocto Project

40

 $ tmp/sysroots/i686-linux/usr/bin/opkg-cl -f \
 tmp/work/<target-abi>/core-image-sato-1.0-r0/temp/opkg.conf \
 -o tmp/rootfs install foo

 $ tmp/sysroots/i686-linux/usr/bin/opkg-cl -f \
 tmp/work/<target-abi>/core-image-sato-1.0-r0/temp/opkg.conf \
 -o tmp/rootfs install foo-dbg

6.2.2.3. Launch the Host GDB

To launch the host GDB, you run the cross-gdb binary and provide the inferior binary as part of the
command line. For example, the following command form continues with the example used in the
previous section. This command form loads the foo binary as well as the debugging information:

 $ <target-abi>-gdb rootfs/usr/bin/foo

Once the GDB prompt appears, you must instruct GDB to load all the libraries of the inferior binary
from tmp/rootfs as follows:

 $ set solib-absolute-prefix /path/to/tmp/rootfs

The pathname /path/to/tmp/rootfs must either be the absolute path to tmp/rootfs or the location
at which binaries with debugging information reside.

At this point you can have GDB connect to the Gdbserver that is running on the remote target by
using the following command form:

 $ target remote remote-target-ip-address:2345

The remote-target-ip-address is the IP address of the remote target where the Gdbserver is
running. Port 2345 is the port on which the GDBSERVER is running.

6.2.2.4. Using the Debugger

You can now proceed with debugging as normal - as if you were debugging on the local machine.
For example, to instruct GDB to break in the "main" function and then continue with execution of the
inferior binary use the following commands from within GDB:

 (gdb) break main
 (gdb) continue

For more information about using GDB, see the project's online documentation at http://
sourceware.org/gdb/download/onlinedocs/.

6.3. Profiling with OProfile
OProfile [http://oprofile.sourceforge.net/] is a statistical profiler well suited for finding performance
bottlenecks in both userspace software and in the kernel. This profiler provides answers to questions
like "Which functions does my application spend the most time in when doing X?" Because the
Yocto Project is well integrated with OProfile, it makes profiling applications on target hardware
straightforward.

To use OProfile, you need an image that has OProfile installed. The easiest way to do this is with
tools-profile in the IMAGE_FEATURES variable. You also need debugging symbols to be available
on the system where the analysis takes place. You can gain access to the symbols by using dbg-pkgs
in the IMAGE_FEATURES variable or by installing the appropriate -dbg packages.

http://sourceware.org/gdb/download/onlinedocs/
http://sourceware.org/gdb/download/onlinedocs/
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/

Platform Development with the Yocto Project

41

For successful call graph analysis, the binaries must preserve the frame pointer register and should
also be compiled with the -fno-omit-framepointer flag. In the Yocto Project you can achieve this
by setting the SELECTED_OPTIMIZATION variable to -fexpensive-optimizations -fno-omit-
framepointer -frename-registers -O2. You can also achieve it by setting the DEBUG_BUILD
variable to "1" in the local.conf configuration file. If you use the DEBUG_BUILD variable you will also
add extra debug information that can make the debug packages large.

6.3.1. Profiling on the Target
Using OProfile you can perform all the profiling work on the target device. A simple OProfile session
might look like the following:

 # opcontrol --reset
 # opcontrol --start --separate=lib --no-vmlinux -c 5
 .
 .
 [do whatever is being profiled]
 .
 .
 # opcontrol --stop
 $ opreport -cl

In this example, the reset command clears any previously profiled data. The next command
starts OProfile. The options used when starting the profiler separate dynamic library data within
applications, disable kernel profiling, and enable callgraphing up to five levels deep.

Note
To profile the kernel, you would specify the --vmlinux=/path/to/vmlinux option. The
vmlinux file is usually in the Yocto Project file's /boot/ directory and must match the running
kernel.

After you perform your profiling tasks, the next command stops the profiler. After that, you can view
results with the opreport command with options to see the separate library symbols and callgraph
information.

Callgraphing logs information about time spent in functions and about a function's calling function
(parent) and called functions (children). The higher the callgraphing depth, the more accurate the
results. However, higher depths also increase the logging overhead. Consequently, you should take
care when setting the callgraphing depth.

Note
On ARM, binaries need to have the frame pointer enabled for callgraphing to work. To
accomplish this use the -fno-omit-framepointer option with gcc.

For more information on using OProfile, see the OProfile online documentation at http://
oprofile.sourceforge.net/docs/.

6.3.2. Using OProfileUI
A graphical user interface for OProfile is also available. You can download and build this interface from
the Yocto Project at http://git.yoctoproject.org/cgit.cgi/oprofileui/. If the "tools-profile" image feature
is selected, all necessary binaries are installed onto the target device for OProfileUI interaction.

Even though the Yocto Project usually includes all needed patches on the target device, you might
find you need other OProfile patches for recent OProfileUI features. If so, see the OProfileUI README
[http://git.yoctoproject.org/cgit.cgi/oprofileui/tree/README] for the most recent information.

6.3.2.1. Online Mode

Using OProfile in online mode assumes a working network connection with the target hardware. With
this connection, you just need to run "oprofile-server" on the device. By default, OProfile listens on
port 4224.

http://oprofile.sourceforge.net/docs/
http://oprofile.sourceforge.net/docs/
http://git.yoctoproject.org/cgit.cgi/oprofileui/
http://git.yoctoproject.org/cgit.cgi/oprofileui/tree/README
http://git.yoctoproject.org/cgit.cgi/oprofileui/tree/README

Platform Development with the Yocto Project

42

Note
You can change the port using the --port command-line option.

The client program is called oprofile-viewer and its UI is relatively straightforward. You access key
functionality through the buttons on the toolbar, which are duplicated in the menus. Here are the
buttons:

• Connect: Connects to the remote host. You can also supply the IP address or hostname.

• Disconnect: Disconnects from the target.

• Start: Starts profiling on the device.

• Stop: Stops profiling on the device and downloads the data to the local host. Stopping the profiler
generates the profile and displays it in the viewer.

• Download: Downloads the data from the target and generates the profile, which appears in the
viewer.

• Reset: Resets the sample data on the device. Resetting the data removes sample information
collected from previous sampling runs. Be sure you reset the data if you do not want to include
old sample information.

• Save: Saves the data downloaded from the target to another directory for later examination.

• Open: Loads previously saved data.

The client downloads the complete 'profile archive' from the target to the host for processing. This
archive is a directory that contains the sample data, the object files, and the debug information for
the object files. The archive is then converted using the oparchconv script, which is included in this
distribution. The script uses opimport to convert the archive from the target to something that can
be processed on the host.

Downloaded archives reside in the Yocto Project's build directory in /tmp and are cleared up when
they are no longer in use.

If you wish to perform kernel profiling, you need to be sure a vmlinux file that matches the running
kernel is available. In the Yocto Project, that file is usually located in /boot/vmlinux-KERNELVERSION,
where KERNEL-version is the version of the kernel. The Yocto Project generates separate vmlinux
packages for each kernel it builds. Thus, it should just be a question of making sure a matching
package is installed (e.g. opkg install kernel-vmlinux. The files are automatically installed
into development and profiling images alongside OProfile. A configuration option exists within the
OProfileUI settings page that you can use to enter the location of the vmlinux file.

Waiting for debug symbols to transfer from the device can be slow, and it is not always necessary to
actually have them on the device for OProfile use. All that is needed is a copy of the filesystem with
the debug symbols present on the viewer system. The Launching GDB on the Host Computer section
covers how to create such a directory with the Yocto Project and how to use the OProfileUI Settings
dialog to specify the location. If you specify the directory, it will be used when the file checksums
match those on the system you are profiling.

6.3.2.2. Offline Mode

If network access to the target is unavailable, you can generate an archive for processing in
oprofile-viewer as follows:

 # opcontrol --reset
 # opcontrol --start --separate=lib --no-vmlinux -c 5
 .
 .
 [do whatever is being profiled]
 .
 .
 # opcontrol --stop
 # oparchive -o my_archive

Platform Development with the Yocto Project

43

In the above example, my_archive is the name of the archive directory where you would like the
profile archive to be kept. After the directory is created, you can copy it to another host and load it
using oprofile-viewer open functionality. If necessary, the archive is converted.

44

Appendix A. Reference: Directory
Structure
The Yocto Project consists of several components. Understanding them and knowing where they are
located is key to using the Yocto Project well. This appendix describes the Yocto Project file's directory
structure and gives information about the various files and directories.

For information on how to establish the Yocto Project files on your local development system, see
the Getting Setup [http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#getting-
started] section in the The Yocto Project Development Manual [http://www.yoctoproject.org/
docs/1.1.1/dev-manual/dev-manual.html].

A.1. Top level core components

A.1.1. bitbake/

The Yocto Project includes a copy of BitBake for ease of use. The copy usually matches the current
stable BitBake release from the BitBake project. BitBake, a metadata interpreter, reads the Yocto
Project metadata and runs the tasks defined by that data. Failures are usually from the metadata and
not from BitBake itself. Consequently, most users do not need to worry about BitBake. The bitbake/
bin/ directory is placed into the PATH environment variable by the oe-init-build-env script.

For more information on BitBake, see the BitBake on-line manual at http://bitbake.berlios.de/manual/.

A.1.2. build/

This directory contains user configuration files and the output generated by the Yocto Project in its
standard configuration where the source tree is combined with the output. The build directory is
created initially when you source the Yocto Project environment setup script oe-init-build-env.

It is also possible to place output and configuration files in a directory separate from the Yocto Project
files by providing a directory name when you source the setup script. For information on separating
output from the Yocto Project files, see oe-init-build-env.

A.1.3. documentation

This directory holds the source for the Yocto Project documentation as well as templates and tools
that allow you to generate PDF and HTML versions of the manuals. Each manual is contained in a
sub-folder. For example, the files for this manual reside in poky-ref-manual.

A.1.4. meta/

This directory contains the Yocto Project core metadata. The directory holds machine definitions, the
Yocto Project distribution, and the packages that make up a given system.

A.1.5. meta-demoapps/

This directory contains recipes for applications and demos that are not part of the Yocto Project core.

A.1.6. meta-rt/

This directory contains recipes for real-time kernels.

A.1.7. meta-skeleton/

This directory contains template recipes for BSP and kernel development.

http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#getting-started
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#getting-started
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#getting-started
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://bitbake.berlios.de/manual/

Reference: Directory Structure

45

A.1.8. scripts/
This directory contains various integration scripts that implement extra functionality in the Yocto
Project environment (e.g. QEMU scripts). The oe-init-build-env script appends this directory to the
PATH environment variable.

The scripts directory has useful scripts that assist contributing back to the Yocto Project, such as
create_pull_request and send_pull_request.

A.1.9. oe-init-build-env
This script sets up the Yocto Project build environment. Running this script with the source command
in a shell makes changes to PATH and sets other core BitBake variables based on the current working
directory. You need to run this script before running BitBake commands. The script uses other scripts
within the scripts directory to do the bulk of the work.

By default, running this script without a build directory argument creates the build directory. If you
provide a build directory argument when you source the script, you direct the Yocto Project to create
a build directory of your choice. For example, the following command creates a build directory named
mybuilds that is outside of the Yocto Project files:

 $ source oe-init-build-env ~/mybuilds

A.1.10. LICENSE, README, and README.hardware
These files are standard top-level files.

A.2. The Build Directory - build/

A.2.1. build/pseudodone
This tag file indicates that the initial pseudo binary was created. The file is built the first time BitBake
is invoked.

A.2.2. build/conf/local.conf
This file contains all the local user configuration of the Yocto Project. If there is no local.conf present,
it is created from local.conf.sample. The local.conf file contains documentation on the various
configuration options. Any variable set here overrides any variable set elsewhere within the Yocto
Project unless that variable is hard-coded within the Yocto Project (e.g. by using '=' instead of '?=').
Some variables are hard-coded for various reasons but these variables are relatively rare.

Edit this file to set the MACHINE for which you want to build, which package types you wish to use
(PACKAGE_CLASSES), or where you want to downloaded files (DL_DIR).

A.2.3. build/conf/bblayers.conf
This file defines layers, which is a directory tree, traversed (or walked) by BitBake. If bblayers.conf
is not present, it is created from bblayers.conf.sample when you source the environment setup
script.

A.2.4. build/conf/sanity_info
This file is created during the build to indicate the state of the sanity checks.

A.2.5. build/downloads/
This directory is used for the upstream source tarballs. The directory can be reused by multiple
builds or moved to another location. You can control the location of this directory through the DL_DIR
variable.

Reference: Directory Structure

46

A.2.6. build/sstate-cache/
This directory is used for the shared state cache. The directory can be reused by multiple builds or
moved to another location. You can control the location of this directory through the SSTATE_DIR
variable.

A.2.7. build/tmp/
This directory receives all the Yocto Project output. BitBake creates this directory if it does not exist.
As a last resort, to clean the Yocto Project and start a build from scratch (other than downloads), you
can remove everything in this directory or get rid of the directory completely. If you do, you should
also completely remove the build/sstate-cache directory as well.

A.2.8. build/tmp/buildstats/
This directory stores the build statistics.

A.2.9. build/tmp/cache/
When BitBake parses the metadata, it creates a cache file of the result that can be used when
subsequently running commands. These results are stored here on a per-machine basis.

A.2.10. build/tmp/deploy/
This directory contains any 'end result' output from the Yocto Project build process.

A.2.11. build/tmp/deploy/deb/
This directory receives any .deb packages produced by the Yocto Project. The packages are sorted
into feeds for different architecture types.

A.2.12. build/tmp/deploy/rpm/
This directory receives any .rpm packages produced by the Yocto Project. The packages are sorted
into feeds for different architecture types.

A.2.13. build/tmp/deploy/images/
This directory receives complete filesystem images. If you want to flash the resulting image from a
build onto a device, look here for the image.

Note, you should not remove any files from this directory by hand in an attempt to rebuild an image.
If you want to clean out the cache, re-run the build using the following BitBake command:

 $ bitbake -c cleanall <target>

A.2.14. build/tmp/deploy/ipk/
This directory receives .ipk packages produced by the Yocto Project.

A.2.15. build/tmp/sysroots/
This directory contains shared header files and libraries as well as other shared data. Packages that
need to share output with other packages do so within this directory. The directory is subdivided by
architecture so multiple builds can run within the one build directory.

A.2.16. build/tmp/stamps/
This directory holds information that that BitBake uses for accounting purposes to track what tasks
have run and when they have run. The directory is sub-divided by architecture. The files in the

Reference: Directory Structure

47

directory are empty of data. However, BitBake uses the filenames and timestamps for tracking
purposes.

A.2.17. build/tmp/log/
This directory contains general logs that are not otherwise placed using the package's WORKDIR.
Examples of logs are the output from the check_pkg or distro_check tasks.

A.2.18. build/tmp/pkgdata/
This directory contains intermediate packaging data that is used later in the packaging process. For
more information, see package.bbclass.

A.2.19. build/tmp/work/
This directory contains architecture-specific work sub-directories for packages built by BitBake. All
tasks execute from a work directory. For example, the source for a particular package is unpacked,
patched, configured and compiled all within its own work directory. Within the work directory,
organization is based on the package group for which the source is being compiled.

It is worth considering the structure of a typical work directory. As an example, consider the
linux-yocto kernel 3.0 on the machine qemux86 built within the Yocto Project. For this package, a
work directory of tmp/work/qemux86-poky-linux/linux-yocto-3.0+git1+<.....>, referred to as
WORKDIR, is created. Within this directory, the source is unpacked to linux-qemux86-standard-
build and then patched by Quilt (see the Modifying Package Source Code With Quilt section). Within
the linux-qemux86-standard-build directory, standard Quilt directories linux-3.0/patches and
linux-3.0/.pc are created, and standard Quilt commands can be used.

There are other directories generated within WORKDIR. The most important directory is WORKDIR/
temp/, which has log files for each task (log.do_*.pid) and contains the scripts BitBake runs for
each task (run.do_*.pid). The WORKDIR/image/ directory is where "make install" places its output
that is then split into sub-packages within WORKDIR/packages-split/.

A.3. The Metadata - meta/
As mentioned previously, metadata is the core of the Yocto Project. Metadata has several important
subdivisions:

A.3.1. meta/classes/
This directory contains the *.bbclass files. Class files are used to abstract common code so it can
be reused by multiple packages. Every package inherits the base.bbclass file. Examples of other
important classes are autotools.bbclass, which in theory allows any Autotool-enabled package to
work with the Yocto Project with minimal effort. Another example is kernel.bbclass that contains
common code and functions for working with the Linux kernel. Functions like image generation
or packaging also have their specific class files such as image.bbclass, rootfs_*.bbclass and
package*.bbclass.

A.3.2. meta/conf/
This directory contains the core set of configuration files that start from bitbake.conf and from which
all other configuration files are included. See the include statements at the end of the file and you will
note that even local.conf is loaded from there. While bitbake.conf sets up the defaults, you can
often override these by using the (local.conf) file, machine file or the distribution configuration file.

A.3.3. meta/conf/machine/
This directory contains all the machine configuration files. If you set MACHINE="qemux86", Yocto
Project looks for a qemux86.conf file in this directory. The include directory contains various data
common to multiple machines. If you want to add support for a new machine to the Yocto Project,
look in this directory.

Reference: Directory Structure

48

A.3.4. meta/conf/distro/

Any distribution-specific configuration is controlled from this directory. The Yocto Project only contains
the Yocto Project distribution so defaultsetup.conf is the main file here. This directory includes
the versions and the SRCDATE definitions for applications that are configured here. An example of an
alternative configuration is poky-bleeding.conf although this file mainly inherits its configuration
from the Yocto Project itself.

A.3.5. meta/recipes-bsp/

This directory contains anything linking to specific hardware or hardware configuration information
such as "u-boot" and "grub".

A.3.6. meta/recipes-connectivity/

This directory contains libraries and applications related to communication with other devices.

A.3.7. meta/recipes-core/

This directory contains what is needed to build a basic working Linux image including commonly used
dependencies.

A.3.8. meta/recipes-devtools/

This directory contains tools that are primarily used by the build system. The tools, however, can
also be used on targets.

A.3.9. meta/recipes-extended/

This directory contains non-essential applications that add features compared to the alternatives
in core. You might need this directory for full tool functionality or for Linux Standard Base (LSB)
compliance.

A.3.10. meta/recipes-gnome/

This directory contains all things related to the GTK+ application framework.

A.3.11. meta/recipes-graphics/

This directory contains X and other graphically related system libraries

A.3.12. meta/recipes-kernel/

This directory contains the kernel and generic applications and libraries that have strong kernel
dependencies.

A.3.13. meta/recipes-multimedia/

This directory contains codecs and support utilities for audio, images and video.

A.3.14. meta/recipes-qt/

This directory contains all things related to the Qt application framework.

A.3.15. meta/recipes-sato/

This directory contains the Sato demo/reference UI/UX and its associated applications and
configuration data.

Reference: Directory Structure

49

A.3.16. meta/recipes-support/
This directory contains recipes that used by other recipes, but that are not directly included in images
(i.e. dependencies of other recipes).

A.3.17. meta/site/
This directory contains a list of cached results for various architectures. Because certain "autoconf"
test results cannot be determined when cross-compiling due to the tests not able to run on a live
system, the information in this directory is passed to "autoconf" for the various architectures.

A.3.18. meta/recipes.txt/
This file is a description of the contents of recipes-*.

50

Appendix B. Reference: BitBake
BitBake is a program written in Python that interprets the metadata that makes up the Yocto Project.
At some point, developers wonder what actually happens when you enter:

 $ bitbake core-image-sato

This appendix provides an overview of what happens behind the scenes from BitBake's perspective.

Note
BitBake strives to be a generic "task" executor that is capable of handling complex
dependency relationships. As such, it has no real knowledge of what the tasks being executed
actually do. BitBake just considers a list of tasks with dependencies and handles metadata
that consists of variables in a certain format that get passed to the tasks.

B.1. Parsing
BitBake parses configuration files, classes, and .bb files.

The first thing BitBake does is look for the bitbake.conf file. The Yocto Project keeps this file in
the Yocto Project file's meta/conf/ directory. BitBake finds it by examining the BBPATH environment
variable and looking for the meta/conf/ directory.

In the Yocto Project, bitbake.conf lists other configuration files to include from a conf/ directory
below the directories listed in BBPATH. In general, the most important configuration file from a
user's perspective is local.conf, which contains a user's customized settings for the Yocto Project
build environment. Other notable configuration files are the distribution configuration file (set by
the DISTRO variable) and the machine configuration file (set by the MACHINE variable). The DISTRO
and MACHINE environment variables are both usually set in the local.conf file. Valid distribution
configuration files are available in the meta/conf/distro/ directory and valid machine configuration
files in the meta/conf/machine/ directory. Within the meta/conf/machine/include/ directory are
various tune-*.inc configuration files that provide common "tuning" settings specific to and shared
between particular architectures and machines.

After the parsing of the configuration files, some standard classes are included. The base.bbclass
file is always included. Other classes that are specified in the configuration using the INHERIT variable
are also included. Class files are searched for in a classes subdirectory under the paths in BBPATH
in the same way as configuration files.

After classes are included, the variable BBFILES is set, usually in local.conf, and defines the list
of places to search for .bb files. By default, the BBFILES variable specifies the meta/recipes-*/
directory within Poky. Adding extra content to BBFILES is best achieved through the use of BitBake
layers as described in the BitBake Layers section.

BitBake parses each .bb file in BBFILES and stores the values of various variables. In summary, for
each .bb file the configuration plus the base class of variables are set, followed by the data in the
.bb file itself, followed by any inherit commands that .bb file might contain.

Because parsing .bb files is a time consuming process, a cache is kept to speed up subsequent
parsing. This cache is invalid if the timestamp of the .bb file itself changes, or if the timestamps of
any of the include, configuration or class files the .bb file depends on changes.

B.2. Preferences and Providers
Once all the .bb files have been parsed, BitBake starts to build the target (core-image-sato in the
previous section's example) and looks for providers of that target. Once a provider is selected, BitBake
resolves all the dependencies for the target. In the case of core-image-sato, it would lead to task-
base.bb, which in turn leads to packages like Contacts, Dates and BusyBox. These packages in turn
depend on eglibc and the toolchain.

Reference: BitBake

51

Sometimes a target might have multiple providers. A common example is "virtual/kernel", which is
provided by each kernel package. Each machine often selects the best kernel provider by using a line
similar to the following in the machine configuration file:

 PREFERRED_PROVIDER_virtual/kernel = "linux-yocto"

The default PREFERRED_PROVIDER is the provider with the same name as the target.

Understanding how providers are chosen is made complicated by the fact that multiple versions might
exist. BitBake defaults to the highest version of a provider. Version comparisons are made using the
same method as Debian. You can use the PREFERRED_VERSION variable to specify a particular version
(usually in the distro configuration). You can influence the order by using the DEFAULT_PREFERENCE
variable. By default, files have a preference of "0". Setting the DEFAULT_PREFERENCE to "-1" makes
the package unlikely to be used unless it is explicitly referenced. Setting the DEFAULT_PREFERENCE
to "1" makes it likely the package is used. PREFERRED_VERSION overrides any DEFAULT_PREFERENCE
setting. DEFAULT_PREFERENCE is often used to mark newer and more experimental package versions
until they have undergone sufficient testing to be considered stable.

In summary, BitBake has created a list of providers, which is prioritized, for each target.

B.3. Dependencies
Each target BitBake builds consists of multiple tasks such as fetch, unpack, patch, configure, and
compile. For best performance on multi-core systems, BitBake considers each task as an independent
entity with its own set of dependencies.

Dependencies are defined through several variables. You can find information about variables BitBake
uses in the BitBake manual [http://bitbake.berlios.de/manual/]. At a basic level, it is sufficient to know
that BitBake uses the DEPENDS and RDEPENDS variables when calculating dependencies.

B.4. The Task List
Based on the generated list of providers and the dependency information, BitBake can now calculate
exactly what tasks it needs to run and in what order it needs to run them. The build now starts with
BitBake forking off threads up to the limit set in the BB_NUMBER_THREADS variable. BitBake continues
to fork threads as long as there are tasks ready to run, those tasks have all their dependencies met,
and the thread threshold has not been exceeded.

It is worth noting that you can greatly speed up the build time by properly setting
the BB_NUMBER_THREADS variable. See the Building an Image [http://www.yoctoproject.org/
docs/1.1.1/yocto-project-qs/yocto-project-qs.html#building-image] section in the Yocto Project
Quick Start [http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html] for more
information.

As each task completes, a timestamp is written to the directory specified by the STAMPS variable
(usually build/tmp/stamps/*/). On subsequent runs, BitBake looks at the STAMPS directory and does
not rerun tasks that are already completed unless a timestamp is found to be invalid. Currently,
invalid timestamps are only considered on a per .bb file basis. So, for example, if the configure stamp
has a timestamp greater than the compile timestamp for a given target, then the compile task would
rerun. Running the compile task again, however, has no effect on other providers that depend on that
target. This behavior could change or become configurable in future versions of BitBake.

Note
Some tasks are marked as "nostamp" tasks. No timestamp file is created when these tasks
are run. Consequently, "nostamp" tasks are always rerun.

B.5. Running a Task
Tasks can either be a shell task or a Python task. For shell tasks, BitBake writes a shell script to
${WORKDIR}/temp/run.do_taskname.pid and then executes the script. The generated shell script
contains all the exported variables, and the shell functions with all variables expanded. Output from

http://bitbake.berlios.de/manual/
http://bitbake.berlios.de/manual/
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#building-image
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#building-image
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html#building-image
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.1.1/yocto-project-qs/yocto-project-qs.html

Reference: BitBake

52

the shell script goes to the file ${WORKDIR}/temp/log.do_taskname.pid. Looking at the expanded
shell functions in the run file and the output in the log files is a useful debugging technique.

For Python tasks, BitBake executes the task internally and logs information to the controlling terminal.
Future versions of BitBake will write the functions to files similar to the way shell tasks are handled.
Logging will be handled in way similar to shell tasks as well.

Once all the tasks have been completed BitBake exits.

When running a task, BitBake tightly controls the execution environment of the build tasks to make
sure unwanted contamination from the build machine cannot influence the build. Consequently, if
you do want something to get passed into the build task's environment, you must take a few steps:

1. Tell BitBake to load what you want from the environment into the data store. You can do so through
the BB_ENV_WHITELIST variable. For example, assume you want to prevent the build system from
accessing your $HOME/.ccache directory. The following command tells BitBake to load CCACHE_DIR
from the environment into the data store:

 export BB_ENV_EXTRAWHITE="$BB_ENV_EXTRAWHITE CCACHE_DIR"

2. Tell BitBake to export what you have loaded into the environment store to the task environment of
every running task. Loading something from the environment into the data store (previous step)
only makes it available in the datastore. To export it to the task environment of every running task,
use a command similar to the following in your local.conf or distro configuration file:

 export CCACHE_DIR

Note
A side effect of the previous steps is that BitBake records the variable as a dependency
of the build process in things like the shared state checksums. If doing so results in
unnecessary rebuilds of tasks, you can whitelist the variable so that the shared state code
ignores the dependency when it creates checksums. For information on this process, see the
BB_HASHBASE_WHITELIST example in Section 4.2.2, “Checksums (Signatures)”.

B.6. BitBake Command Line
Following is the BitBake help output:

$ bitbake --help
Usage: bitbake [options] [package ...]

Executes the specified task (default is 'build') for a given set of BitBake files.
It expects that BBFILES is defined, which is a space separated list of files to
be executed. BBFILES does support wildcards.
Default BBFILES are the .bb files in the current directory.

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -b BUILDFILE, --buildfile=BUILDFILE
 execute the task against this .bb file, rather than a
 package from BBFILES. Does not handle any
 dependencies.
 -k, --continue continue as much as possible after an error. While the
 target that failed, and those that depend on it,
 cannot be remade, the other dependencies of these
 targets can be processed all the same.
 -a, --tryaltconfigs continue with builds by trying to use alternative
 providers where possible.
 -f, --force force run of specified cmd, regardless of stamp status

Reference: BitBake

53

 -c CMD, --cmd=CMD Specify task to execute. Note that this only executes
 the specified task for the providee and the packages
 it depends on, i.e. 'compile' does not implicitly call
 stage for the dependencies (IOW: use only if you know
 what you are doing). Depending on the base.bbclass a
 listtasks tasks is defined and will show available
 tasks
 -r PREFILE, --read=PREFILE
 read the specified file before bitbake.conf
 -R POSTFILE, --postread=POSTFILE
 read the specified file after bitbake.conf
 -v, --verbose output more chit-chat to the terminal
 -D, --debug Increase the debug level. You can specify this more
 than once.
 -n, --dry-run don't execute, just go through the motions
 -S, --dump-signatures
 don't execute, just dump out the signature
 construction information
 -p, --parse-only quit after parsing the BB files (developers only)
 -s, --show-versions show current and preferred versions of all packages
 -e, --environment show the global or per-package environment (this is
 what used to be bbread)
 -g, --graphviz emit the dependency trees of the specified packages in
 the dot syntax
 -I EXTRA_ASSUME_PROVIDED, --ignore-deps=EXTRA_ASSUME_PROVIDED
 Assume these dependencies don't exist and are already
 provided (equivalent to ASSUME_PROVIDED). Useful to
 make dependency graphs more appealing
 -l DEBUG_DOMAINS, --log-domains=DEBUG_DOMAINS
 Show debug logging for the specified logging domains
 -P, --profile profile the command and print a report
 -u UI, --ui=UI userinterface to use
 -t SERVERTYPE, --servertype=SERVERTYPE
 Choose which server to use, none, process or xmlrpc
 --revisions-changed Set the exit code depending on whether upstream
 floating revisions have changed or not

B.7. Fetchers
BitBake also contains a set of "fetcher" modules that allow retrieval of source code from various types
of sources. For example, BitBake can get source code from a disk with the metadata, from websites,
from remote shell accounts or from Source Code Management (SCM) systems like cvs/subversion/
git.

Fetchers are usually triggered by entries in SRC_URI. You can find information about the options and
formats of entries for specific fetchers in the BitBake manual [http://bitbake.berlios.de/manual/].

One useful feature for certain Source Code Manager (SCM) fetchers is the ability to "auto-update"
when the upstream SCM changes version. Since this ability requires certain functionality from the
SCM, not all systems support it. Currently Subversion, Bazaar and to a limited extent, Git support the
ability to "auto-update". This feature works using the SRCREV variable. See the Development Within
Yocto Project for a Package that Uses an External SCM section for more information.

http://bitbake.berlios.de/manual/
http://bitbake.berlios.de/manual/

54

Appendix C. Reference: Classes
Class files are used to abstract common functionality and share it amongst multiple .bb files. Any
metadata usually found in a .bb file can also be placed in a class file. Class files are identified by
the extension .bbclass and are usually placed in a classes/ directory beneath the meta*/ directory
found in the Yocto Project file's area Class files can also be pointed to by BUILDDIR (e.g. build/)in
the same way as .conf files in the conf directory. Class files are searched for in BBPATH using the
same method by which .conf files are searched.

In most cases inheriting the class is enough to enable its features, although for some classes you
might need to set variables or override some of the default behaviour.

C.1. The base class - base.bbclass
The base class is special in that every .bb file inherits it automatically. This class contains definitions
for standard basic tasks such as fetching, unpacking, configuring (empty by default), compiling (runs
any Makefile present), installing (empty by default) and packaging (empty by default). These classes
are often overridden or extended by other classes such as autotools.bbclass or package.bbclass.
The class also contains some commonly used functions such as oe_runmake.

C.2. Autotooled Packages - autotools.bbclass
Autotools (autoconf, automake, and libtool) bring standardization. This class defines a set of tasks
(configure, compile etc.) that work for all Autotooled packages. It should usually be enough to define
a few standard variables as documented in the Autotooled Package section and then simply inherit
autotools. This class can also work with software that emulates Autotools.

It's useful to have some idea of how the tasks defined by this class work and what they do behind
the scenes.

• do_configure � regenerates the configure script (using autoreconf) and then launches it with a
standard set of arguments used during cross-compilation. You can pass additional parameters to
configure through the EXTRA_OECONF variable.

• do_compile � runs make with arguments that specify the compiler and linker. You can pass additional
arguments through the EXTRA_OEMAKE variable.

• do_install � runs make install and passes a DESTDIR option, which takes its value from the
standard DESTDIR variable.

C.3. Alternatives - update-
alternatives.bbclass
Several programs can fulfill the same or similar function and be installed with the same name. For
example, the ar command is available from the busybox, binutils and elfutils packages. The
update-alternatives.bbclass class handles renaming the binaries so that multiple packages can
be installed without conflicts. The ar command still works regardless of which packages are installed
or subsequently removed. The class renames the conflicting binary in each package and symlinks
the highest priority binary during installation or removal of packages.

Four variables control this class:

• ALTERNATIVE_NAME � The name of the binary that is replaced (ar in this example).

• ALTERNATIVE_LINK � The path to the resulting binary (/bin/ar in this example).

• ALTERNATIVE_PATH � The path to the real binary (/usr/bin/ar.binutils in this example).

• ALTERNATIVE_PRIORITY � The priority of the binary. The version with the most features should have
the highest priority.

Reference: Classes

55

Currently, the Yocto Project supports only one binary per package.

C.4. Initscripts - update-rc.d.bbclass
This class uses update-rc.d to safely install an initialization script on behalf of the package. The Yocto
Project takes care of details such as making sure the script is stopped before a package is removed
and started when the package is installed. Three variables control this class: INITSCRIPT_PACKAGES,
INITSCRIPT_NAME and INITSCRIPT_PARAMS. See the variable links for details.

C.5. Binary config scripts - binconfig.bbclass
Before pkg-config had become widespread, libraries shipped shell scripts to give information about
the libraries and include paths needed to build software (usually named LIBNAME-config). This class
assists any recipe using such scripts.

During staging, Bitbake installs such scripts into the sysroots/ directory. BitBake also changes all
paths to point into the sysroots/ directory so all builds that use the script will use the correct
directories for the cross compiling layout.

C.6. Debian renaming - debian.bbclass
This class renames packages so that they follow the Debian naming policy (i.e. eglibc becomes
libc6 and eglibc-devel becomes libc6-dev.

C.7. Pkg-config - pkgconfig.bbclass
pkg-config brought standardization and this class aims to make its integration smooth for all libraries
that make use of it.

During staging, Bitbake installs pkg-config data into the sysroots/ directory. By making use of
sysroot functionality within pkg-config, this class no longer has to manipulate the files.

C.8. Distribution of sources -
src_distribute_local.bbclass
Many software licenses require that source files be provided along with the binaries. To simplify this
process, two classes were created: src_distribute.bbclass and src_distribute_local.bbclass.

The results of these classes are tmp/deploy/source/ subdirs with sources sorted by LICENSE field.
If recipes list few licenses (or have entries like "Bitstream Vera"), the source archive is placed in each
license directory.

This class operates using three modes:

• copy: Copies the files to the distribute directory.

• symlink: Symlinks the files to the distribute directory.

• move+symlink: Moves the files into the distribute directory and then symlinks them back.

C.9. Perl modules - cpan.bbclass
Recipes for Perl modules are simple. These recipes usually only need to point to the source's archive
and then inherit the proper .bbclass file. Building is split into two methods depending on which
method the module authors used.

Modules that use old Makefile.PL-based build system require cpan.bbclass in their recipes.

Modules that use Build.PL-based build system require using cpan_build.bbclass in their recipes.

Reference: Classes

56

C.10. Python extensions - distutils.bbclass
Recipes for Python extensions are simple. These recipes usually only need to point to the source's
archive and then inherit the proper .bbclass file. Building is split into two methods dependling on
which method the module authors used.

Extensions that use an Autotools-based build system require Autotools and distutils-based
.bbclasse files in their recipes.

Extensions that use distutils-based build systems require distutils.bbclass in their recipes.

C.11. Developer Shell - devshell.bbclass
This class adds the devshell task. Distribution policy dictates whether to include this class as the
Yocto Project does. See the Development Within a Development Shell section for more information
about using devshell.

C.12. Packaging - package*.bbclass
The packaging classes add support for generating packages from a build's output. The core
generic functionality is in package.bbclass. The code specific to particular package types
is contained in various sub-classes such as package_deb.bbclass, package_ipk.bbclass, and
package_rpm.bbclass. Most users will want one or more of these classes.

You can control the list of resulting package formats by using the PACKAGE_CLASSES variable defined
in the local.conf configuration file found in the Yocto Project file's conf directory. When defining the
variable, you can specify one or more package types. Since images are generated from packages, a
packaging class is needed to enable image generation. The first class listed in this variable is used
for image generation.

The package class you choose can affect build-time performance and has space ramifications. In
general, building a package with RPM takes about thirty percent more time as compared to using
IPK to build the same or similar package. This comparison takes into account a complete build
of the package with all dependencies previously built. The reason for this discrepancy is because
the RPM package manager creates and processes more metadata than the IPK package manager.
Consequently, you might consider setting PACKAGE_CLASSES to "package_ipk" if you are building
smaller systems.

Keep in mind, however, that RPM starts to provide more abilities than IPK due to the fact that it
processes more metadata. For example, this information includes individual file types, file checksum
generation and evaluation on install, sparse file support, conflict detection and resolution for multilib
systems, ACID style upgrade, and repackaging abilities for rollbacks.

Another consideration for packages built using the RPM package manager is space. For smaller
systems, the extra space used for the Berkley Database and the amount of metadata can affect your
ability to do on-device upgrades.

You can find additional information on the effects of the package class at these two Yocto Project
mailing list links:

• https://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html [https://lists.yoctoproject.org/
pipermail/poky/2011-May/006362.html]

• https://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html [https://lists.yoctoproject.org/
pipermail/poky/2011-May/006363.html]

C.13. Building kernels - kernel.bbclass
This class handles building Linux kernels. The class contains code to build all kernel trees. All needed
headers are staged into the STAGING_KERNEL_DIR directory to allow out-of-tree module builds using
module.bbclass.

This means that each built kernel module is packaged separately and inter-module dependencies
are created by parsing the modinfo output. If all modules are required, then installing the kernel-

https://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html
https://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html
https://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html
https://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html
https://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html
https://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html

Reference: Classes

57

modules package installs all packages with modules and various other kernel packages such as
kernel-vmlinux.

Various other classes are used by the kernel and module classes internally including kernel-
arch.bbclass, module_strip.bbclass, module-base.bbclass, and linux-kernel-base.bbclass.

C.14. Creating images - image.bbclass and
rootfs*.bbclass
These classes add support for creating images in several formats. First, the root filesystem is created
from packages using one of the rootfs_*.bbclass files (depending on the package format used)
and then the image is created.

The IMAGE_FSTYPES variable controls the types of images to generate.

The IMAGE_INSTALL variable controls the list of packages to install into the image.

C.15. Host System sanity checks -
sanity.bbclass
This class checks to see if prerequisite software is present so that users can be notified of potential
problems that might affect their build. The class also performs basic user configuration checks from
the local.conf configuration file to prevent common mistakes that cause build failures. Distribution
policy usually whether to include this class as the Yocto Project does.

C.16. Generated output quality assurance
checks - insane.bbclass
This class adds a step to the package generation process that sanity checks the packages generated
by the Yocto Project. A range of checks are performed that check the build's output for common
problems that show up during runtime. Distribution policy usually dictates whether to include this
class as the Yocto Project does.

You can configure the sanity checks so that specific test failures either raise a warning or an error
message. Typically, failures for new tests generate a warning. Subsequent failures for the same test
would then generate an error message once the metadata is in a known and good condition. You use
the WARN_QA variable to specify tests for which you want to generate a warning message on failure.
You use the ERROR_QA variable to specify tests for which you want to generate an error message on
failure.

The following list shows the tests you can list with the WARN_QA and ERROR_QA variables:

• ldflags: Ensures that the binaries were linked with the LDFLAGS options provided by the build
system. If this test fails, check that the LDFLAGS variable is being passed to the linker command.

• useless-rpaths: Checks for dynamic library load paths (rpaths) in the binaries that by default on
a standard system are searched by the linker (e.g. /lib and /usr/lib). While these paths will not
cause any breakage, they do waste space and are unnecessary.

• rpaths: Checks for rpaths in the binaries that contain build system paths such as TMPDIR. If this
test fails, bad -rpath options are being passed to the linker commands and your binaries have
potential security issues.

• dev-so: Checks that the .so symbolic links are in the -dev package and not in any of the other
packages. In general, these symlinks are only useful for development purposes. Thus, the -dev
package is the correct location for them. Some very rare cases do exist for dynamically loaded
modules where these symlinks are needed instead in the main package.

• debug-files: Checks for .debug directories in anything but the -dbg package. The debug files
should all be in the -dbg package. Thus, anything packaged elsewhere is incorrect packaging.

Reference: Classes

58

• arch: Checks the Executable and Linkable Format (ELF) type, bit size and endianness of any
binaries to ensure it matches the target architecture. This test fails if any binaries don't match the
type since there would be an incompatibility. Sometimes software, like bootloaders, might need to
bypass this check.

• debug-deps: Checks that -dbg packages only depend on other -dbg packages and not on any other
types of packages, which would cause a packaging bug.

• dev-deps: Checks that -dev packages only depend on other -dev packages and not on any other
types of packages, which would be a packaging bug.

• pkgconfig: Checks .pc files for any TMPDIR/WORKDIR paths. Any .pc file containing these paths is
incorrect since pkg-config itself adds the correct sysroot prefix when the files are accessed.

• la: Checks .la files for any TMPDIR paths. Any .la file continaing these paths is incorrect since
libtool adds the correct sysroot prefix when using the files automatically itself.

• desktop: Runs the desktop-file-validate program against any .desktop files to validate their
contents against the specification for .desktop files.

C.17. Autotools configuration data cache -
siteinfo.bbclass
Autotools can require tests that must execute on the target hardware. Since this is not possible in
general when cross compiling, site information is used to provide cached test results so these tests
can be skipped over but still make the correct values available. The meta/site directory contains
test results sorted into different categories such as architecture, endianness, and the libc used. Site
information provides a list of files containing data relevant to the current build in the CONFIG_SITE
variable that Autotools automatically picks up.

The class also provides variables like SITEINFO_ENDIANNESS and SITEINFO_BITS that can be used
elsewhere in the metadata.

Because this class is included from base.bbclass, it is always active.

C.18. Adding Users - useradd.bbclass
If you have packages that install files that are owned by custom users or groups, you can use
this class to specify those packages and associate the users and groups with those packages. The
meta-skeleton/recipes-skeleton/useradd/useradd-example.bb recipe in the Yocto Project Files
provides a simple exmample that shows how to add three users and groups to two packages. See the
useradd-example.bb for more information on how to use this class.

C.19. Other Classes
Thus far, this appendix has discussed only the most useful and important classes. However, other
classes exist within the meta/classes directory in the Yocto Project file's directory structure. You can
examine the .bbclass files directly for more information.

59

Appendix D. Reference: Images
The Yocto Project build process supports several types of images to satisfy different needs. When
you issue the bitbake command you provide a “top-level” recipe that essentially begins the build
for the type of image you want.

Note
Building an image without GNU Public License Version 3 (GPLv3) components is only
supported for minimal and base images. Furthermore, if you are going to build an image using
non-GPLv3 components, you must make the following changes in the local.conf file before
using the BitBake command to build the minimal or base image:

 1. Comment out the EXTRA_IMAGE_FEATURES line
 2. Set INCOMPATIBLE_LICENSE = "GPLv3"

From within the poky Git repository, use the following command to list the supported images:

 $ ls meta*/recipes*/images/*.bb

These recipes reside in the meta/recipes-core/images, meta/recipes-extended/images, meta/
recipes-graphics/images, and meta/recipes-sato/images directories of your local Yocto Project
file structure (Git repository or extracted release tarball). Although the recipe names are somewhat
explanatory, here is a list that describes them:

• core-image-base: A console-only image that fully supports the target device hardware.

• core-image-core: An X11 image with simple applications such as terminal, editor, and file
manager.

• core-image-minimal: A small image just capable of allowing a device to boot.

• core-image-minimal-dev: A core-image-minimal image suitable for development work.

• core-image-minimal-initramfs: A core-image-minimal image that has the Minimal RAM-based
Initial Root Filesystem (initramfs) as part of the kernel, which allows the system to find the first
“init” program more efficiently.

• core-image-minimal-mtdutils: A core-image-minimal image that has support for the Minimal
MTD Utilities, which let the user interact with the MTD subsystem in the kernel to perform operations
on flash devices.

• core-image-basic: A foundational basic image without support for X that can be reasonably used
for customization.

• core-image-lsb: A core-image-basic image suitable for implementations that conform to Linux
Standard Base (LSB).

• core-image-lsb-dev: A core-image-lsb image that is suitable for development work.

• core-image-lsb-sdk: A core-image-lsb that includes everything in meta-toolchain but also
includes development headers and libraries to form a complete standalone SDK. See the External
Development Using the Poky SDK section for more information.

• core-image-clutter: An image with support for the Open GL-based toolkit Clutter, which enables
development of rich and animated graphical user interfaces.

• core-image-sato: An image with Sato support, a mobile environment and visual style that works
well with mobile devices. The image supports X11 with a Sato theme and Pimlico applications and
also contains terminal, editor, and file manager.

• core-image-sato-dev: A core-image-sato image suitable for development that also includes a
native toolchain and libraries needed to build applications on the device itself. The image also

Reference: Images

60

includes testing and profiling tools as well as debug symbols. This image was formerly core-image-
sdk.

• core-image-sato-sdk: A core-image-sato image that includes everything in meta-toolchain. The
image also includes development headers and libraries to form a complete standalone SDK. See
the External Development Using the Poky SDK section for more information.

Tip
From the Yocto Project release 1.1 onwards, -live and -directdisk images have been
replaced by a "live" option in IMAGE_FSTYPES that will work with any image to produce an
image file that can be copied directly to a CD or USB device and run as is. To build a live image,
simply add "live" to IMAGE_FSTYPES within the local.conf file or wherever appropriate and
then build the desired image as normal.

61

Appendix E. Reference: Features
Features provide a mechanism for working out which packages should be included in the generated
images. Distributions can select which features they want to support through the DISTRO_FEATURES
variable, which is set in the poky.conf distribution configuration file. Machine features are set in the
MACHINE_FEATURES variable, which is set in the machine configuration file and specifies the hardware
features for a given machine.

These two variables combine to work out which kernel modules, utilities, and other packages to
include. A given distribution can support a selected subset of features so some machine features
might not be included if the distribution itself does not support them.

E.1. Distro
The items below are valid options for DISTRO_FEATURES:

• alsa: ALSA support will be included (OSS compatibility kernel modules will be installed if available).

• bluetooth: Include bluetooth support (integrated BT only)

• ext2: Include tools for supporting for devices with internal HDD/Microdrive for storing files (instead
of Flash only devices)

• irda: Include Irda support

• keyboard: Include keyboard support (e.g. keymaps will be loaded during boot).

• pci: Include PCI bus support

• pcmcia: Include PCMCIA/CompactFlash support

• usbgadget: USB Gadget Device support (for USB networking/serial/storage)

• usbhost: USB Host support (allows to connect external keyboard, mouse, storage, network etc)

• wifi: WiFi support (integrated only)

• cramfs: CramFS support

• ipsec: IPSec support

• ipv6: IPv6 support

• nfs: NFS client support (for mounting NFS exports on device)

• ppp: PPP dialup support

• smbfs: SMB networks client support (for mounting Samba/Microsoft Windows shares on device)

E.2. Machine
The items below are valid options for MACHINE_FEATURES:

• acpi: Hardware has ACPI (x86/x86_64 only)

• alsa: Hardware has ALSA audio drivers

• apm: Hardware uses APM (or APM emulation)

• bluetooth: Hardware has integrated BT

• ext2: Hardware HDD or Microdrive

• irda: Hardware has Irda support

• keyboard: Hardware has a keyboard

Reference: Features

62

• pci: Hardware has a PCI bus

• pcmcia: Hardware has PCMCIA or CompactFlash sockets

• screen: Hardware has a screen

• serial: Hardware has serial support (usually RS232)

• touchscreen: Hardware has a touchscreen

• usbgadget: Hardware is USB gadget device capable

• usbhost: Hardware is USB Host capable

• wifi: Hardware has integrated WiFi

E.3. Reference: Images
The contents of images generated by the Yocto Project can be controlled by the IMAGE_FEATURES
and EXTRA_IMAGE_FEATURES variables that you typically configure in your image recipes. Through
these variables you can add several different predefined packages such as development utilities or
packages with debug information needed to investigate application problems or profile applications.

Current list of IMAGE_FEATURES contains the following:

• apps-console-core: Core console applications such as ssh, daemon, avahi daemon, portmap (for
mounting NFS shares)

• x11-base: X11 server + minimal desktop

• x11-sato: OpenedHand Sato environment

• apps-x11-core: Core X11 applications such as an X Terminal, file manager, and file editor

• apps-x11-games: A set of X11 games

• apps-x11-pimlico: OpenedHand Pimlico application suite

• tools-sdk: A full SDK that runs on the device

• tools-debug: Debugging tools such as strace and gdb

• tools-profile: Profiling tools such as oprofile, exmap, and LTTng

• tools-testapps: Device testing tools (e.g. touchscreen debugging)

• nfs-server: NFS server (exports / over NFS to everybody)

• dev-pkgs: Development packages (headers and extra library links) for all packages installed in a
given image

• dbg-pkgs: Debug packages for all packages installed in a given image

63

Appendix F. Reference: Variables
Glossary
This section lists common variables used in the Yocto Project and gives an overview of their function
and contents.

Glossary
A B C D E F H I K L M P R S T W

A
AUTHOR The email address used to contact the original author or authors in

order to send patches, forward bugs, etc.

AUTOREV Specifies to use the current (newest) source revision. This variable is
with the SRCREV variable.

B
BAD_RECOMMENDATIONS A list of packages not to install despite being recommended by a

recipe. Support for this variable exists only for images that use the
ipkg packaging system.

BB_NUMBER_THREADS The maximum number of tasks BitBake should run in parallel at any
one time. If your host development system supports mulitiple cores a
good rule of thumb is to set this variable to twice the number of cores.

BBFILE_COLLECTIONS Lists the names of configured layers. These names are used to find
the other BBFILE_* variables. Typically, each layer will append its
name to this variable in its conf/layer.conf file.

BBFILE_PATTERN Variable that expands to match files from BBFILES in a particular
layer. This variable is used in the conf/layer.conf file and
must be suffixed with the name of the specific layer (e.g.
BBFILE_PATTERN_emenlow).

BBFILE_PRIORITY Assigns the priority for recipe files in each layer.

This variable is useful in situations where the same package appears
in more than one layer. Setting this variable allows you to prioritize a
layer against other layers that contain the same package - effectively
letting you control the precedence for the multiple layers. The
precedence established through this variable stands regardless of a
layer's package version (PV variable). For example, a layer that has a
package with a higher PV value but for which the BBFILE_PRIORITY
is set to have a lower precedence still has a lower precedence.

A larger value for the BBFILE_PRIORITY variable results in a higher
precedence. For example, the value 6 has a higher precedence than
the value 5. If not specified, the BBFILE_PRIORITY variable is set
based on layer dependencies (see the LAYERDEPENDS variable for
more information. The default priority, if unspecified for a layer with
no dependencies, is the lowest defined priority + 1 (or 1 if no priorities
are defined).

Tip
You can use the command bitbake-layers show_layers to
list all configured layers along with their priorities.

Reference: Variables Glossary

64

BBFILES List of recipe files used by BitBake to build software

BBPATH Used by BitBake to locate .bbclass and configuration files. This
variable is analogous to the PATH variable.

BBINCLUDELOGS Variable that controls how BitBake displays logs on build failure.

BBLAYERS Lists the layers to enable during the Yocto Project build. This variable
is defined in the bblayers.conf configuration file in the Yocto Project
build directory. Here is an example:

 BBLAYERS = " \
 /home/scottrif/poky/meta \
 /home/scottrif/poky/meta-yocto \
 /home/scottrif/poky/meta-mykernel \
 "

This example enables three layers, one of which is a custom, user-
defined layer named meta-mykernel.

BPN Bare name of package with any suffixes like -cross -native removed.

C
CFLAGS Flags passed to C compiler for the target system. This variable

evaluates to the same as TARGET_CFLAGS.

COMPATIBLE_MACHINE A regular expression which evaluates to match the machines the
recipe works with. It stops recipes being run on machines for which
they are not compatible. This is particularly useful with kernels. It
also helps to increase parsing speed as further parsing of the recipe
is skipped if it is found the current machine is not compatible.

CONFIG_SITE A list of files that contains autoconf test results relevant to the
current build. This variable is used by the Autotools utilities when
running configure.

D
D The destination directory.

DEBUG_BUILD Specifies to build packages with debugging information. This
influences the value of the SELECTED_OPTIMIZATION variable.

DEBUG_OPTIMIZATION The options to pass in TARGET_CFLAGS and CFLAGS when compiling a
system for debugging. This variable defaults to "-O -fno-omit-frame-
pointer -g".

DEFAULT_PREFERENCE Specifies the priority of recipes.

DEPENDS A list of build-time dependencies for a given recipe. The variable
indicates recipes that must have been staged before a particular
recipe can configure.

DESCRIPTION The package description used by package managers.

DESTDIR the destination directory.

DISTRO The short name of the distribution.

DISTRO_EXTRA_RDEPENDS The list of packages required by the distribution.

DISTRO_EXTRA_RRECOMMENDS

Reference: Variables Glossary

65

The list of packages which extend usability of the image. Those
packages will automatically be installed but can be removed by user.

DISTRO_FEATURES The features of the distribution.

DISTRO_NAME The long name of the distribution.

DISTRO_PN_ALIAS Alias names used for the recipe in various Linux distributions.

See Handling a Package Name Alias section for more information.

DISTRO_VERSION the version of the distribution.

DL_DIR The directory where all fetched sources will be stored.

E
ENABLE_BINARY_LOCALE_GENERATION

Variable that controls which locales for eglibc are to be generated
during the build (useful if the target device has 64Mbytes of RAM or
less).

EXTRA_IMAGE_FEATURES Allows extra packages to be added to the generated images. You set
this variable in the local.conf configuration file. Note that some
image features are also added using the IMAGE_FEATURES variable
generally configured in image recipes. You can use this variable to
add more features in addition to those. Here are some examples of
features you can add:

"dbg-pkgs" - Adds -dbg packages for all installed packages
 including symbol information for debugging and
 profiling.

"dev-pkgs" - Adds -dev packages for all installed packages.
 This is useful if you want to develop against
 the libraries in the image.

"tools-sdk" - Adds development tools such as gcc, make,
 pkgconfig and so forth.

"tools-debug" - Adds debugging tools such as gdb and
 strace.

"tools-profile" - Adds profiling tools such as oprofile,
 exmap, lttng and valgrind (x86 only).

"tools-testapps" - Adds useful testing tools such as
 ts_print, aplay, arecord and so
 forth.

"debug-tweaks" - Makes an image suitable for development.
 For example, ssh root access has a blank
 password. You should remove this feature
 before you produce a production image.

 There are other application targets too, see
 meta/classes/poky-image.bbclass
 and meta/packages/tasks/task-poky.bb
 for more details.

EXTRA_OECMAKE Additional cmake options.

EXTRA_OECONF Additional configure script options.

Reference: Variables Glossary

66

EXTRA_OEMAKE Additional GNU make options.

F
FILES The list of directories or files that are placed in packages.

FILESYSTEM_PERMS_TABLES Allows you to define your own file permissions settings table as
part of your configuration for the packaging process. For example,
suppose you need a consistent set of custom permissions for a set of
groups and users across an entire work project. It is best to do this in
the packages themselves but this is not always possible.

By default, the Yocto Project uses the fs-perms.txt, which is located
in the meta/files directory of the Yocto Project files directory. If you
create your own file permissions setting table, you should place it in
your layer or the distros layer.

You define the FILESYSTEM_PERMS_TABLES variable in the conf/
local.conf file, which is found in the Yocto Project's build directory,
to point to your custom fs-perms.txt. You can specify more than a
single file permissions setting table. The paths you specify to these
files must be defined within the BBPATH variable.

For guidance on how to create your own file permissions settings
table file, examine the existing fs-perms.txt.

FULL_OPTIMIZATION The options to pass in TARGET_CFLAGS and CFLAGS when compiling
an optimised system. This variable defaults to "-fexpensive-
optimizations -fomit-frame-pointer -frename-registers -O2".

H
HOMEPAGE Website where more info about package can be found

I
IMAGE_FEATURES The list of features present in images. Typically, you configure this

variable in image recipes. Note that you can add extra features to
the image by using the EXTRA_IMAGE_FEATURES variable. See the
Reference: Images section for the list of features present in images
built by the Yocto Project.

IMAGE_FSTYPES Formats of root filesystem images that you want to have created.

IMAGE_INSTALL The list of packages used to build images.

INC_PR Defines the Package revision. You manually combine values for
INC_PR into the PR field of the parent recipe. When you change this
variable, you change the PR value for every person that includes the
file.

The following example shows how to use the INC_PR variable given
a common .inc file that defines the variable. Once defined, you can
use the variable to set the PR value:

 recipes-graphics/xorg-font/font-util_1.1.1.bb:PR - "$(INC_PR).1"
 recipes-graphics/xorg-font/xorg-font-common.inc:INC_PR - "r1"
 recipes-graphics/xorg-font/encondings_1.0.3.bb:PR - "$(INC_PR).1"
 recipes-graphics/xorg-font/fiont-alias_1.0.2.bb:PR - "$(INC_PR).0"

INHIBIT_PACKAGE_STRIP Causes the build to not strip binaries in resulting packages.

Reference: Variables Glossary

67

INHERIT Causes the named class to be inherited at this point during parsing.
The variable is only valid in configuration files.

INITSCRIPT_PACKAGES A list of the packages that contain initscripts. If multiple packages
are specified, you need to append the package name to the other
INITSCRIPT_* as an override.

This variable is used in recipes when using update-rc.d.bbclass.
The variable is optional and defaults to the PN variable.

INITSCRIPT_NAME The filename of the initscript (as installed to ${etcdir}/init.d).

This variable is used in recipes when using update-rc.d.bbclass.
The variable is Mandatory.

INITSCRIPT_PARAMS Specifies the options to pass to update-rc.d. An example is start
99 5 2 . stop 20 0 1 6 ., which gives the script a runlevel of 99,
starts the script in initlevels 2 and 5, and stops the script in levels
0, 1 and 6.

The variable is mandatory and is used in recipes when using update-
rc.d.bbclass.

K
KERNEL_FEATURES Includes additional metadata from the Linux Yocto kernel Git

repository. In the Yocto Project build system, the default Board
Support Packages (BSPs) metadata is provided through the KMACHINE
and KBRANCH variables. You can use the KERNEL_FEATURES variable
to further add metadata for all BSPs.

The metadata you add through this variable includes config
fragments and features descriptions, which usually includes
patches as well as config fragments. You typically override the
KERNEL_FEATURES variable for a specific machine. In this way, you
can provide validated, but optional, sets of kernel configurations and
features.

For example, the following adds netfilter to all the Linux Yocto
kernels and adds sound support to the qemux86 machine:

 # Add netfilter to all linux-yocto kernels
 KERNEL_FEATURES="features/netfilter"

 # Add sound support to the qemux86 machine
 KERNEL_FEATURES_append_qemux86="cfg/sound"

KERNEL_IMAGETYPE The type of kernel to build for a device, usually set by the machine
configuration files and defaults to "zImage". This variable is used
when building the kernel and is passed to make as the target to build.

L
LAYERDEPENDS Lists the layers that this recipe depends upon, separated by

spaces. Optionally, you can specify a specific layer version for
a dependency by adding it to the end of the layer name
with a colon, (e.g. "anotherlayer:3" to be compared against
LAYERVERSION_anotherlayer in this case). An error will be produced
if any dependency is missing or the version numbers do not match
exactly (if specified). This variable is used in the conf/layer.conf
file and must be suffixed with the name of the specific layer (e.g.
LAYERDEPENDS_mylayer).

Reference: Variables Glossary

68

LAYERDIR When used inside the layer.conf configuration file, this variable
provides the path of the current layer. This variable requires
immediate expansion (see the BitBake manual) as lazy expansion
can result in the expansion happening in the wrong directory and
therefore giving the wrong value.

LAYERVERSION Optionally specifies the version of a layer as a single number. You can
use this within LAYERDEPENDS for another layer in order to depend
on a specific version of the layer. This variable is used in the conf/
layer.conf file and must be suffixed with the name of the specific
layer (e.g. LAYERVERSION_mylayer).

LICENSE The list of package source licenses.

LIC_FILES_CHKSUM Checksums of the license text in the recipe source code.

This variable tracks changes in license text of the source code files. If
the license text is changed, it will trigger a build failure, which gives
the developer an opportunity to review any license change.

This variable must be defined for all recipes (unless LICENSE is set
to "CLOSED")

For more information, see the Track License Change section

M
MACHINE Specifies the target device.

MACHINE_ESSENTIAL_EXTRA_RDEPENDS
A list of required packages to install as part of the package being
built. The build process depends on these packages being present.
Furthermore, because this is a "machine essential" variable, the list
of packages are essential for the machine to boot. The impact of
this variable affects images based on task-core-boot, including the
core-image-minimal image.

This variable is similar to the
MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS variable with the
exception that the package being built has a build dependency on
the variable's list of packages. In other words, the image will not build
if a file in this list is not found.

For example, suppose you are building a runtime package that
depends on a certain disk driver. In this case, you would use the
following:

 MACHINE_ESSENTIAL_EXTRA_RDEPENDS += "<disk_driver>"

MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS
A list of recommended packages to install as part of the package
being built. The build process does not depend on these packages
being present. Furthermore, because this is a "machine essential"
variable, the list of packages are essential for the machine to boot.
The impact of this variable affects images based on task-core-boot,
including the core-image-minimal image.

This variable is similar to the
MACHINE_ESSENTIAL_EXTRA_RDEPENDS variable with the exception
that the package being built does not have a build dependency on the
variable's list of packages. In other words, the image will build if a file
in this list is not found. However, because this is one of the "essential"
variables, the resulting image might not boot on the machine. Or, if

Reference: Variables Glossary

69

the machine does boot using the image, the machine might not be
fully functional.

Consider an example where you have a custom kernel with a disk
driver built into the kernel itself, rather than using the driver built as
a module. If you include the package that has the driver module as
part of the variable's list, the build process will not find that package.
However, because these packages are "recommends" packages, the
build will not fail due to the missing package. Not accounting for any
other problems, the custom kernel would still boot the machine.

Some example packages of these machine essentials are flash,
screen, keyboard, mouse, or touchscreen drivers (depending on the
machine).

For example, suppose you are building a runtime package that
depends on a mouse driver. In this case, you would use the following:

 MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS += "<mouse_driver>"

MACHINE_EXTRA_RDEPENDS A list of optional but non-machine essential packages to install as
part of the package being built. Even though these packages are not
essential for the machine to boot, the build process depends on them
being present. The impact of this variable affects all images based
on task-base, which does not include the core-image-minimal or
core-image-basic images.

This variable is similar to the MACHINE_EXTRA_RRECOMMENDS
variable with the exception that the package being built has a build
dependency on the variable's list of packages. In other words, the
image will not build if a file in this list is not found.

An example is a machine that might or might not have a WiFi card.
The package containing the WiFi support is not essential for the
machine to boot the image. If it is not there, the machine will boot
but not be able to use the WiFi functionality. However, if you include
the package with the WiFi support as part of the variable's package
list, the build process depends on finding the package. In this case,
you would use the following:

 MACHINE_EXTRA_RDEPENDS += "<wifi_driver>"

MACHINE_EXTRA_RRECOMMENDS
A list of optional but non-machine essential packages to install as
part of the package being built. The package being built has no build
dependency on the list of packages with this variable. The impact of
this variable affects only images based on task-base, which does
not include the core-image-minimal or core-image-basic images.

This variable is similar to the MACHINE_EXTRA_RDEPENDS variable
with the exception that the package being built does not have a build
dependency on the variable's list of packages. In other words, the
image will build if a file in this list is not found.

An example is a machine that might or might not have a WiFi card.
The package containing the WiFi support is not essential for the
machine to boot the image. If it is not there, the machine will boot but
not be able to use the WiFi functionality. You are free to either include
or not include the the package with the WiFi support as part of the
variable's package list, the build process does not depend on finding
the package. If you include the package, you would use the following:

Reference: Variables Glossary

70

 MACHINE_EXTRA_RRECOMMENDS += "<wifi_driver>"

MACHINE_FEATURES Specifies the list of device features. See the Machine section for more
information.

MAINTAINER The email address of the distribution maintainer.

P
PACKAGE_ARCH The architecture of the resulting package.

PACKAGE_CLASSES This variable, which is set in the local.conf configuration file found
in the Yocto Project file's conf directory, specifies the package
manager to use when packaging data. You can provide one or more
arguments for the variable with the first argument being the package
manager used to create images:

 PACKAGE_CLASSES ?= "package_rpm package_deb package_ipk"

For information on build performance effects as a result of the
package manager use, see Packaging - package*.bbclass in this
manual.

PACKAGE_DESCRIPTION The long form description of the binary package for packaging
systems such as ipkg, rpm or debian. By default, this variable inherits
DESCRIPTION.

PACKAGE_EXTRA_ARCHS Specifies the list of architectures compatible with the device CPU.
This variable is useful when you build for several different devices
that use miscellaneous processors such as XScale and ARM926-EJS).

PACKAGE_SUMMARY The short (72 character limit suggested) summary of the binary
package for packaging systems such as ipkg, rpm or debian. By
default, this variable inherits DESCRIPTION.

PACKAGES The list of packages to be created from the recipe. The default value
is "${PN}-dbg ${PN} ${PN}-doc ${PN}-dev".

PARALLEL_MAKE Specifies extra options that are passed to the make command during
the compile tasks. This variable is usually in the form -j 4, where the
number represents the maximum number of parallel threads make
can run. If you development host supports multiple cores a good rule
of thumb is to set this variable to one and a half times the number
of cores on the host.

PN The name of the package.

PR The revision of the package. The default value for this variable is "r0".

PV The version of the package. The version is normally extracted
from the recipe name. For example, if the recipe is named
expat_2.0.1.bb, then PV will be 2.0.1. PV is generally not
overridden within a recipe unless it is building an unstable version
from a source code repository (e.g. Git or Subversion).

PE the epoch of the package. The default value is "0". The field is used
to make upgrades possible when the versioning scheme changes in
some backwards incompatible way.

PREFERRED_PROVIDER If multiple recipes provide an item, this variable determines which
recipe should be given preference. The variable must always be
suffixed with the name of the provided item, and should be set to

Reference: Variables Glossary

71

the $PN of the recipe to which you want to give precedence. Here is
an example:

 PREFERRED_PROVIDER_virtual/xserver = "xserver-xf86"

PREFERRED_VERSION If there are multiple versions of recipes available, this variable
determines which recipe should be given preference. The variable
must always be suffixed with the $PN for which to select, and
should be set to the $PV to which you want to give precedence.
You can use the "%" character as a wildcard to match any number
of characters, which can be useful when specifying versions that
contain long revision number that could potentially change. Here are
two examples:

 PREFERRED_VERSION_python = "2.6.6"
 PREFERRED_VERSION_linux-yocto = "3.0+git%"

POKY_EXTRA_INSTALL Specifies the list of packages to be added to the image. This variable
should only be set in the local.conf configuration file found in the
Yocto Project's build directory.

POKYLIBC This variable is no longer supported and has been replaced by the
TCLIBC variable.

POKYMODE This variable is no longer supported and has been replaced by the
TCMODE variable.

R
RCONFLICTS The list of packages that conflict with this package. Note that the

package will not be installed if the conflicting packages are not first
removed.

RDEPENDS A list of packages that must be installed as part of a package being
built. The package being built has a runtime dependency on the
packages in the variable's list. In other words, in order for the package
being built to run correctly, it depends on these listed packages. If a
package in this list cannot be found during the build, the build will
not complete.

Because the RDEPENDS variable applies to packages being built, you
should always attach an override to the variable to specify the
particular runtime package that has the dependency. For example,
suppose you are building a development package that depends on
the perl package. In this case, you would use the following RDEPENDS
statement:

 RDEPENDS_${PN}-dev += "perl"

In the example, the package name (${PN}-dev) must appear as it
would in the PACKAGES namespace before any renaming of the output
package by classes like debian.bbclass.

Some automatic handling occurs around the RDEPENDS variable:

• shlibdeps: If a runtime package contains a shared library (.so),
the build processes the library in order to determine other libraries
to which it is dynamically linked. The build process adds these
libraries to RDEPENDS to create the runtime package.

Reference: Variables Glossary

72

• pcdeps: If the package ships a pkg-config information file, the
build process uses this file to add items to the RDEPENDS variable
to create the runtime packages.

ROOT_FLASH_SIZE The size of root filesystem as measured in megabytes.

RRECOMMENDS A list of packages that extend the usability of a package being built.
The package being built does not depend on this list of packages in
order to successfully build, but needs them for the extended usability.
To specify runtime dependencies for packages, see the RDEPENDS
variable.

The Yocto Project build process automatically installs the list of
packages as part of the built package. However, you can remove
them later if you want. If, during the build, a package from the list
cannot be found, the build process continues without an error.

Because the RRECOMMENDS variable applies to packages being built,
you should always attach an override to the variable to specify the
particular package whose usability is being extended. For example,
suppose you are building a development package that is extended
to support wireless functionality. In this case, you would use the
following:

 RRECOMMENDS_${PN}-dev += "<wireless_package_name>"

In the example, the package name (${PN}-dev) must appear as it
would in the PACKAGES namespace before any renaming of the output
package by classes like debian.bbclass.

RREPLACES The list of packages that are replaced with this package.

S
S The path to unpacked sources. By default, this path is "${WORKDIR}/

${PN}-${PV}".

SECTION The section where package should be put. Package managers use
this variable.

SELECTED_OPTIMIZATION The variable takes the value of FULL_OPTIMIZATION unless
DEBUG_BUILD = "1". In this case the value of DEBUG_OPTIMIZATION
is used.

SERIAL_CONSOLE The speed and device for the serial port used to attach the serial
console. This variable is given to the kernel as the "console"
parameter and after booting occurs getty is started on that port so
remote login is possible.

SSTATE_DIR The directory for the shared state.

SHELLCMDS A list of commands to run within the shell. The list is used by
TERMCMDRUN.

SITEINFO_ENDIANNESS Specifies the endian byte order of the target system. The variable is
either "le" for little-endian or "be" for big-endian.

SITEINFO_BITS Specifies the number of bits for the target system CPU. The variable
is either "32" or "64".

SRC_URI The list of source files - local or remote.

SRC_URI_OVERRIDES_PACKAGE_ARCH

Reference: Variables Glossary

73

By default, the Yocto Project automatically detects whether SRC_URI
contains files that are machine-specific. If so, the Yocto Project
automatically changes PACKAGE_ARCH. Setting this variable to "0"
disables this behaviour.

SRCDATE The date of the source code used to build the package. This variable
applies only if the source was fetched from a Source Code Manager
(SCM).

SRCREV The revision of the source code used to build the package. This
variable applies to Subversion, Git, Mercurial and Bazaar only. Note
that if you wish to build a fixed revision and you wish to avoid
performing a query on the remote repository every time BitBake
parses your recipe, you should specify a SRCREV that is a full revision
identifier and not just a tag.

STAGING_KERNEL_DIR The directory with kernel headers that are required to build out-of-
tree modules.

STAMPS The directory (usually TMPDIR/stamps) with timestamps of executed
tasks.

SUMMARY The short (72 characters or less) summary of the binary package
for packaging systems such as ipkg, rpm or debian. By default, this
variable inherits DESCRIPTION.

T
TARGET_ARCH The architecture of the device being built. While a number of values

are possible, the Yocto Project primarily supports arm and i586.

TARGET_CFLAGS Flags passed to the C compiler for the target system. This variable
evaluates to the same as CFLAGS.

TARGET_FPU Specifies the method for handling FPU code. For FPU-less targets,
which include most ARM CPUs, the variable must be set to "soft". If
not, the kernel emulation gets used, which results in a performance
penalty.

TARGET_OS Specifies the target's operating system. The variable can be set to
"linux" for eglibc-based systems and to "linux-uclibc" for uclibc. For
ARM/EABI targets, there are also "linux-gnueabi" and "linux-uclibc-
gnueabi" values possible.

TCLIBC Specifies which variant of the GNU standard C library (libc) to use
during the build process. This variable replaces POKYLIBC, which is
no longer supported.

You can select eglibc or uclibc.

Note
This release of the Yocto Project does not support the glibc
implementation of libc.

TCMODE The toolchain selector. This variable replaces POKYMODE, which is no
longer supported.

The TCMODE variable selects the external toolchain built from the
Yocto Project or a few supported combinations of the upstream GCC
or CodeSourcery Labs toolchain. The variable determines which of
the files in meta/conf/distro/include/tcmode-* is used.

By default, TCMODE is set to "default", which chooses tcmode-
default.inc. The variable is similar to TCLIBC, which controls the

Reference: Variables Glossary

74

variant of the GNU standard C library (libc) used during the build
process: eglibc or uclibc.

TERMCMD This command is used by BitBake to launch a terminal window with
a shell. The shell is unspecified so the user's default shell is used. By
default, the variable is set to "xterm" but it can be any X11 terminal
application or a terminal multiplexer such as screen.

Note
While KONSOLE_TERMCMD and KONSOLE_TERMCMDRUN are
provided and will work with KDE's Konsole terminal
application Konsole from KDE 3, Konsole in KDE 4.0 and later
versions will no longer work here due to the fact that it
now launches in the background by default, and it is not
practically possible to wait until it has terminated. It is hoped
that this can be fixed in a future version.

TERMCMDRUN This variable is similar to TERMCMD. However, instead of running the
user's shell, the command specified by the SHELLCMDS variable is run.

W
WORKDIR The path to directory in tmp/work/ where the package is built.

75

Appendix G. Reference: Variable
Context
While most variables can be used in almost any context such as .conf, .bbclass, .inc, and .bb files,
some variables are often associated with a particular locality or context. This appendix describes
some common associations.

G.1. Configuration
The following subsections provide lists of variables whose context is configuration: distribution,
machine, and local.

G.1.1. Distribution (Distro)
This section lists variables whose context is the distribution, or distro.

• DISTRO

• DISTRO_NAME

• DISTRO_VERSION

• MAINTAINER

• PACKAGE_CLASSES

• TARGET_OS

• TARGET_FPU

• POKYMODE

• TCMODE

• POKYLIBC

G.1.2. Machine
This section lists variables whose context is the machine.

• TARGET_ARCH

• SERIAL_CONSOLE

• PACKAGE_EXTRA_ARCHS

• IMAGE_FSTYPES

• ROOT_FLASH_SIZE

• MACHINE_FEATURES

• MACHINE_EXTRA_RDEPENDS

• MACHINE_EXTRA_RRECOMMENDS

• MACHINE_ESSENTIAL_EXTRA_RDEPENDS

• MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS

G.1.3. Local
This section lists variables whose context is the local configuration through the local.conf file.

Reference: Variable Context

76

• DISTRO

• MACHINE

• DL_DIR

• BBFILES

• EXTRA_IMAGE_FEATURES

• PACKAGE_CLASSES

• BB_NUMBER_THREADS

• BBINCLUDELOGS

• ENABLE_BINARY_LOCALE_GENERATION

G.2. Recipes
The following subsections provide lists of variables whose context is recipes: required, dependencies,
path, and extra build information.

G.2.1. Required
This section lists variables that are required for recipes.

• DESCRIPTION

• LICENSE

• LIC_FILES_CHKSUM

• SECTION

• HOMEPAGE

• AUTHOR

• SRC_URI

G.2.2. Dependencies
This section lists variables that define recipe dependencies.

• DEPENDS

• RDEPENDS

• RRECOMMENDS

• RCONFLICTS

• RREPLACES

G.2.3. Paths
This section lists variables that define recipe paths.

• WORKDIR

• S

• FILES

G.2.4. Extra Build Information
This section lists variables that define extra build information for recipes.

Reference: Variable Context

77

• DISTRO_PN_ALIAS

• EXTRA_OECMAKE

• EXTRA_OECONF

• EXTRA_OEMAKE

• PACKAGES

• DEFAULT_PREFERENCE

78

Appendix H. FAQ
H.1. How does Poky differ from OpenEmbedded [http://www.openembedded.org/]?

Poky is the Yocto Project build system that was derived from OpenEmbedded [http://
www.openembedded.org/]. Poky is a stable, smaller subset focused on the mobile environment.
Development in the Yocto Project using Poky is closely tied to OpenEmbedded with features
being merged regularly between the two for mutual benefit.

H.2. I only have Python 2.4 or 2.5 but BitBake requires Python 2.6 or 2.7. Can I still use the Yocto
Project?

You can use a stand-alone tarball to provide Python 2.6. You can find pre-built 32 and 64-bit
versions of Python 2.6 at the following locations:

• 32-bit tarball [http://downloads.yoctoproject.org/releases/miscsupport/yocto-1.0-python-
nativesdk/python-nativesdk-standalone-i686.tar.bz2]

• 64-bit tarball [http://downloads.yoctoproject.org/releases/miscsupport/yocto-1.0-python-
nativesdk/python-nativesdk-standalone-x86_64.tar.bz2]

These tarballs are self-contained with all required libraries and should work on most Linux
systems. To use the tarballs extract them into the root directory and run the appropriate
command:

 $ export PATH=/opt/poky/sysroots/i586-pokysdk-linux/usr/bin/:$PATH
 $ export PATH=/opt/poky/sysroots/x86_64-pokysdk-linux/usr/bin/:$PATH

Once you run the command, BitBake uses Python 2.6.

H.3. How can you claim Poky is stable?

There are three areas that help with stability;

• The Yocto Project team keeps Poky small and focused. It contains around 650 packages as
compared to over 5000 for full OpenEmbedded.

• The Yocto Project only supports hardware that the team has access to for testing.

• The Yocto Project uses an an autobuilder, which provides continuous build and integration
tests.

H.4. How do I get support for my board added to the Yocto Project?

There are two main ways to get a board supported in the Yocto Project;

• Send the Yocto Project team information on the board and if the team does not have it yet
they will consider adding it.

• Send the Yocto Project team the BitBake recipes if you have them.

Usually, if the board is not completely exotic, adding support in the Yocto Project is fairly
straightforward.

H.5. Are there any products using Poky?

The Vernier LabQuest [http://vernier.com/labquest/] is using the Yocto Project build system
Poky. See the Vernier LabQuest [http://www.vernier.com/products/interfaces/labq/] for more
information. There are a number of pre-production devices using Poky and the Yocto Project
team announces them as soon as they are released.

H.6. What does the Yocto Project build system Poky produce as output?

Because the same set of recipes can be used to create output of various formats, the output
of a Yocto Project build depends on how it was started. Usually, the output is a flashable image
ready for the target device.

http://www.openembedded.org/
http://www.openembedded.org/
http://www.openembedded.org/
http://www.openembedded.org/
http://www.openembedded.org/
http://downloads.yoctoproject.org/releases/miscsupport/yocto-1.0-python-nativesdk/python-nativesdk-standalone-i686.tar.bz2
http://downloads.yoctoproject.org/releases/miscsupport/yocto-1.0-python-nativesdk/python-nativesdk-standalone-i686.tar.bz2
http://downloads.yoctoproject.org/releases/miscsupport/yocto-1.0-python-nativesdk/python-nativesdk-standalone-i686.tar.bz2
http://downloads.yoctoproject.org/releases/miscsupport/yocto-1.0-python-nativesdk/python-nativesdk-standalone-x86_64.tar.bz2
http://downloads.yoctoproject.org/releases/miscsupport/yocto-1.0-python-nativesdk/python-nativesdk-standalone-x86_64.tar.bz2
http://downloads.yoctoproject.org/releases/miscsupport/yocto-1.0-python-nativesdk/python-nativesdk-standalone-x86_64.tar.bz2
http://vernier.com/labquest/
http://vernier.com/labquest/
http://www.vernier.com/products/interfaces/labq/
http://www.vernier.com/products/interfaces/labq/

FAQ

79

H.7. How do I add my package to the Yocto Project?

To add a package, you need to create a BitBake recipe. For information on how to add a package,
see the Adding a Package section earlier in this manual.

H.8. Do I have to reflash my entire board with a new Yocto Project image when recompiling a
package?

The Yocto Project can build packages in various formats such as ipk for ipkg/opkg, Debian
package (.deb), or RPM. The packages can then be upgraded using the package tools on the
device, much like on a desktop distribution such as Ubuntu or Fedora.

H.9. What is GNOME Mobile and what is the difference between GNOME Mobile and GNOME?

GNOME Mobile [http://www.gnome.org/mobile/] is a subset of the GNOME platform targeted at
mobile and embedded devices. The the main difference between GNOME Mobile and standard
GNOME is that desktop-orientated libraries have been removed, along with deprecated
libraries, creating a much smaller footprint.

H.10. I see the error 'chmod: XXXXX new permissions are r-xrwxrwx, not r-xr-xr-x'. What
is wrong?

You are probably running the build on an NTFS filesystem. Use ext2, ext3, or ext4 instead.

H.11. How do I make the Yocto Project work in RHEL/CentOS?

To get the Yocto Project working under RHEL/CentOS 5.1 you need to first install some required
packages. The standard CentOS packages needed are:

• "Development tools" (selected during installation)

• texi2html

• compat-gcc-34

On top of these, you need the following external packages:

• python-sqlite2 from DAG repository [http://dag.wieers.com/rpm/packages/python-sqlite2/]

• help2man from Karan repository [http://centos.karan.org/el5/extras/testing/i386/RPMS/
help2man-1.33.1-2.noarch.rpm]

Once these packages are installed, the Yocto Project will be able to build standard images.
However, there might be a problem with the QEMU emulator segfaulting. You can either disable
the generation of binary locales by setting ENABLE_BINARY_LOCALE_GENERATION to "0" or by
removing the linux-2.6-execshield.patch from the kernel and rebuilding it since that is the
patch that causes the problems with QEMU.

H.12. I see lots of 404 responses for files on http://www.yoctoproject.org/sources/*. Is
something wrong?

Nothing is wrong. The Yocto Project checks any configured source mirrors before downloading
from the upstream sources. The Yocto Project does this searching for both source archives and
pre-checked out versions of SCM managed software. These checks help in large installations
because it can reduce load on the SCM servers themselves. The address above is one of
the default mirrors configured into the Yocto Project. Consequently, if an upstream source
disappears, the team can place sources there so builds continue to work.

H.13. I have machine-specific data in a package for one machine only but the package is being marked
as machine-specific in all cases, how do I prevent this?

Set SRC_URI_OVERRIDES_PACKAGE_ARCH = "0" in the .bb file but make sure the package
is manually marked as machine-specific in the case that needs it. The code that handles
SRC_URI_OVERRIDES_PACKAGE_ARCH is in base.bbclass.

H.14. I'm behind a firewall and need to use a proxy server. How do I do that?

Most source fetching by the Yocto Project is done by wget and you therefore need to specify the
proxy settings in a .wgetrc file in your home directory. Example settings in that file would be

http://www.gnome.org/mobile/
http://www.gnome.org/mobile/
http://dag.wieers.com/rpm/packages/python-sqlite2/
http://dag.wieers.com/rpm/packages/python-sqlite2/
http://centos.karan.org/el5/extras/testing/i386/RPMS/help2man-1.33.1-2.noarch.rpm
http://centos.karan.org/el5/extras/testing/i386/RPMS/help2man-1.33.1-2.noarch.rpm
http://centos.karan.org/el5/extras/testing/i386/RPMS/help2man-1.33.1-2.noarch.rpm

FAQ

80

 http_proxy = http://proxy.yoyodyne.com:18023/
 ftp_proxy = http://proxy.yoyodyne.com:18023/

The Yocto Project also includes a site.conf.sample file that shows how to configure CVS and
Git proxy servers if needed.

H.15. I'm using Ubuntu Intrepid and am seeing build failures. What’s wrong?

In Intrepid, Ubuntu turns on by default the normally optional compile-time security features
and warnings. There are more details at https://wiki.ubuntu.com/CompilerFlags. You can work
around this problem by disabling those options by adding the following to the BUILD_CPPFLAGS
variable in the conf/bitbake.conf file.

 " -Wno-format-security -U_FORTIFY_SOURCE"

H.16. What’s the difference between foo and foo-native?

The *-native targets are designed to run on the system being used for the build. These are
usually tools that are needed to assist the build in some way such as quilt-native, which is
used to apply patches. The non-native version is the one that runs on the target device.

H.17. I'm seeing random build failures. Help?!

If the same build is failing in totally different and random ways, the most likely explanation is
that either the hardware you're running the build on has some problem, or, if you are running
the build under virtualisation, the virtualisation probably has bugs. The Yocto Project processes
a massive amount of data causing lots of network, disk and CPU activity and is sensitive to
even single bit failures in any of these areas. True random failures have always been traced
back to hardware or virtualisation issues.

H.18. What do we need to ship for license compliance?

This is a difficult question and you need to consult your lawyer for the answer for your specific
case. It is worth bearing in mind that for GPL compliance there needs to be enough information
shipped to allow someone else to rebuild the same end result you are shipping. This means
sharing the source code, any patches applied to it, and also any configuration information about
how that package was configured and built.

H.19. How do I disable the cursor on my touchscreen device?

You need to create a form factor file as described in Section 5.1.6, “Miscellaneous Recipe Files”
and set the HAVE_TOUCHSCREEN variable equal to one as follows:

 HAVE_TOUCHSCREEN=1

H.20. How do I make sure connected network interfaces are brought up by default?

The default interfaces file provided by the netbase recipe does not automatically bring up
network interfaces. Therefore, you will need to add a BSP-specific netbase that includes an
interfaces file. See Section 5.1.6, “Miscellaneous Recipe Files” for information on creating these
types of miscellaneous recipe files.

For example, add the following files to your layer:

 meta-MACHINE/recipes-bsp/netbase/netbase/MACHINE/interfaces
 meta-MACHINE/recipes-bsp/netbase/netbase_4.44.bbappend

H.21. How do I create images with more free space?

https://wiki.ubuntu.com/CompilerFlags

FAQ

81

Images are created to be 1.2 times the size of the populated root filesystem. To modify this
ratio so that there is more free space available, you need to set the configuration value
IMAGE_OVERHEAD_FACTOR. For example, setting IMAGE_OVERHEAD_FACTOR to 1.5 sets the image
size ratio to one and a half times the size of the populated root filesystem.

 IMAGE_OVERHEAD_FACTOR = "1.5"

H.22. Why don't you support directories with spaces in the pathnames?

The Yocto Project team has tried to do this before but too many of the tools the Yocto Project
depends on such as autoconf break when they find spaces in pathnames. Until that situation
changes, the team will not support spaces in pathnames.

H.23. How do I use an external toolchain?

The toolchain configuration is very flexible and customizable. It is primarily controlled with the
TCMODE variable. This variable controls which file to include (conf/distro/include/tcmode-
*.inc).

The default value of TCMODE is "default". However, other patterns are accepted. In particular,
"external-*" refers to external toolchains of which there are some basic examples included with
the core. A user can use their own custom toolchain definition in their own layer (or as defined
in the local.conf file) at the location conf/distro/include/tcmode-*.inc.

In addition to the toolchain configuration, you also need a corresponding toolchain
recipe file. This recipe file needs to package up any pre-built objects in the toolchain
such as libgcc, libstdcc++, any locales and libc. An example is the external-csl-
toolchain_2008q3-72.bb, which reuses the core libc packaging class to do most of the work.

H.24. How does the Yocto Project obtain source code and will it work behind my firewall or proxy
server?

The way the Yocto Project obtains source code is highly configurable. You can setup the Yocto
Project to get source code in most environments if HTTP transport is available.

When the build system searches for source code, it first tries the local download directory. If that
location fails, Poky tries PREMIRRORS, the upstream source, and then MIRRORS in that order.

By default, Poky uses the Yocto Project source PREMIRRORS for SCM-based sources, upstreams
for normal tarballs, and then falls back to a number of other mirrors including the Yocto Project
source mirror if those fail.

As an example, you could add a specific server for Poky to attempt before any others by adding
something like the following to the local.conf configuration file:

 PREMIRRORS_prepend = "\
 git://.*/.* http://www.yoctoproject.org/sources/ \n \
 ftp://.*/.* http://www.yoctoproject.org/sources/ \n \
 http://.*/.* http://www.yoctoproject.org/sources/ \n \
 https://.*/.* http://www.yoctoproject.org/sources/ \n"

These changes cause Poky to intercept Git, FTP, HTTP, and HTTPS requests and direct them to
the http:// sources mirror. You can use file:// URLs to point to local directories or network
shares as well.

Aside from the previous technique, these options also exist:

 BB_NO_NETWORK = "1"

This statement tells BitBake to throw an error instead of trying to access the Internet. This
technique is useful if you want to ensure code builds only from local sources.

FAQ

82

Here is another technique:

 BB_FETCH_PREMIRRORONLY = "1"

This statement limits Poky to pulling source from the PREMIRRORS only. Again, this technique
is useful for reproducing builds.

Here is another technique:

 BB_GENERATE_MIRROR_TARBALLS = "1"

This statement tells Poky to generate mirror tarballs. This technique is useful if you want to
create a mirror server. If not, however, the technique can simply waste time during the build.

Finally, consider an example where you are behind an HTTP-only firewall. You could make the
following changes to the local.conf configuration file as long as the PREMIRROR server is up
to date:

 PREMIRRORS_prepend = "\
 ftp://.*/.* http://www.yoctoproject.org/sources/ \n \
 http://.*/.* http://www.yoctoproject.org/sources/ \n \
 https://.*/.* http://www.yoctoproject.org/sources/ \n"
 BB_FETCH_PREMIRRORONLY = "1"

These changes would cause Poky to successfully fetch source over HTTP and any network
accesses to anything other than the PREMIRROR would fail.

Poky also honors the standard environment variables http_proxy, ftp_proxy, https_proxy,
and all_proxy to redirect requests through proxy servers.

83

Appendix I. Contributing to the
Yocto Project
I.1. Introduction
The Yocto Project team is happy for people to experiment with the Yocto Project. A number of
places exist to find help if you run into difficulties or find bugs. To find out how to download
source code, see the Yocto Project Release [http://www.yoctoproject.org/docs/1.1.1/dev-manual/
dev-manual.html#local-yp-release] list item in The Yocto Project Development Manual [http://
www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html].

I.2. Tracking Bugs
If you find problems with the Yocto Project, you should report them using the Bugzilla application at
http://bugzilla.yoctoproject.org/.

I.3. Mailing lists
To subscribe to the Yocto Project mailing lists, click on the following URLs and follow the instructions:

• http://lists.yoctoproject.org/listinfo/yocto-announce: Use this list to receive offical Yocto Project
announcements for developments and to learn about Yocto Project milestones.

• http://lists.yoctoproject.org/listinfo/yocto: Use this list to monitor Yocto Project development
discussions, ask questions, and get help.

• http://lists.yoctoproject.org/listinfo/poky: Use this list to monitor discussions about the Yocto Project
build system Poky, ask questions, and get help.

I.4. Internet Relay Chat (IRC)
Two IRC channels on freenode are available for Yocto Project and Poky discussions:

• #yocto

• #poky

I.5. Links
Following is a list of resources you will find helpful:

• The Yocto Project website [http://yoctoproject.org]: The home site for the Yocto Project.

• OpenedHand [http://www.openedhand.com/]: The company where the Yocto Project build system
Poky was first developed. OpenedHand has since been acquired by Intel Corporation.

• Intel Corporation [http://www.intel.com/]: The company who acquired OpenedHand in 2008 and
continues development on the Yocto Project.

• OpenEmbedded [http://www.openembedded.org/]: The upstream, generic, embedded distribution
the Yocto Project build system (Poky) derives from and to which it contributes.

• Bitbake [http://developer.berlios.de/projects/bitbake/]: The tool used to process Yocto Project
metadata.

• BitBake User Manual [http://bitbake.berlios.de/manual/]: A comprehensive guide to the BitBake
tool.

• Pimlico [http://pimlico-project.org/]: A suite of lightweight Personal Information Management (PIM)
applications designed primarily for handheld and mobile devices.

http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#local-yp-release
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#local-yp-release
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#local-yp-release
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://bugzilla.yoctoproject.org/
http://lists.yoctoproject.org/listinfo/yocto-announce
http://lists.yoctoproject.org/listinfo/yocto
http://lists.yoctoproject.org/listinfo/poky
http://yoctoproject.org
http://yoctoproject.org
http://www.openedhand.com/
http://www.openedhand.com/
http://www.intel.com/
http://www.intel.com/
http://www.openembedded.org/
http://www.openembedded.org/
http://developer.berlios.de/projects/bitbake/
http://developer.berlios.de/projects/bitbake/
http://bitbake.berlios.de/manual/
http://bitbake.berlios.de/manual/
http://pimlico-project.org/
http://pimlico-project.org/

Contributing to the Yocto Project

84

• QEMU [http://wiki.qemu.org/Index.html]: An open source machine emulator and virtualizer.

I.6. Contributions
The Yocto Project gladly accepts contributions. You can submit changes to the project either by
creating and sending pull requests, or by submitting patches through email. For information on
how to do both, see How to Submit a Change [http://www.yoctoproject.org/docs/1.1.1/dev-manual/
dev-manual.html#how-to-submit-a-change] in The Yocto Project Development Manual [http://
www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html].

http://wiki.qemu.org/Index.html
http://wiki.qemu.org/Index.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#how-to-submit-a-change
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#how-to-submit-a-change
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html#how-to-submit-a-change
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.1.1/dev-manual/dev-manual.html

	
	Table of Contents
	Chapter 1. Introduction
	1.1. Introduction
	1.2. Documentation Overview
	1.3. System Requirements
	1.4. Obtaining the Yocto Project
	1.5. Development Checkouts

	Chapter 2. Using the Yocto Project
	2.1. Running a Build
	2.1.1. Build Overview
	2.1.2. Building an Image Using GPL Components

	2.2. Installing and Using the Result
	2.3. Debugging Build Failures
	2.3.1. Task Failures
	2.3.2. Running Specific Tasks
	2.3.3. Dependency Graphs
	2.3.4. General BitBake Problems
	2.3.5. Building with No Dependencies
	2.3.6. Variables
	2.3.7. Recipe Logging Mechanisms
	2.3.7.1. Logging With Python
	2.3.7.2. Logging With Bash

	2.3.8. Other Tips

	Chapter 3. Common Tasks
	3.1. Adding a Package
	3.1.1. Single .c File Package (Hello World!)
	3.1.2. Autotooled Package
	3.1.3. Makefile-Based Package
	3.1.4. Splitting an Application into Multiple Packages
	3.1.5. Including Static Library Files
	3.1.6. Post Install Scripts

	3.2. Customizing Images
	3.2.1. Customizing Images Using Custom .bb Files
	3.2.2. Customizing Images Using Custom Tasks
	3.2.3. Customizing Images Using Custom IMAGE_FEATURES and EXTRA_IMAGE_FEATURES
	3.2.4. Customizing Images Using local.conf

	3.3. Porting the Yocto Project to a New Machine
	3.3.1. Adding the Machine Configuration File
	3.3.2. Adding a Kernel for the Machine
	3.3.3. Adding a Formfactor Configuration File

	3.4. Modifying Package Source Code
	3.5. Modifying Package Source Code with Quilt
	3.6. Combining Multiple Versions of Library Files into One Image
	3.6.1. Preparing to use Multilib
	3.6.2. Using Multilib
	3.6.3. Additional Implementation Details

	3.7. Tracking License Changes
	3.7.1. Specifying the LIC_FILES_CHKSUM Variable
	3.7.2. Explanation of Syntax

	3.8. Handling a Package Name Alias
	3.9. Making and Maintaining Changes
	3.9.1. BitBake Layers
	3.9.2. Committing Changes
	3.9.3. Package Revision Incrementing
	3.9.4. Using The Yocto Project in a Team Environment
	3.9.5. Updating Existing Images

	Chapter 4. Technical Details
	4.1. Yocto Project Components
	4.1.1. BitBake
	4.1.2. Metadata (Recipes)
	4.1.3. Classes
	4.1.4. Configuration

	4.2. Shared State Cache
	4.2.1. Overall Architecture
	4.2.2. Checksums (Signatures)
	4.2.3. Shared State
	4.2.4. Tips and Tricks
	4.2.4.1. Debugging
	4.2.4.2. Invalidating Shared State

	Chapter 5. Board Support Packages (BSP) - Developer's Guide
	5.1. Example Filesystem Layout
	5.1.1. License Files
	5.1.2. README File
	5.1.3. Pre-built User Binaries
	5.1.4. Layer Configuration File
	5.1.5. Hardware Configuration Options
	5.1.6. Miscellaneous Recipe Files
	5.1.7. Core Recipe Files
	5.1.8. Display Support Files
	5.1.9. Linux Kernel Configuration

	5.2. BSP 'Click-Through' Licensing Procedure

	Chapter 6. Platform Development with the Yocto Project
	6.1. Application Development Using the Yocto Project
	6.1.1. External Development Using the Meta-Toolchain
	6.1.2. External Development Using the Eclipse Plug-in
	6.1.3. External Development Using the QEMU Emulator
	6.1.4. Development Using Yocto Project Directly
	6.1.5. Development Within a Development Shell
	6.1.6. Development Within Yocto Project for a Package that Uses an External SCM

	6.2. Debugging With the GNU Project Debugger (GDB) Remotely
	6.2.1. Launching Gdbserver on the Target
	6.2.2. Launching GDB on the Host Computer
	6.2.2.1. Building the Cross-GDB Package
	6.2.2.2. Making the Inferior Binaries Available
	6.2.2.3. Launch the Host GDB
	6.2.2.4. Using the Debugger

	6.3. Profiling with OProfile
	6.3.1. Profiling on the Target
	6.3.2. Using OProfileUI
	6.3.2.1. Online Mode
	6.3.2.2. Offline Mode

	Appendix A. Reference: Directory Structure
	A.1. Top level core components
	A.1.1. bitbake/
	A.1.2. build/
	A.1.3. documentation
	A.1.4. meta/
	A.1.5. meta-demoapps/
	A.1.6. meta-rt/
	A.1.7. meta-skeleton/
	A.1.8. scripts/
	A.1.9. oe-init-build-env
	A.1.10. LICENSE, README, and README.hardware

	A.2. The Build Directory - build/
	A.2.1. build/pseudodone
	A.2.2. build/conf/local.conf
	A.2.3. build/conf/bblayers.conf
	A.2.4. build/conf/sanity_info
	A.2.5. build/downloads/
	A.2.6. build/sstate-cache/
	A.2.7. build/tmp/
	A.2.8. build/tmp/buildstats/
	A.2.9. build/tmp/cache/
	A.2.10. build/tmp/deploy/
	A.2.11. build/tmp/deploy/deb/
	A.2.12. build/tmp/deploy/rpm/
	A.2.13. build/tmp/deploy/images/
	A.2.14. build/tmp/deploy/ipk/
	A.2.15. build/tmp/sysroots/
	A.2.16. build/tmp/stamps/
	A.2.17. build/tmp/log/
	A.2.18. build/tmp/pkgdata/
	A.2.19. build/tmp/work/

	A.3. The Metadata - meta/
	A.3.1. meta/classes/
	A.3.2. meta/conf/
	A.3.3. meta/conf/machine/
	A.3.4. meta/conf/distro/
	A.3.5. meta/recipes-bsp/
	A.3.6. meta/recipes-connectivity/
	A.3.7. meta/recipes-core/
	A.3.8. meta/recipes-devtools/
	A.3.9. meta/recipes-extended/
	A.3.10. meta/recipes-gnome/
	A.3.11. meta/recipes-graphics/
	A.3.12. meta/recipes-kernel/
	A.3.13. meta/recipes-multimedia/
	A.3.14. meta/recipes-qt/
	A.3.15. meta/recipes-sato/
	A.3.16. meta/recipes-support/
	A.3.17. meta/site/
	A.3.18. meta/recipes.txt/

	Appendix B. Reference: BitBake
	B.1. Parsing
	B.2. Preferences and Providers
	B.3. Dependencies
	B.4. The Task List
	B.5. Running a Task
	B.6. BitBake Command Line
	B.7. Fetchers

	Appendix C. Reference: Classes
	C.1. The base class - base.bbclass
	C.2. Autotooled Packages - autotools.bbclass
	C.3. Alternatives - update-alternatives.bbclass
	C.4. Initscripts - update-rc.d.bbclass
	C.5. Binary config scripts - binconfig.bbclass
	C.6. Debian renaming - debian.bbclass
	C.7. Pkg-config - pkgconfig.bbclass
	C.8. Distribution of sources - src_distribute_local.bbclass
	C.9. Perl modules - cpan.bbclass
	C.10. Python extensions - distutils.bbclass
	C.11. Developer Shell - devshell.bbclass
	C.12. Packaging - package*.bbclass
	C.13. Building kernels - kernel.bbclass
	C.14. Creating images - image.bbclass and rootfs*.bbclass
	C.15. Host System sanity checks - sanity.bbclass
	C.16. Generated output quality assurance checks - insane.bbclass
	C.17. Autotools configuration data cache - siteinfo.bbclass
	C.18. Adding Users - useradd.bbclass
	C.19. Other Classes

	Appendix D. Reference: Images
	Appendix E. Reference: Features
	E.1. Distro
	E.2. Machine
	E.3. Reference: Images

	Appendix F. Reference: Variables Glossary
	Glossary

	Appendix G. Reference: Variable Context
	G.1. Configuration
	G.1.1. Distribution (Distro)
	G.1.2. Machine
	G.1.3. Local

	G.2. Recipes
	G.2.1. Required
	G.2.2. Dependencies
	G.2.3. Paths
	G.2.4. Extra Build Information

	Appendix H. FAQ
	Appendix I. Contributing to the Yocto Project
	I.1. Introduction
	I.2. Tracking Bugs
	I.3. Mailing lists
	I.4. Internet Relay Chat (IRC)
	I.5. Links
	I.6. Contributions

