Copyright © 2010-2017 Linux Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons Attribution-Share Alike 2.0 UK: England & Wales as published by Creative Commons.
Revision History | |
---|---|
Revision 0.9 | 24 November 2010 |
The initial document draft released with the Yocto Project 0.9 Release. | |
Revision 1.0 | 6 April 2011 |
Released with the Yocto Project 1.0 Release. | |
Revision 1.0.1 | 23 May 2011 |
Released with the Yocto Project 1.0.1 Release. | |
Revision 1.1 | 6 October 2011 |
Released with the Yocto Project 1.1 Release. | |
Revision 1.2 | April 2012 |
Released with the Yocto Project 1.2 Release. | |
Revision 1.3 | October 2012 |
Released with the Yocto Project 1.3 Release. | |
Revision 1.4 | April 2013 |
Released with the Yocto Project 1.4 Release. | |
Revision 1.5 | October 2013 |
Released with the Yocto Project 1.5 Release. | |
Revision 1.5.1 | January 2014 |
Released with the Yocto Project 1.5.1 Release. | |
Revision 1.6 | April 2014 |
Released with the Yocto Project 1.6 Release. | |
Revision 1.7 | October 2014 |
Released with the Yocto Project 1.7 Release. | |
Revision 1.8 | April 2015 |
Released with the Yocto Project 1.8 Release. | |
Revision 2.0 | October 2015 |
Released with the Yocto Project 2.0 Release. | |
Revision 2.1 | April 2016 |
Released with the Yocto Project 2.1 Release. | |
Revision 2.2 | October 2016 |
Released with the Yocto Project 2.2 Release. | |
Revision 2.2.1 | January 2017 |
Released with the Yocto Project 2.2.1 Release. | |
Revision 2.2.2 | June 2017 |
Released with the Yocto Project 2.2.2 Release. |
Table of Contents
Table of Contents
A Board Support Package (BSP) is a collection of information that defines how to support a particular hardware device, set of devices, or hardware platform. The BSP includes information about the hardware features present on the device and kernel configuration information along with any additional hardware drivers required. The BSP also lists any additional software components required in addition to a generic Linux software stack for both essential and optional platform features.
This guide presents information about BSP Layers, defines a structure for components so that BSPs follow a commonly understood layout, discusses how to customize a recipe for a BSP, addresses BSP licensing, and provides information that shows you how to create and manage a BSP Layer using two Yocto Project BSP Tools.
A BSP consists of a file structure inside a base directory. Collectively, you can think of the base directory, its file structure, and the contents as a BSP Layer. Although not a strict requirement, layers in the Yocto Project use the following well-established naming convention:
meta-bsp_name
The string "meta-" is prepended to the machine or platform name, which is
bsp_name
in the above form.
meta-
.
However, you might run into situations where obscure
scripts assume this convention.
To help understand the BSP layer concept, consider the BSPs that the
Yocto Project supports and provides with each release.
You can see the layers in the
Yocto Project Source Repositories
through a web interface at
http://git.yoctoproject.org/cgit/cgit.cgi.
If you go to that interface, you will find near the bottom of the list
under "Yocto Metadata Layers" several BSP layers all of which are
supported by the Yocto Project (e.g. meta-raspberrypi
and
meta-intel
).
Each of these layers is a repository unto itself and clicking on a
layer reveals information that includes two links from which you can choose
to set up a clone of the layer's repository on your local host system.
Here is an example that clones the Raspberry Pi BSP layer:
$ git clone git://git.yoctoproject.org/meta-raspberrypi
In addition to BSP layers near the bottom of that referenced
Yocto Project Source Repository, the
meta-yocto-bsp
layer is part of the
shipped poky
repository.
The meta-yocto-bsp
layer maintains several
BSPs such as the Beaglebone, EdgeRouter, and generic versions of
both 32 and 64-bit IA machines.
For information on the BSP development workflow, see the "Developing a Board Support Package (BSP)" section in the Yocto Project Development Manual. For more information on how to set up a local copy of source files from a Git repository, see the "Getting Set Up" section also in the Yocto Project Development Manual.
The layer's base directory
(meta-
)
is the root of the BSP Layer.
This root is what you add to the
bsp_name
BBLAYERS
variable in the conf/bblayers.conf
file found in the
Build Directory,
which is established after you run one of the OpenEmbedded build environment
setup scripts (i.e.
oe-init-build-env
and
oe-init-build-env-memres
).
Adding the root allows the OpenEmbedded build system to recognize the BSP
definition and from it build an image.
Here is an example:
BBLAYERS ?= " \ /usr/local/src/yocto/meta \ /usr/local/src/yocto/meta-poky \ /usr/local/src/yocto/meta-yocto-bsp \ /usr/local/src/yocto/meta-mylayer \ "
Some BSPs require additional layers on
top of the BSP's root layer in order to be functional.
For these cases, you also need to add those layers to the
BBLAYERS
variable in order to build the BSP.
You must also specify in the "Dependencies" section of the BSP's
README
file any requirements for additional
layers and, preferably, any
build instructions that might be contained elsewhere
in the README
file.
Some layers function as a layer to hold other BSP layers.
An example of this type of layer is the meta-intel
layer,
which contains a number of individual BSP sub-layers, as well as a directory
named common/
full of common content across those layers.
Another example is the meta-yocto-bsp
layer mentioned
earlier.
For more detailed information on layers, see the "Understanding and Creating Layers" section of the Yocto Project Development Manual.
Defining a common BSP directory structure allows end-users to understand and become familiar with that structure. A common format also encourages standardization of software support of hardware.
The proposed form does have elements that are specific to the OpenEmbedded build system. It is intended that this information can be used by other build systems besides the OpenEmbedded build system and that it will be simple to extract information and convert it to other formats if required. The OpenEmbedded build system, through its standard layers mechanism, can directly accept the format described as a layer. The BSP captures all the hardware-specific details in one place in a standard format, which is useful for any person wishing to use the hardware platform regardless of the build system they are using.
The BSP specification does not include a build system or other tools - it is concerned with the hardware-specific components only. At the end-distribution point, you can ship the BSP combined with a build system and other tools. However, it is important to maintain the distinction that these are separate components that happen to be combined in certain end products.
Before looking at the common form for the file structure inside a BSP Layer, you should be aware that some requirements do exist in order for a BSP to be considered compliant with the Yocto Project. For that list of requirements, see the "Released BSP Requirements" section.
Below is the common form for the file structure inside a BSP Layer. While you can use this basic form for the standard, realize that the actual structures for specific BSPs could differ.
meta-bsp_name
/ meta-bsp_name
/bsp_license_file
meta-bsp_name
/README meta-bsp_name
/README.sources meta-bsp_name
/binary/bootable_images
meta-bsp_name
/conf/layer.conf meta-bsp_name
/conf/machine/*.conf meta-bsp_name
/recipes-bsp/* meta-bsp_name
/recipes-core/* meta-bsp_name
/recipes-graphics/* meta-bsp_name
/recipes-kernel/linux/linux-yocto_kernel_rev
.bbappend
Below is an example of the Raspberry Pi BSP:
meta-raspberrypi/COPYING.MIT meta-raspberrypi/README meta-raspberrypi/classes meta-raspberrypi/classes/linux-raspberrypi-base.bbclass meta-raspberrypi/classes/sdcard_image-rpi.bbclass meta-raspberrypi/conf/ meta-raspberrypi/conf/layer.conf meta-raspberrypi/conf/machine/ meta-raspberrypi/conf/machine/raspberrypi.conf meta-raspberrypi/conf/machine/raspberrypi0.conf meta-raspberrypi/conf/machine/raspberrypi2.conf meta-raspberrypi/conf/machine/raspberrypi3.conf meta-raspberrypi/conf/machine/include meta-raspberrypi/conf/machine/include/rpi-base.inc meta-raspberrypi/conf/machine/include/rpi-default-providers.inc meta-raspberrypi/conf/machine/include/rpi-default-settings.inc meta-raspberrypi/conf/machine/include/rpi-default-versions.inc meta-raspberrypi/conf/machine/include/rpi-tune-arm1176jzf-s.inc meta-raspberrypi/files meta-raspberrypi/files/custom-licenses meta-raspberrypi/files/custom-licenses/Broadcom meta-raspberrypi/recipes-bsp meta-raspberrypi/recipes-bsp/bootfiles meta-raspberrypi/recipes-bsp/bootfiles/bcm2835-bootfiles.bb meta-raspberrypi/recipes-bsp/bootfiles/rpi-config_git.bb meta-raspberrypi/recipes-bsp/common meta-raspberrypi/recipes-bsp/common/firmware.inc meta-raspberrypi/recipes-bsp/formfactor_00.bbappend meta-raspberrypi/recipes-bsp/formfactor/raspberrypi/machconfig meta-raspberrypi/recipes-bsp/rpi-mkimage_git.bb meta-raspberrypi/recipes-bsp/rpi-mkimage/License meta-raspberrypi/recipes-bsp/rpi-mkimage/open-files-relative-to-script.patch meta-raspberrypi/recipes-bsp/u-boot/u-boot-rpi_git.bb meta-raspberrypi/recipes-core meta-raspberrypi/recipes-core/images meta-raspberrypi/recipes-core/images/rpi-basic-image.bb meta-raspberrypi/recipes-core/images/rpi-hwup-image.bb meta-raspberrypi/recipes-core/images/rpi-test-image.bb meta-raspberrypi/recipes-core/packagegroups meta-raspberrypi/recipes-core/packagegroups/packagegroup-rpi-test.bb meta-raspberrypi/recipes-core/psplash meta-raspberrypi/recipes-core/psplash/files meta-raspberrypi/recipes-core/psplash/psplash_git.bbappend meta-raspberrypi/recipes-core/psplash/files/psplash-raspberrypi-img.h meta-raspberrypi/recipes-devtools meta-raspberrypi/recipes-devtools/bcm2835 meta-raspberrypi/recipes-devtools/bcm2835/bcm2835_1.46.bb meta-raspberrypi/recipes-devtools/pi-blaster meta-raspberrypi/recipes-devtools/pi-blaster/files meta-raspberrypi/recipes-devtools/pi-blaster/*.patch meta-raspberrypi/recipes-devtools/pi-blaster/pi-blaster.inc meta-raspberrypi/recipes-devtools/pi-blaster/pi-blaster_git.bb meta-raspberrypi/recipes-devtools/python meta-raspberrypi/recipes-devtools/python/python-rtimu meta-raspberrypi/recipes-devtools/python/python-rtimu/*.patch meta-raspberrypi/recipes-devtools/python/python-rtimu_git.bb meta-raspberrypi/recipes-devtools/python/python-sense-hat_2.1.0.bb meta-raspberrypi/recipes-devtools/python/rpi-gpio meta-raspberrypi/recipes-devtools/python/rpi-gpio/*.patch meta-raspberrypi/recipes-devtools/python/rpi-gpio_0.6.1.bb meta-raspberrypi/recipes-devtools/python/rpio meta-raspberrypi/recipes-devtools/python/rpio/*.patch meta-raspberrypi/recipes-devtools/python/rpio_0.10.0.bb meta-raspberrypi/recipes-devtools/wiringPi meta-raspberrypi/recipes-devtools/wiringPi/files meta-raspberrypi/recipes-devtools/wiringPi/files/*.patch meta-raspberrypi/recipes-devtools/wiringPi/wiringpi meta-raspberrypi/recipes-devtools/wiringPi/wiringpi/*.patch meta-raspberrypi/recipes-devtools/wiringPi/wiringpi_git.bb meta-raspberrypi/recipes-graphics meta-raspberrypi/recipes-graphics/eglinfo meta-raspberrypi/recipes-graphics/eglinfo/eglinfo-fb_%.bbappend meta-raspberrypi/recipes-graphics/eglinfo/eglinfo-x11_%.bbappend meta-raspberrypi/recipes-graphics/userland meta-raspberrypi/recipes-graphics/userland/userland meta-raspberrypi/recipes-graphics/userland/userland/*.patch meta-raspberrypi/recipes-graphics/userland/userland_git.bb meta-raspberrypi/recipes-graphics/vc-graphics meta-raspberrypi/recipes-graphics/vc-graphics/files meta-raspberrypi/recipes-graphics/vc-graphics/files/egl.pc meta-raspberrypi/recipes-graphics/vc-graphics/files/vchiq.sh meta-raspberrypi/recipes-graphics/vc-graphics/vc-graphics-hardfp.bb meta-raspberrypi/recipes-graphics/vc-graphics/vc-graphics.bb meta-raspberrypi/recipes-graphics/vc-graphics/vc-graphics.inc meta-raspberrypi/recipes-graphics/wayland meta-raspberrypi/recipes-graphics/wayland/weston_%.bbappend meta-raspberrypi/recipes-graphics/weston meta-raspberrypi/recipes-graphics/weston/weston_%.bbappend meta-raspberrypi/recipes-graphics/xorg-xserver meta-raspberrypi/recipes-graphics/xorg-xserver/xserver-xf86-config meta-raspberrypi/recipes-graphics/xorg-xserver/xserver-xf86-config/rpi meta-raspberrypi/recipes-graphics/xorg-xserver/xserver-xf86-config/rpi/xorg.conf meta-raspberrypi/recipes-graphics/xorg-xserver/xserver-xf86-config/rpi/xorg.conf.d meta-raspberrypi/recipes-graphics/xorg-xserver/xserver-xf86-config/rpi/xorg.conf.d/10-evdev.conf meta-raspberrypi/recipes-graphics/xorg-xserver/xserver-xf86-config/rpi/xorg.conf.d/99-pitft.conf meta-raspberrypi/recipes-graphics/xorg-xserver/xserver-xf86-config_0.1.bbappend meta-raspberrypi/recipes-kernel meta-raspberrypi/recipes-kernel/linux-firmware meta-raspberrypi/recipes-kernel/linux-firmware/linux-firmware meta-raspberrypi/recipes-kernel/linux-firmware/linux-firmware/LICENSE.broadcom_brcm80211 meta-raspberrypi/recipes-kernel/linux-firmware/linux-firmware/brcmfmac43430-sdio.bin meta-raspberrypi/recipes-kernel/linux-firmware/linux-firmware/brcmfmac43430-sdio.txt meta-raspberrypi/recipes-kernel/linux-firmware/linux-firmware_git.bbappend meta-raspberrypi/recipes-kernel/linux meta-raspberrypi/recipes-kernel/linux/linux-raspberrypi-3.14 meta-raspberrypi/recipes-kernel/linux/linux-raspberrypi-3.14/*.patch meta-raspberrypi/recipes-kernel/linux/linux-raspberrypi-3.18 meta-raspberrypi/recipes-kernel/linux/linux-raspberrypi-3.18/*.patch meta-raspberrypi/recipes-kernel/linux/linux-raspberrypi-4.1 meta-raspberrypi/recipes-kernel/linux/linux-raspberrypi-4.1/*.patch meta-raspberrypi/recipes-kernel/linux/linux-raspberrypi.inc meta-raspberrypi/recipes-kernel/linux/linux-raspberrypi meta-raspberrypi/recipes-kernel/linux/linux-raspberrypi/defconfig meta-raspberrypi/recipes-kernel/linux/linux-raspberrypi_3.14.bb meta-raspberrypi/recipes-kernel/linux/linux-raspberrypi_3.18.bb meta-raspberrypi/recipes-kernel/linux/linux-raspberrypi_4.1.bb meta-raspberrypi/recipes-kernel/linux/linux-raspberrypi_4.4.bb meta-raspberrypi/recipes-kernel/linux/linux.inc meta-raspberrypi/recipes-multimedia meta-raspberrypi/recipes-multimedia/gstreamer meta-raspberrypi/recipes-multimedia/gstreamer/gstreamer1.0-omx meta-raspberrypi/recipes-multimedia/gstreamer/gstreamer1.0-omx/*.patch meta-raspberrypi/recipes-multimedia/gstreamer/gstreamer1.0-omx_%.bbappend meta-raspberrypi/recipes-multimedia/gstreamer/gstreamer1.0-plugins-bad_%.bbappend meta-raspberrypi/recipes-multimedia/omxplayer meta-raspberrypi/recipes-multimedia/omxplayer/omxplayer meta-raspberrypi/recipes-multimedia/omxplayer/omxplayer/*.patch meta-raspberrypi/recipes-multimedia/omxplayer/omxplayer_git.bb meta-raspberrypi/scripts meta-raspberrypi/scripts/lib meta-raspberrypi/scripts/lib/image meta-raspberrypi/scripts/lib/image/canned-wks meta-raspberrypi/scripts/lib/image/canned-wks/sdimage-raspberrypi.wks
The following sections describe each part of the proposed BSP format.
You can find these files in the BSP Layer at:
meta-bsp_name
/bsp_license_file
These optional files satisfy licensing requirements for the BSP.
The type or types of files here can vary depending on the licensing requirements.
For example, in the Raspberry Pi BSP all licensing requirements are handled with the
COPYING.MIT
file.
Licensing files can be MIT, BSD, GPLv*, and so forth. These files are recommended for the BSP but are optional and totally up to the BSP developer.
You can find this file in the BSP Layer at:
meta-bsp_name
/README
This file provides information on how to boot the live images that are optionally
included in the binary/
directory.
The README
file also provides special information needed for
building the image.
At a minimum, the README
file must
contain a list of dependencies, such as the names of
any other layers on which the BSP depends and the name of
the BSP maintainer with his or her contact information.
You can find this file in the BSP Layer at:
meta-bsp_name
/README.sources
This file provides information on where to locate the BSP
source files used to build the images (if any) that reside in
meta-
.
Images in the bsp_name
/binarybinary
would be images
released with the BSP.
The information in the README.sources
file also helps you find the
Metadata
used to generate the images that ship with the BSP.
binary
directory is
missing or the directory has no images, an existing
README.sources
file is
meaningless.
You can find these files in the BSP Layer at:
meta-bsp_name
/binary/bootable_images
This optional area contains useful pre-built kernels and user-space filesystem images released with the BSP that are appropriate to the target system. This directory typically contains graphical (e.g. Sato) and minimal live images when the BSP tarball has been created and made available in the Yocto Project website. You can use these kernels and images to get a system running and quickly get started on development tasks.
The exact types of binaries present are highly
hardware-dependent.
The README
file should be present in the
BSP Layer and it will explain how to use the images with the
target hardware.
Additionally, the README.sources
file
should be present to locate the sources used to build the
images and provide information on the Metadata.
You can find this file in the BSP Layer at:
meta-bsp_name
/conf/layer.conf
The conf/layer.conf
file identifies the file structure as a
layer, identifies the
contents of the layer, and contains information about how the build
system should use it.
Generally, a standard boilerplate file such as the following works.
In the following example, you would replace "bsp
" and
"_bsp
" with the actual name
of the BSP (i.e. bsp_name
from the example template).
# We have a conf and classes directory, add to BBPATH BBPATH .= ":${LAYERDIR}" # We have a recipes directory, add to BBFILES BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \ ${LAYERDIR}/recipes-*/*/*.bbappend" BBFILE_COLLECTIONS += "bsp
" BBFILE_PATTERN_bsp
= "^${LAYERDIR}/" BBFILE_PRIORITY_bsp
= "6" LAYERDEPENDS_bsp
= "intel"
To illustrate the string substitutions, here are the corresponding statements
from the Raspberry Pi conf/layer.conf
file:
# We have a conf and classes directory, append to BBPATH BBPATH .= ":${LAYERDIR}" # We have a recipes directory containing .bb and .bbappend files, add to BBFILES BBFILES += "${LAYERDIR}/recipes*/*/*.bb \ ${LAYERDIR}/recipes*/*/*.bbappend" BBFILE_COLLECTIONS += "raspberrypi" BBFILE_PATTERN_raspberrypi := "^${LAYERDIR}/" BBFILE_PRIORITY_raspberrypi = "9" # Additional license directories. LICENSE_PATH += "${LAYERDIR}/files/custom-licenses"
This file simply makes BitBake aware of the recipes and configuration directories. The file must exist so that the OpenEmbedded build system can recognize the BSP.
You can find these files in the BSP Layer at:
meta-bsp_name
/conf/machine/*.conf
The machine files bind together all the information contained elsewhere
in the BSP into a format that the build system can understand.
If the BSP supports multiple machines, multiple machine configuration files
can be present.
These filenames correspond to the values to which users have set the
MACHINE
variable.
These files define things such as the kernel package to use
(PREFERRED_PROVIDER
of virtual/kernel), the hardware drivers to
include in different types of images, any special software components
that are needed, any bootloader information, and also any special image
format requirements.
Each BSP Layer requires at least one machine file. However, you can supply more than one file.
This configuration file could also include a hardware "tuning" file that is commonly used to define the package architecture and specify optimization flags, which are carefully chosen to give best performance on a given processor.
Tuning files are found in the meta/conf/machine/include
directory within the
Source Directory.
For example, the ia32-base.inc
file resides in the
meta/conf/machine/include
directory.
To use an include file, you simply include them in the
machine configuration file.
For example, the Raspberry Pi BSP
raspberrypi3.conf
contains the
following statement:
include conf/machine/raspberrypi2.conf
You can find these files in the BSP Layer at:
meta-bsp_name
/recipes-bsp/*
This optional directory contains miscellaneous recipe files for
the BSP.
Most notably would be the formfactor files.
For example, in the Raspberry Pi BSP there is the
formfactor_0.0.bbappend
file, which is an
append file used to augment the recipe that starts the build.
Furthermore, there are machine-specific settings used during
the build that are defined by the
machconfig
file further down in the
directory.
Here is the machconfig
file for the Raspberry Pi BSP:
HAVE_TOUCHSCREEN=0 HAVE_KEYBOARD=1 DISPLAY_CAN_ROTATE=0 DISPLAY_ORIENTATION=0 DISPLAY_DPI=133
If a BSP does not have a formfactor entry, defaults are established according to
the formfactor configuration file that is installed by the main
formfactor recipe
meta/recipes-bsp/formfactor/formfactor_0.0.bb
,
which is found in the
Source Directory.
You can find these files in the BSP Layer at:
meta-bsp_name
/recipes-graphics/*
This optional directory contains recipes for the BSP if it has special requirements for graphics support. All files that are needed for the BSP to support a display are kept here.
You can find these files in the BSP Layer at:
meta-bsp_name
/recipes-kernel/linux/linux-yocto*.bbappend
These files append your specific changes to the main kernel recipe you are using.
For your BSP, you typically want to use an existing Yocto Project kernel recipe found in the
Source Directory
at meta/recipes-kernel/linux
.
You can append your specific changes to the kernel recipe by using a
similarly named append file, which is located in the BSP Layer (e.g.
the meta-
directory).
bsp_name
/recipes-kernel/linux
Suppose you are using the linux-yocto_4.4.bb
recipe to build
the kernel.
In other words, you have selected the kernel in your
bsp_name
.conf
file by adding these types
of statements:
PREFERRED_PROVIDER_virtual/kernel ?= "linux-yocto" PREFERRED_VERSION_linux-yocto ?= "4.4%"
PREFERRED_PROVIDER
statement does not appear in the
bsp_name
.conf
file.
You would use the linux-yocto_4.4.bbappend
file to append specific BSP settings to the kernel, thus
configuring the kernel for your particular BSP.
As an example, consider the following append file
used by the BSPs in meta-yocto-bsp
:
meta-yocto-bsp/recipes-kernel/linux/linux-yocto_4.4.bbappend
The following listing shows the file.
Be aware that the actual commit ID strings in this
example listing might be different than the actual strings
in the file from the meta-yocto-bsp
layer upstream.
KBRANCH_genericx86 = "standard/base" KBRANCH_genericx86-64 = "standard/base" KMACHINE_genericx86 ?= "common-pc" KMACHINE_genericx86-64 ?= "common-pc-64" KBRANCH_edgerouter = "standard/edgerouter" KBRANCH_beaglebone = "standard/beaglebone" KBRANCH_mpc8315e-rdb = "standard/fsl-mpc8315e-rdb" SRCREV_machine_genericx86 ?= "ff4c4ef15b51f45b9106d71bf1f62fe7c02e63c2" SRCREV_machine_genericx86-64 ?= "ff4c4ef15b51f45b9106d71bf1f62fe7c02e63c2" SRCREV_machine_edgerouter ?= "ff4c4ef15b51f45b9106d71bf1f62fe7c02e63c2" SRCREV_machine_beaglebone ?= "ff4c4ef15b51f45b9106d71bf1f62fe7c02e63c2" SRCREV_machine_mpc8315e-rdb ?= "df00877ef9387b38b9601c82db57de2a1b23ce53" COMPATIBLE_MACHINE_genericx86 = "genericx86" COMPATIBLE_MACHINE_genericx86-64 = "genericx86-64" COMPATIBLE_MACHINE_edgerouter = "edgerouter" COMPATIBLE_MACHINE_beaglebone = "beaglebone" COMPATIBLE_MACHINE_mpc8315e-rdb = "mpc8315e-rdb" LINUX_VERSION_genericx86 = "4.4.3" LINUX_VERSION_genericx86-64 = "4.4.3"
This append file contains statements used to support
several BSPs that ship with the Yocto Project.
The file defines machines using the
COMPATIBLE_MACHINE
variable and uses the
KMACHINE
variable to ensure the machine name used by the OpenEmbedded
build system maps to the machine name used by the Linux Yocto
kernel.
The file also uses the optional
KBRANCH
variable to ensure the build process uses the
appropriate kernel branch.
Although this particular example does not use it, the
KERNEL_FEATURES
variable could be used to enable features specific to
the kernel.
The append file points to specific commits in the
Source Directory
Git repository and the meta
Git repository
branches to identify the exact kernel needed to build the
BSP.
One thing missing in this particular BSP, which you will
typically need when developing a BSP, is the kernel configuration
file (.config
) for your BSP.
When developing a BSP, you probably have a kernel configuration
file or a set of kernel configuration files that, when taken
together, define the kernel configuration for your BSP.
You can accomplish this definition by putting the configurations
in a file or a set of files inside a directory located at the
same level as your kernel's append file and having the same
name as the kernel's main recipe file.
With all these conditions met, simply reference those files in the
SRC_URI
statement in the append file.
For example, suppose you had some configuration options
in a file called network_configs.cfg
.
You can place that file inside a directory named
linux-yocto
and then add
a SRC_URI
statement such as the
following to the append file.
When the OpenEmbedded build system builds the kernel, the
configuration options are picked up and applied.
SRC_URI += "file://network_configs.cfg"
To group related configurations into multiple files, you
perform a similar procedure.
Here is an example that groups separate configurations
specifically for Ethernet and graphics into their own
files and adds the configurations by using a
SRC_URI
statement like the following
in your append file:
SRC_URI += "file://myconfig.cfg \ file://eth.cfg \ file://gfx.cfg"
Another variable you can use in your kernel recipe append
file is the
FILESEXTRAPATHS
variable.
When you use this statement, you are extending the locations
used by the OpenEmbedded system to look for files and
patches as the recipe is processed.
Other methods exist to accomplish grouping and defining configuration options.
For example, if you are working with a local clone of the kernel repository,
you could checkout the kernel's meta
branch, make your changes,
and then push the changes to the local bare clone of the kernel.
The result is that you directly add configuration options to the
meta
branch for your BSP.
The configuration options will likely end up in that location anyway if the BSP gets
added to the Yocto Project.
In general, however, the Yocto Project maintainers take care of moving the
SRC_URI
-specified
configuration options to the kernel's meta
branch.
Not only is it easier for BSP developers to not have to worry about putting those
configurations in the branch, but having the maintainers do it allows them to apply
'global' knowledge about the kinds of common configuration options multiple BSPs in
the tree are typically using.
This allows for promotion of common configurations into common features.
Certain requirements exist for a released BSP to be considered compliant with the Yocto Project. Additionally, recommendations also exist. This section describes the requirements and recommendations for released BSPs.
Before looking at BSP requirements, you should consider the following:
The requirements here assume the BSP layer is a well-formed, "legal" layer that can be added to the Yocto Project. For guidelines on creating a layer that meets these base requirements, see the "BSP Layers" and the "Understanding and Creating Layers" in the Yocto Project Development Manual.
The requirements in this section apply regardless of how you package a BSP. You should consult the packaging and distribution guidelines for your specific release process. For an example of packaging and distribution requirements, see the "Third Party BSP Release Process" wiki page.
The requirements for the BSP as it is made available to a developer are completely independent of the released form of the BSP. For example, the BSP Metadata can be contained within a Git repository and could have a directory structure completely different from what appears in the officially released BSP layer.
It is not required that specific packages or package modifications exist in the BSP layer, beyond the requirements for general compliance with the Yocto Project. For example, no requirement exists dictating that a specific kernel or kernel version be used in a given BSP.
Following are the requirements for a released BSP that conform to the Yocto Project:
Layer Name: The BSP must have a layer name that follows the Yocto Project standards. For information on BSP layer names, see the "BSP Layers" section.
File System Layout:
When possible, use the same directory names in your
BSP layer as listed in the recipes.txt
file.
In particular, you should place recipes
(.bb
files) and recipe
modifications (.bbappend
files) into
recipes-*
subdirectories by functional area
as outlined in recipes.txt
.
If you cannot find a category in recipes.txt
to fit a particular recipe, you can make up your own
recipes-*
subdirectory.
You can find recipes.txt
in the
meta
directory of the
Source Directory,
or in the OpenEmbedded Core Layer
(openembedded-core
) found at
http://git.openembedded.org/openembedded-core/tree/meta.
Within any particular recipes-*
category, the layout
should match what is found in the OpenEmbedded Core
Git repository (openembedded-core
)
or the Source Directory (poky
).
In other words, make sure you place related files in appropriately
related recipes-*
subdirectories specific to the
recipe's function, or within a subdirectory containing a set of closely-related
recipes.
The recipes themselves should follow the general guidelines
for recipes used in the Yocto Project found in the
"OpenEmbedded Style Guide".
License File:
You must include a license file in the
meta-
directory.
This license covers the BSP Metadata as a whole.
You must specify which license to use since there is no
default license if one is not specified.
See the
bsp_name
COPYING.MIT
file for the Raspberry Pi BSP in the
meta-raspberrypi
BSP layer as an example.
README File:
You must include a README
file in the
meta-
directory.
See the
bsp_name
README
file for the Raspberry Pi BSP in the meta-raspberrypi
BSP layer
as an example.
At a minimum, the README
file should
contain the following:
A brief description about the hardware the BSP targets.
A list of all the dependencies on which a BSP layer depends. These dependencies are typically a list of required layers needed to build the BSP. However, the dependencies should also contain information regarding any other dependencies the BSP might have.
Any required special licensing information. For example, this information includes information on special variables needed to satisfy a EULA, or instructions on information needed to build or distribute binaries built from the BSP Metadata.
The name and contact information for the BSP layer maintainer. This is the person to whom patches and questions should be sent. For information on how to find the right person, see the "How to Submit a Change" section in the Yocto Project Development Manual.
Instructions on how to build the BSP using the BSP layer.
Instructions on how to boot the BSP build from the BSP layer.
Instructions on how to boot the binary images
contained in the binary
directory,
if present.
Information on any known bugs or issues that users should know about when either building or booting the BSP binaries.
README.sources File:
You must include a README.sources
in the
meta-
directory.
This file specifies exactly where you can find the sources used to
generate the binary images contained in the
bsp_name
binary
directory, if present.
Layer Configuration File:
You must include a conf/layer.conf
in the
meta-
directory.
This file identifies the bsp_name
meta-
BSP layer as a layer to the build system.bsp_name
Machine Configuration File:
You must include one or more
conf/machine/
files in the bsp_name
.confmeta-
directory.
These configuration files define machine targets that can be built
using the BSP layer.
Multiple machine configuration files define variations of machine
configurations that are supported by the BSP.
If a BSP supports multiple machine variations, you need to
adequately describe each variation in the BSP
bsp_name
README
file.
Do not use multiple machine configuration files to describe disparate
hardware.
If you do have very different targets, you should create separate
BSP layers for each target.
meta-yocto-bsp
layer).
Such considerations are outside the scope of this document.
Following are recommendations for a released BSP that conforms to the Yocto Project:
Bootable Images: BSP releases can contain one or more bootable images. Including bootable images allows users to easily try out the BSP on their own hardware.
In some cases, it might not be convenient to include a bootable image. In this case, you might want to make two versions of the BSP available: one that contains binary images, and one that does not. The version that does not contain bootable images avoids unnecessary download times for users not interested in the images.
If you need to distribute a BSP and include bootable images or build kernel and
filesystems meant to allow users to boot the BSP for evaluation
purposes, you should put the images and artifacts within a
binary/
subdirectory located in the
meta-
directory.
bsp_name
Use a Yocto Linux Kernel:
Kernel recipes in the BSP should be based on a Yocto Linux kernel.
Basing your recipes on these kernels reduces the costs for maintaining
the BSP and increases its scalability.
See the Yocto Linux Kernel
category in the
Source Repositories
for these kernels.
If you plan on customizing a recipe for a particular BSP, you need to do the following:
Create a .bbappend
file for the modified recipe.
For information on using append files, see the
"Using .bbappend Files"
section in the Yocto Project Development Manual.
Ensure your directory structure in the BSP layer that supports your machine is such that it can be found by the build system. See the example later in this section for more information.
Put the append file in a directory whose name matches
the machine's name and is located in an appropriate
sub-directory inside the BSP layer (i.e.
recipes-bsp
, recipes-graphics
,
recipes-core
, and so forth).
Place the BSP-specific files in the proper directory inside the BSP layer. How expansive the layer is affects where you must place these files. For example, if your layer supports several different machine types, you need to be sure your layer's directory structure includes hierarchy that separates the files out according to machine. If your layer does not support multiple machines, the layer would not have that additional hierarchy and the files would obviously not be able to reside in a machine-specific directory.
Following is a specific example to help you better understand the process.
Consider an example that customizes a recipe by adding
a BSP-specific configuration file named interfaces
to the
init-ifupdown_1.0.bb
recipe for machine "xyz" where the
BSP layer also supports several other machines.
Do the following:
Edit the init-ifupdown_1.0.bbappend
file so that it
contains the following:
FILESEXTRAPATHS_prepend := "${THISDIR}/files:"
The append file needs to be in the
meta-xyz/recipes-core/init-ifupdown
directory.
Create and place the new interfaces
configuration file in the BSP's layer here:
meta-xyz/recipes-core/init-ifupdown/files/xyz-machine-one/interfaces
meta-xyz
layer did not support
multiple machines, you would place the
interfaces
configuration file in the
layer here:
meta-xyz/recipes-core/init-ifupdown/files/interfaces
The
FILESEXTRAPATHS
variable in the append files extends the search path
the build system uses to find files during the build.
Consequently, for this example you need to have the
files
directory in the same location
as your append file.
In some cases, a BSP contains separately licensed Intellectual Property (IP) for a component or components. For these cases, you are required to accept the terms of a commercial or other type of license that requires some kind of explicit End User License Agreement (EULA). Once the license is accepted, the OpenEmbedded build system can then build and include the corresponding component in the final BSP image. If the BSP is available as a pre-built image, you can download the image after agreeing to the license or EULA.
You could find that some separately licensed components that are essential for normal operation of the system might not have an unencumbered (or free) substitute. Without these essential components, the system would be non-functional. Then again, you might find that other licensed components that are simply 'good-to-have' or purely elective do have an unencumbered, free replacement component that you can use rather than agreeing to the separately licensed component. Even for components essential to the system, you might find an unencumbered component that is not identical but will work as a less-capable version of the licensed version in the BSP recipe.
For cases where you can substitute a free component and still maintain the system's functionality, the "Downloads" page from the Yocto Project website's makes available de-featured BSPs that are completely free of any IP encumbrances. For these cases, you can use the substitution directly and without any further licensing requirements. If present, these fully de-featured BSPs are named appropriately different as compared to the names of the respective encumbered BSPs. If available, these substitutions are your simplest and most preferred options. Use of these substitutions of course assumes the resulting functionality meets system requirements.
If however, a non-encumbered version is unavailable or it provides unsuitable functionality or quality, you can use an encumbered version.
A couple different methods exist within the OpenEmbedded build system to satisfy the licensing requirements for an encumbered BSP. The following list describes them in order of preference:
Use the
LICENSE_FLAGS
variable to define the recipes that have commercial or other
types of specially-licensed packages:
For each of those recipes, you can
specify a matching license string in a
local.conf
variable named
LICENSE_FLAGS_WHITELIST
.
Specifying the matching license string signifies that you agree to the license.
Thus, the build system can build the corresponding recipe and include
the component in the image.
See the
"Enabling
Commercially Licensed Recipes" section in the Yocto Project Reference
Manual for details on how to use these variables.
If you build as you normally would, without
specifying any recipes in the
LICENSE_FLAGS_WHITELIST
, the build stops and
provides you with the list of recipes that you have
tried to include in the image that need entries in
the LICENSE_FLAGS_WHITELIST
.
Once you enter the appropriate license flags into the whitelist,
restart the build to continue where it left off.
During the build, the prompt will not appear again
since you have satisfied the requirement.
Once the appropriate license flags are on the white list
in the LICENSE_FLAGS_WHITELIST
variable, you
can build the encumbered image with no change at all
to the normal build process.
Get a pre-built version of the BSP:
You can get this type of BSP by visiting the
"Downloads" page of the
Yocto Project website.
You can download BSP tarballs that contain proprietary components
after agreeing to the licensing
requirements of each of the individually encumbered
packages as part of the download process.
Obtaining the BSP this way allows you to access an encumbered
image immediately after agreeing to the
click-through license agreements presented by the
website.
Note that if you want to build the image
yourself using the recipes contained within the BSP
tarball, you will still need to create an
appropriate LICENSE_FLAGS_WHITELIST
to match the
encumbered recipes in the BSP.
The Yocto Project includes a couple of tools that enable
you to create a BSP layer
from scratch and do basic configuration and maintenance
of the kernel without ever looking at a Metadata file.
These tools are yocto-bsp
and yocto-kernel
,
respectively.
The following sections describe the common location and help features as well
as provide details for the
yocto-bsp
and yocto-kernel
tools.
Designed to have a command interface somewhat like
Git, each
tool is structured as a set of sub-commands under a
top-level command.
The top-level command (yocto-bsp
or yocto-kernel
) itself does
nothing but invoke or provide help on the sub-commands
it supports.
Both tools reside in the scripts/
subdirectory
of the Source Directory.
Consequently, to use the scripts, you must source
the
environment just as you would when invoking a build:
$ source oe-init-build-env build_dir
The most immediately useful function is to get help on both tools.
The built-in help system makes it easy to drill down at
any time and view the syntax required for any specific command.
Simply enter the name of the command with the help
switch:
$ yocto-bsp help Usage: Create a customized Yocto BSP layer. usage: yocto-bsp [--version] [--help] COMMAND [ARGS] Current 'yocto-bsp' commands are: create Create a new Yocto BSP list List available values for options and BSP properties See 'yocto-bsp help COMMAND' for more information on a specific command. Options: --version show program's version number and exit -h, --help show this help message and exit -D, --debug output debug information
Similarly, entering just the name of a sub-command shows the detailed usage for that sub-command:
$ yocto-bsp create ERROR:root:Wrong number of arguments, exiting Usage: Create a new Yocto BSP usage: yocto-bsp create <bsp-name> <karch> [-o <DIRNAME> | --outdir <DIRNAME>] [-i <JSON PROPERTY FILE> | --infile <JSON PROPERTY_FILE>] This command creates a Yocto BSP based on the specified parameters. The new BSP will be a new Yocto BSP layer contained by default within the top-level directory specified as 'meta-bsp-name'. The -o option can be used to place the BSP layer in a directory with a different name and location. The value of the 'karch' parameter determines the set of files that will be generated for the BSP, along with the specific set of 'properties' that will be used to fill out the BSP-specific portions of the BSP. The possible values for the 'karch' parameter can be listed via 'yocto-bsp list karch'. ...
For any sub-command, you can use the word "help" option just before the sub-command to get more extensive documentation:
$ yocto-bsp help create NAME yocto-bsp create - Create a new Yocto BSP SYNOPSIS yocto-bsp create <bsp-name> <karch> [-o <DIRNAME> | --outdir <DIRNAME>] [-i <JSON PROPERTY FILE> | --infile <JSON PROPERTY_FILE>] DESCRIPTION This command creates a Yocto BSP based on the specified parameters. The new BSP will be a new Yocto BSP layer contained by default within the top-level directory specified as 'meta-bsp-name'. The -o option can be used to place the BSP layer in a directory with a different name and location. ...
Now that you know where these two commands reside and how to access information on them, you should find it relatively straightforward to discover the commands necessary to create a BSP and perform basic kernel maintenance on that BSP using the tools.
yocto-layer
tool to create
a "generic" layer.
For information on this tool, see the
"Creating a General Layer Using the yocto-layer Script"
section in the Yocto Project Development Guide.
The next sections provide a concrete starting point to expand on a few points that might not be immediately obvious or that could use further explanation.
The yocto-bsp
script creates a new
BSP layer for any architecture supported
by the Yocto Project, as well as QEMU versions of the same.
The default mode of the script's operation is to prompt you for information needed
to generate the BSP layer.
For the current set of BSPs, the script prompts you for various important parameters such as:
The kernel to use
The branch of that kernel to use (or re-use)
Whether or not to use X, and if so, which drivers to use
Whether to turn on SMP
Whether the BSP has a keyboard
Whether the BSP has a touchscreen
Remaining configurable items associated with the BSP
You use the yocto-bsp create
sub-command to create
a new BSP layer.
This command requires you to specify a particular kernel architecture
(karch
) on which to base the BSP.
Assuming you have sourced the environment, you can use the
yocto-bsp list karch
sub-command to list the
architectures available for BSP creation as follows:
$ yocto-bsp list karch Architectures available: powerpc x86_64 i386 arm qemu mips mips64
The remainder of this section presents an example that uses
myarm
as the machine name and qemu
as the machine architecture.
Of the available architectures, qemu
is the only architecture
that causes the script to prompt you further for an actual architecture.
In every other way, this architecture is representative of how creating a BSP for
an actual machine would work.
The reason the example uses this architecture is because it is an emulated architecture
and can easily be followed without requiring actual hardware.
As the yocto-bsp create
command runs, default values for
the prompts appear in brackets.
Pressing enter without supplying anything on the command line or pressing enter
with an invalid response causes the script to accept the default value.
Once the script completes, the new meta-myarm
BSP layer
is created in the current working directory.
This example assumes you have sourced the
oe-init-build-env
setup script.
Following is the complete example:
$ yocto-bsp create myarm qemu Checking basic git connectivity... Done. Which qemu architecture would you like to use? [default: i386] 1) i386 (32-bit) 2) x86_64 (64-bit) 3) ARM (32-bit) 4) PowerPC (32-bit) 5) MIPS (32-bit) 6) MIPS64 (64-bit) 3 Would you like to use the default (4.8) kernel? (y/n) [default: y] Do you need a new machine branch for this BSP (the alternative is to re-use an existing branch)? [y/n] [default: y] Getting branches from remote repo git://git.yoctoproject.org/linux-yocto-4.8.git... Please choose a machine branch to base this BSP on: [default: standard/base] 1) standard/arm-versatile-926ejs 2) standard/base 3) standard/beaglebone 4) standard/edgerouter 5) standard/fsl-mpc8315e-rdb 6) standard/mti-malta32 7) standard/mti-malta64 8) standard/qemuarm64 9) standard/qemuppc 1 Would you like SMP support? (y/n) [default: y] Does your BSP have a touchscreen? (y/n) [default: n] Does your BSP have a keyboard? (y/n) [default: y] New qemu BSP created in meta-myarm
Take a closer look at the example now:
For the QEMU architecture, the script first prompts you for which emulated architecture to use. In the example, we use the ARM architecture.
The script then prompts you for the kernel. The default 4.8 kernel is acceptable. So, the example accepts the default. If you enter 'n', the script prompts you to further enter the kernel you do want to use.
Next, the script asks whether you would like to have a new branch created especially for your BSP in the local Linux Yocto Kernel Git repository . If not, then the script re-uses an existing branch.
In this example, the default (or "yes") is accepted. Thus, a new branch is created for the BSP rather than using a common, shared branch. The new branch is the branch committed to for any patches you might later add. The reason a new branch is the default is that typically new BSPs do require BSP-specific patches. The tool thus assumes that most of time a new branch is required.
Regardless of which choice you make in the previous step,
you are now given the opportunity to select a particular machine branch on
which to base your new BSP-specific machine branch
(or to re-use if you had elected to not create a new branch).
Because this example is generating an ARM-based BSP, the example
uses #1
at the prompt, which selects the ARM-versatile branch.
The remainder of the prompts are routine. Defaults are accepted for each.
By default, the script creates the new BSP Layer in the
current working directory of the
Source Directory,
(i.e. poky/build
).
Once the BSP Layer is created, you must add it to your
bblayers.conf
file.
Here is an example:
BBLAYERS = ? " \ /usr/local/src/yocto/meta \ /usr/local/src/yocto/meta-poky \ /usr/local/src/yocto/meta-yocto-bsp \ /usr/local/src/yocto/meta-myarm \ "
Adding the layer to this file allows the build system to build the BSP and
the yocto-kernel
tool to be able to find the layer and
other Metadata it needs on which to operate.
Assuming you have created a BSP Layer using
yocto-bsp
and you added it to your
BBLAYERS
variable in the bblayers.conf
file, you can now use
the yocto-kernel
script to add patches and configuration
items to the BSP's kernel.
The yocto-kernel
script allows you to add, remove, and list patches
and kernel config settings to a BSP's kernel
.bbappend
file.
All you need to do is use the appropriate sub-command.
Recall that the easiest way to see exactly what sub-commands are available
is to use the yocto-kernel
built-in help as follows:
$ yocto-kernel --help Usage: Modify and list Yocto BSP kernel config items and patches. usage: yocto-kernel [--version] [--help] COMMAND [ARGS] Current 'yocto-kernel' commands are: config list List the modifiable set of bare kernel config options for a BSP config add Add or modify bare kernel config options for a BSP config rm Remove bare kernel config options from a BSP patch list List the patches associated with a BSP patch add Patch the Yocto kernel for a BSP patch rm Remove patches from a BSP feature list List the features used by a BSP feature add Have a BSP use a feature feature rm Have a BSP stop using a feature features list List the features available to BSPs feature describe Describe a particular feature feature create Create a new BSP-local feature feature destroy Remove a BSP-local feature See 'yocto-kernel help COMMAND' for more information on a specific command. Options: --version show program's version number and exit -h, --help show this help message and exit -D, --debug output debug information
The yocto-kernel patch add
sub-command allows you to add a
patch to a BSP.
The following example adds two patches to the myarm
BSP:
$ yocto-kernel patch add myarm ~/test.patch Added patches: test.patch $ yocto-kernel patch add myarm ~/yocto-testmod.patch Added patches: yocto-testmod.patch
You can verify patches have been added by using the
yocto-kernel patch list
sub-command.
Here is an example:
$ yocto-kernel patch list myarm The current set of machine-specific patches for myarm is: 1) test.patch 2) yocto-testmod.patch
You can also use the yocto-kernel
script to
remove a patch using the yocto-kernel patch rm
sub-command.
Here is an example:
$ yocto-kernel patch rm myarm Specify the patches to remove: 1) test.patch 2) yocto-testmod.patch 1 Removed patches: test.patch
Again, using the yocto-kernel patch list
sub-command,
you can verify that the patch was in fact removed:
$ yocto-kernel patch list myarm The current set of machine-specific patches for myarm is: 1) yocto-testmod.patch
In a completely similar way, you can use the yocto-kernel config add
sub-command to add one or more kernel config item settings to a BSP.
The following commands add a couple of config items to the
myarm
BSP:
$ yocto-kernel config add myarm CONFIG_MISC_DEVICES=y Added item: CONFIG_MISC_DEVICES=y $ yocto-kernel config add myarm CONFIG_YOCTO_TESTMOD=y Added item: CONFIG_YOCTO_TESTMOD=y
You can list the config items now associated with the BSP. Doing so shows you the config items you added as well as others associated with the BSP:
$ yocto-kernel config list myarm The current set of machine-specific kernel config items for myarm is: 1) CONFIG_MISC_DEVICES=y 2) CONFIG_YOCTO_TESTMOD=y
Finally, you can remove one or more config items using the
yocto-kernel config rm
sub-command in a manner
completely analogous to yocto-kernel patch rm
.