
Darren Hart, Intel Corporation <darren.hart@intel.com>

by Darren Hart
Copyright © 2010-2014 Linux Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Share Alike 2.0 UK: England & Wales [http://creativecommons.org/licenses/by-sa/2.0/uk/] as published
by Creative Commons.

Note
For the latest version of this manual associated with this Yocto Project release, see the Yocto Project Linux
Kernel Development Manual [http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html] from the
Yocto Project website.

http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html

iii

Table of Contents
1. Introduction ... 1

1.1. Overview .. 1
1.2. Other Resources ... 1

2. Common Tasks .. 3
2.1. Creating and Preparing a Layer ... 3
2.2. Modifying an Existing Recipe ... 3

2.2.1. Creating the Append File .. 3
2.2.2. Applying Patches .. 4
2.2.3. Changing the Configuration .. 4

2.3. Using an Iterative Development Process .. 5
2.3.1. "-dirty" String .. 5
2.3.2. Generating Configuration Files .. 6
2.3.3. Modifying Source Code ... 7

2.4. Working With Your Own Sources .. 8
2.5. Working with Out-of-Tree Modules .. 9

2.5.1. Building Out-of-Tree Modules on the Target ... 9
2.5.2. Incorporating Out-of-Tree Modules ... 9

2.6. Inspecting Changes and Commits .. 11
2.6.1. What Changed in a Kernel? .. 11
2.6.2. Showing a Particular Feature or Branch Change .. 11

3. Working with Advanced Metadata .. 13
3.1. Overview .. 13
3.2. Using Kernel Metadata in a Recipe .. 13
3.3. Kernel Metadata Location .. 14

3.3.1. Recipe-Space Metadata .. 14
3.3.2. In-Tree Metadata .. 15

3.4. Kernel Metadata Syntax .. 16
3.4.1. Configuration ... 17
3.4.2. Patches .. 17
3.4.3. Features ... 18
3.4.4. Kernel Types .. 18
3.4.5. BSP Descriptions .. 19

3.5. Organizing Your Source ... 21
3.5.1. Encapsulating Patches .. 21
3.5.2. Machine Branches .. 22
3.5.3. Feature Branches ... 22

3.6. SCC Description File Reference .. 23
A. Advanced Kernel Concepts ... 24

A.1. Yocto Project Kernel Development and Maintenance ... 24
A.2. Kernel Architecture ... 24

A.2.1. Overview ... 25
A.2.2. Branching Strategy and Workflow ... 26
A.2.3. Source Code Manager - Git .. 27

B. Kernel Maintenance ... 28
B.1. Tree Construction .. 28
B.2. Build Strategy ... 29

C. Kernel Development FAQ ... 31
C.1. Common Questions and Solutions ... 31

1

Chapter 1. Introduction
1.1. Overview
Regardless of how you intend to make use of the Yocto Project, chances are you will work with
the Linux kernel. This manual provides background information on the Yocto Linux kernel Metadata
[http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata], describes common
tasks you can perform using the kernel tools, and shows you how to use the kernel Metadata needed
to work with the kernel inside the Yocto Project.

Each Yocto Project release has a set of linux-yocto recipes, whose Git repositories you can view in
the Yocto Source Repositories [http://git.yoctoproject.org] under the "Yocto Linux Kernel" heading.
New recipes for the release track the latest upstream developments and introduce newly supported
platforms. Previous recipes in the release are refreshed and supported for at least one additional
release. As they align, these previous releases are updated to include the latest from the Long Term
Support Initiative (LTSI) project. Also included is a linux-yocto development recipe (linux-yocto-
dev.bb) should you want to work with the very latest in upstream Linux kernel development and
kernel Metadata development.

The Yocto Project also provides a powerful set of kernel tools for managing Linux kernel sources and
configuration data. You can use these tools to make a single configuration change, apply multiple
patches, or work with your own kernel sources.

In particular, the kernel tools allow you to generate configuration fragments that specify only what
you must, and nothing more. Configuration fragments only need to contain the highest level visible
CONFIG options as presented by the Linux kernel menuconfig system. Contrast this against a complete
Linux kernel .config, which includes all the automatically selected CONFIG options. This efficiency
reduces your maintenance effort and allows you to further separate your configuration in ways that
make sense for your project. A common split separates policy and hardware. For example, all your
kernels might support the proc and sys filesystems, but only specific boards require sound, USB, or
specific drivers. Specifying these configurations individually allows you to aggregate them together
as needed, but maintains them in only one place. Similar logic applies to separating source changes.

If you do not maintain your own kernel sources and need to make only minimal changes to the sources,
the released recipes provide a vetted base upon which to layer your changes. Doing so allows you
to benefit from the continual kernel integration and testing performed during development of the
Yocto Project.

If, instead, you have a very specific Linux kernel source tree and are unable to align with one of the
official linux-yocto recipes, an alternative exists by which you can use the Yocto Project Linux kernel
tools with your own kernel sources.

1.2. Other Resources
The sections that follow provide instructions for completing specific Linux kernel development tasks.
These instructions assume you are comfortable working with BitBake [http://openembedded.org/
wiki/Bitbake] recipes and basic open-source development tools. Understanding these concepts will
facilitate the process of working with the kernel recipes. If you find you need some additional
background, please be sure to review and understand the following documentation:

• Yocto Project Quick Start [http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-
qs.html]

• The "Modifying Temporary Source Code [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#modifying-temporary-source-code]" section in the Yocto Project Development Manual

• The "Understanding and Creating Layers [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#understanding-and-creating-layers]" section in the Yocto Project Development
Manual

• The "Modifying the Kernel [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#modifying-the-kernel]" section in the Yocto Project Development Manual.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://git.yoctoproject.org
http://git.yoctoproject.org
http://openembedded.org/wiki/Bitbake
http://openembedded.org/wiki/Bitbake
http://openembedded.org/wiki/Bitbake
http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#modifying-temporary-source-code
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#modifying-temporary-source-code
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#modifying-temporary-source-code
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#modifying-the-kernel
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#modifying-the-kernel
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#modifying-the-kernel

Introduction

2

Finally, while this document focuses on the manual creation of recipes, patches, and configuration
files, the Yocto Project Board Support Package (BSP) tools are available to automate this process with
existing content and work well to create the initial framework and boilerplate code. For details on
these tools, see the "Using the Yocto Project's BSP Tools [http://www.yoctoproject.org/docs/1.8/bsp-
guide/bsp-guide.html#using-the-yocto-projects-bsp-tools]" section in the Yocto Project Board Support
Package (BSP) Developer's Guide.

http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html#using-the-yocto-projects-bsp-tools
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html#using-the-yocto-projects-bsp-tools
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html#using-the-yocto-projects-bsp-tools

3

Chapter 2. Common Tasks
This chapter presents several common tasks you perform when you work with the Yocto Project Linux
kernel. These tasks include preparing a layer, modifying an existing recipe, iterative development,
working with your own sources, and incorporating out-of-tree modules.

Note
The examples presented in this chapter work with the Yocto Project 1.2.2 Release and forward.

2.1. Creating and Preparing a Layer
If you are going to be modifying kernel recipes, it is recommended that you create and prepare your
own layer in which to do your work. Your layer contains its own BitBake [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#bitbake-term] append files (.bbappend) and provides a
convenient mechanism to create your own recipe files (.bb). For details on how to create and work
with layers, see the following sections in the Yocto Project Development Manual:

• "Understanding and Creating Layers [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#understanding-and-creating-layers]" for general information on layers and how to
create layers.

• "Set Up Your Layer for the Build [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#set-up-your-layer-for-the-build]" for specific instructions on setting up a layer for
kernel development.

2.2. Modifying an Existing Recipe
In many cases, you can customize an existing linux-yocto recipe to meet the needs of your project.
Each release of the Yocto Project provides a few Linux kernel recipes from which you can choose.
These are located in the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#source-directory] in meta/recipes-kernel/linux.

Modifying an existing recipe can consist of the following:

• Creating the append file

• Applying patches

• Changing the configuration

Before modifying an existing recipe, be sure that you have created a minimal, custom layer from
which you can work. See the "Creating and Preparing a Layer" section for some general resources. You
can also see the "Set Up Your Layer for the Build [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#set-up-your-layer-for-the-build]" section of the Yocto Project Development Manual
for a detailed example.

2.2.1. Creating the Append File
You create this file in your custom layer. You also name it accordingly based on the linux-yocto
recipe you are using. For example, if you are modifying the meta/recipes-kernel/linux/linux-
yocto_3.4.bb recipe, the append file will typically be located as follows within your custom layer:

 your-layer/recipes-kernel/linux/linux-yocto_3.4.bbappend

The append file should initially extend the FILESPATH [http://www.yoctoproject.org/docs/1.8/
ref-manual/ref-manual.html#var-FILESPATH] search path by prepending the directory that
contains your files to the FILESEXTRAPATHS [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#var-FILESEXTRAPATHS] variable as follows:

 FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#set-up-your-layer-for-the-build
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#set-up-your-layer-for-the-build
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#set-up-your-layer-for-the-build
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#set-up-your-layer-for-the-build
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#set-up-your-layer-for-the-build
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#set-up-your-layer-for-the-build
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESPATH
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESPATH
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESPATH
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS

Common Tasks

4

The path ${THISDIR [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-
THISDIR]}/${PN [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PN]}
expands to "linux-yocto" in the current directory for this example. If you add any new files that modify
the kernel recipe and you have extended FILESPATH as described above, you must place the files
in your layer in the following area:

 your-layer/recipes-kernel/linux/linux-yocto/

Note
If you are working on a new machine Board Support Package (BSP), be sure to refer to the
Yocto Project Board Support Package (BSP) Developer's Guide [http://www.yoctoproject.org/
docs/1.8/bsp-guide/bsp-guide.html].

2.2.2. Applying Patches
If you have a single patch or a small series of patches that you want to apply to the Linux kernel
source, you can do so just as you would with any other recipe. You first copy the patches to the path
added to FILESEXTRAPATHS [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-
FILESEXTRAPATHS] in your .bbappend file as described in the previous section, and then reference
them in SRC_URI [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI]
statements.

For example, you can apply a three-patch series by adding the following lines to your linux-yocto
.bbappend file in your layer:

 SRC_URI += "file://0001-first-change.patch"
 SRC_URI += "file://0002-first-change.patch"
 SRC_URI += "file://0003-first-change.patch"

The next time you run BitBake to build the Linux kernel, BitBake detects the change in the recipe and
fetches and applies the patches before building the kernel.

For a detailed example showing how to patch the kernel, see the "Patching the Kernel [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#patching-the-kernel]" section in the
Yocto Project Development Manual.

2.2.3. Changing the Configuration
You can make wholesale or incremental changes to the Linux kernel .config file by including a
defconfig and by specifying configuration fragments in the SRC_URI [http://www.yoctoproject.org/
docs/1.8/ref-manual/ref-manual.html#var-SRC_URI].

If you have a final Linux kernel .config file you want to use, copy it to a directory named files,
which must be in your layer's recipes-kernel/linux directory, and name the file "defconfig". Then,
add the following lines to your linux-yocto .bbappend file in your layer:

 FILESEXTRAPATHS_prepend := "${THISDIR}/files:"
 SRC_URI += "file://defconfig"

The SRC_URI tells the build system how to search for the file, while the FILESEXTRAPATHS
[http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS] extends
the FILESPATH [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESPATH]
variable (search directories) to include the files directory you created for the configuration changes.

Note
The build system applies the configurations from the .config file before applying any
subsequent configuration fragments. The final kernel configuration is a combination of the

http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-THISDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-THISDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-THISDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PN
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PN
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#patching-the-kernel
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#patching-the-kernel
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#patching-the-kernel
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESPATH
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESPATH

Common Tasks

5

configurations in the .config file and any configuration fragments you provide. You need to
realize that if you have any configuration fragments, the build system applies these on top
of and after applying the existing .config file configurations.

Generally speaking, the preferred approach is to determine the incremental change you want to make
and add that as a configuration fragment. For example, if you want to add support for a basic serial
console, create a file named 8250.cfg in the files directory with the following content (without
indentation):

 CONFIG_SERIAL_8250=y
 CONFIG_SERIAL_8250_CONSOLE=y
 CONFIG_SERIAL_8250_PCI=y
 CONFIG_SERIAL_8250_NR_UARTS=4
 CONFIG_SERIAL_8250_RUNTIME_UARTS=4
 CONFIG_SERIAL_CORE=y
 CONFIG_SERIAL_CORE_CONSOLE=y

Next, include this configuration fragment and extend the FILESPATH variable in your .bbappend file:

 FILESEXTRAPATHS_prepend := "${THISDIR}/files:"
 SRC_URI += "file://8250.cfg"

The next time you run BitBake to build the Linux kernel, BitBake detects the change in the recipe and
fetches and applies the new configuration before building the kernel.

For a detailed example showing how to configure the kernel, see the "Configuring the Kernel [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#configuring-the-kernel]" section in the
Yocto Project Development Manual.

2.3. Using an Iterative Development Process
If you do not have existing patches or configuration files, you can iteratively generate them from
within the BitBake build environment as described within this section. During an iterative workflow,
running a previously completed BitBake task causes BitBake to invalidate the tasks that follow the
completed task in the build sequence. Invalidated tasks rebuild the next time you run the build using
BitBake.

As you read this section, be sure to substitute the name of your Linux kernel recipe for the term
"linux-yocto".

2.3.1. "-dirty" String
If kernel images are being built with "-dirty" on the end of the version string, this simply means that
modifications in the source directory have not been committed.

 $ git status

You can use the above Git command to report modified, removed, or added files. You should commit
those changes to the tree regardless of whether they will be saved, exported, or used. Once you
commit the changes, you need to rebuild the kernel.

To force a pickup and commit of all such pending changes, enter the following:

 $ git add .
 $ git commit -s -a -m "getting rid of -dirty"

Next, rebuild the kernel.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#configuring-the-kernel
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#configuring-the-kernel
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#configuring-the-kernel

Common Tasks

6

2.3.2. Generating Configuration Files
You can manipulate the .config file used to build a linux-yocto recipe with the menuconfig command
as follows:

 $ bitbake linux-yocto -c menuconfig

This command starts the Linux kernel configuration tool, which allows you to prepare a new .config
file for the build. When you exit the tool, be sure to save your changes at the prompt.

The resulting .config file is located in ${WORKDIR [http://www.yoctoproject.org/docs/1.8/ref-
manual/ref-manual.html#var-WORKDIR]} under the linux-${MACHINE [http://www.yoctoproject.org/
docs/1.8/ref-manual/ref-manual.html#var-MACHINE]}-${KTYPE [http://www.yoctoproject.org/
docs/1.8/ref-manual/ref-manual.html#var-KTYPE]}-build directory. You can use the entire
.config file as the defconfig file as described in the "Changing the Configuration" section.

A better method is to create a configuration fragment using the differences between two configuration
files: one previously created and saved, and one freshly created using the menuconfig tool.

To create a configuration fragment using this method, follow these steps:

1. Complete a build at least through the kernel configuration task as follows:

 $ bitbake linux-yocto -c kernel_configme -f

2. Run the menuconfig command:

 $ bitbake linux-yocto -c menuconfig

3. Run the diffconfig command to prepare a configuration fragment. The resulting file
fragment.cfg will be placed in the ${WORKDIR [http://www.yoctoproject.org/docs/1.8/ref-manual/
ref-manual.html#var-WORKDIR]} directory:

 $ bitbake linux-yocto -c diffconfig

The diffconfig command creates a file that is a list of Linux kernel CONFIG_ assignments. See the
"Changing the Configuration" section for information on how to use the output as a configuration
fragment.

Note
You can also use this method to create configuration fragments for a BSP. See the "BSP
Descriptions" section for more information.

The kernel tools also provide configuration validation. You can use these tools to produce warnings
for when a requested configuration does not appear in the final .config file or when you override
a policy configuration in a hardware configuration fragment. Here is an example with some sample
output of the command that runs these tools:

 $ bitbake linux-yocto -c kernel_configcheck -f

 ...

 NOTE: validating kernel configuration
 This BSP sets 3 invalid/obsolete kernel options.
 These config options are not offered anywhere within this kernel.
 The full list can be found in your kernel src dir at:
 meta/cfg/standard/mybsp/invalid.cfg

http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-WORKDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-WORKDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-WORKDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KTYPE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KTYPE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KTYPE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-WORKDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-WORKDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-WORKDIR

Common Tasks

7

 This BSP sets 21 kernel options that are possibly non-hardware related.
 The full list can be found in your kernel src dir at:
 meta/cfg/standard/mybsp/specified_non_hdw.cfg

 WARNING: There were 2 hardware options requested that do not
 have a corresponding value present in the final ".config" file.
 This probably means you are not't getting the config you wanted.
 The full list can be found in your kernel src dir at:
 meta/cfg/standard/mybsp/mismatch.cfg

The output describes the various problems that you can encounter along with where to find the
offending configuration items. You can use the information in the logs to adjust your configuration
files and then repeat the kernel_configme and kernel_configcheck commands until they produce
no warnings.

For more information on how to use the menuconfig tool, see the "Using menuconfig
[http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-menuconfig]" section in
the Yocto Project Development Manual.

2.3.3. Modifying Source Code
You can experiment with source code changes and create a simple patch without leaving the BitBake
environment. To get started, be sure to complete a build at least through the kernel configuration task:

 $ bitbake linux-yocto -c kernel_configme -f

Taking this step ensures you have the sources prepared and the configuration completed.
You can find the sources in the ${WORKDIR [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#var-WORKDIR]}/linux directory.

You can edit the sources as you would any other Linux source tree. However, keep in mind
that you will lose changes if you trigger the do_fetch [http://www.yoctoproject.org/docs/1.8/
ref-manual/ref-manual.html#ref-tasks-fetch] task for the recipe. You can avoid triggering this
task by not using BitBake to run the cleanall [http://www.yoctoproject.org/docs/1.8/ref-manual/
ref-manual.html#ref-tasks-cleanall], cleansstate [http://www.yoctoproject.org/docs/1.8/ref-manual/
ref-manual.html#ref-tasks-cleansstate], or forced fetch [http://www.yoctoproject.org/docs/1.8/ref-
manual/ref-manual.html#ref-tasks-fetch] commands. Also, do not modify the recipe itself while
working with temporary changes or BitBake might run the fetch command depending on the changes
to the recipe.

To test your temporary changes, instruct BitBake to run the compile again. The -f option forces the
command to run even though BitBake might think it has already done so:

 $ bitbake linux-yocto -c compile -f

If the compile fails, you can update the sources and repeat the compile. Once compilation
is successful, you can inspect and test the resulting build (i.e. kernel, modules, and so forth)
from the Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-
directory]:

 ${WORKDIR}/linux-${MACHINE}-${KTYPE}-build

Alternatively, you can run the deploy command to place the kernel image in the tmp/deploy/images
directory:

 $ bitbake linux-yocto -c deploy

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-menuconfig
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-menuconfig
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-WORKDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-WORKDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-WORKDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-fetch
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-fetch
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-fetch
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-cleanall
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-cleanall
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-cleanall
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-cleansstate
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-cleansstate
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-cleansstate
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-fetch
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-fetch
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-fetch
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

Common Tasks

8

And, of course, you can perform the remaining installation and packaging steps by issuing:

 $ bitbake linux-yocto

For rapid iterative development, the edit-compile-repeat loop described in this section is preferable
to rebuilding the entire recipe because the installation and packaging tasks are very time consuming.

Once you are satisfied with your source code modifications, you can make them permanent by
generating patches and applying them to the SRC_URI [http://www.yoctoproject.org/docs/1.8/ref-
manual/ref-manual.html#var-SRC_URI] statement as described in the "Applying Patches" section.
If you are not familiar with generating patches, refer to the "Creating the Patch [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-the-patch]" section in the
Yocto Project Development Manual.

2.4. Working With Your Own Sources
If you cannot work with one of the Linux kernel versions supported by existing linux-yocto recipes,
you can still make use of the Yocto Project Linux kernel tooling by working with your own sources.
When you use your own sources, you will not be able to leverage the existing kernel Metadata [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata] and stabilization work of
the linux-yocto sources. However, you will be able to manage your own Metadata in the same format
as the linux-yocto sources. Maintaining format compatibility facilitates converging with linux-yocto
on a future, mutually-supported kernel version.

To help you use your own sources, the Yocto Project provides a linux-yocto custom recipe (linux-
yocto-custom.bb) that uses kernel.org sources and the Yocto Project Linux kernel tools for
managing kernel Metadata. You can find this recipe in the poky Git repository of the Yocto Project
Source Repository [http://git.yoctoproject.org] at:

 poky/meta-skeleton/recipes-kernel/linux/linux-yocto-custom.bb

Here are some basic steps you can use to work with your own sources:

1. Copy the linux-yocto-custom.bb recipe to your layer and give it a meaningful name. The name
should include the version of the Linux kernel you are using (e.g. linux-yocto-myproject_3.5.bb,
where "3.5" is the base version of the Linux kernel with which you would be working).

2. In the same directory inside your layer, create a matching directory to store your patches and
configuration files (e.g. linux-yocto-myproject).

3. Edit the following variables in your recipe as appropriate for your project:

• SRC_URI [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI]: The
SRC_URI should be a Git repository that uses one of the supported Git fetcher protocols (i.e. file,
git, http, and so forth). The skeleton recipe provides an example SRC_URI as a syntax reference.

• LINUX_VERSION [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-
LINUX_VERSION]: The Linux kernel version you are using (e.g. "3.4").

• LINUX_VERSION_EXTENSION [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#var-LINUX_VERSION_EXTENSION]: The Linux kernel CONFIG_LOCALVERSION that is
compiled into the resulting kernel and visible through the uname command.

• SRCREV [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRCREV]: The
commit ID from which you want to build.

• PR [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PR]: Treat this
variable the same as you would in any other recipe. Increment the variable to indicate to the
OpenEmbedded build system that the recipe has changed.

• PV [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PV]: The default PV
assignment is typically adequate. It combines the LINUX_VERSION with the Source Control

http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-the-patch
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-the-patch
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-the-patch
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://git.yoctoproject.org
http://git.yoctoproject.org
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LINUX_VERSION
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LINUX_VERSION
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LINUX_VERSION
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LINUX_VERSION_EXTENSION
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LINUX_VERSION_EXTENSION
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LINUX_VERSION_EXTENSION
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRCREV
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRCREV
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PV
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PV

Common Tasks

9

Manager (SCM) revision as derived from the SRCPV [http://www.yoctoproject.org/docs/1.8/ref-
manual/ref-manual.html#var-SRCPV] variable. The combined results are a string with the
following form:

 3.4.11+git1+68a635bf8dfb64b02263c1ac80c948647cc76d5f_1+218bd8d2022b9852c60d32f0d770931e3cf343e2

While lengthy, the extra verbosity in PV helps ensure you are using the exact sources from which
you intend to build.

• COMPATIBLE_MACHINE [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-
COMPATIBLE_MACHINE]: A list of the machines supported by your new recipe. This variable in the
example recipe is set by default to a regular expression that matches only the empty string, "(^
$)". This default setting triggers an explicit build failure. You must change it to match a list of the
machines that your new recipe supports. For example, to support the qemux86 and qemux86-64
machines, use the following form:

 COMPATIBLE_MACHINE = "qemux86|qemux86-64"

4. Provide further customizations to your recipe as needed just as you would customize an existing
linux-yocto recipe. See the "Modifying an Existing Recipe" section for information.

2.5. Working with Out-of-Tree Modules
This section describes steps to build out-of-tree modules on your target and describes how to
incorporate out-of-tree modules in the build.

2.5.1. Building Out-of-Tree Modules on the Target
If you want to be able to build out-of-tree modules on the target, there are some steps you need to
take on the target that is running your SDK image. Briefly, the kernel-dev package is installed by
default on all *.sdk images. However, you need to create some scripts prior to attempting to build
the out-of-tree modules on the target that is running that image.

Prior to attempting to build the out-of-tree modules, you need to be on the target as root and you
need to change to the /usr/src/kernel directory. Next, make the scripts:

 # cd /usr/src/kernel
 # make scripts

Because all SDK image recipes include dev-pkgs, the kernel-dev packages will be installed as part of
the SDK image. The SDK uses the scripts when building out-of-tree modules. Once you have switched
to that directory and created the scripts, you should be able to build your out-of-tree modules on
the target.

2.5.2. Incorporating Out-of-Tree Modules
While it is always preferable to work with sources integrated into the Linux kernel sources, if you need
an external kernel module, the hello-mod.bb recipe is available as a template from which you can
create your own out-of-tree Linux kernel module recipe.

This template recipe is located in the poky Git repository of the Yocto Project Source Repository [http://
git.yoctoproject.org] at:

 poky/meta-skeleton/recipes-kernel/hello-mod/hello-mod_0.1.bb

To get started, copy this recipe to your layer and give it a meaningful name (e.g. mymodule_1.0.bb).
In the same directory, create a new directory named files where you can store any source files,

http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRCPV
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRCPV
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRCPV
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-COMPATIBLE_MACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-COMPATIBLE_MACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-COMPATIBLE_MACHINE
http://git.yoctoproject.org
http://git.yoctoproject.org
http://git.yoctoproject.org

Common Tasks

10

patches, or other files necessary for building the module that do not come with the sources. Finally,
update the recipe as needed for the module. Typically, you will need to set the following variables:

• DESCRIPTION [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-
DESCRIPTION]

• LICENSE* [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LICENSE]

• SRC_URI [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI]

• PV [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PV]

Depending on the build system used by the module sources, you might need to make some
adjustments. For example, a typical module Makefile looks much like the one provided with the
hello-mod template:

 obj-m := hello.o

 SRC := $(shell pwd)

 all:
 $(MAKE) -C $(KERNEL_SRC) M=$(SRC)

 modules_install:
 $(MAKE) -C $(KERNEL_SRC) M=$(SRC) modules_install
 ...

The important point to note here is the KERNEL_SRC [http://www.yoctoproject.org/docs/1.8/
ref-manual/ref-manual.html#var-KERNEL_SRC] variable. The module [http://www.yoctoproject.org/
docs/1.8/ref-manual/ref-manual.html#ref-classes-module] class sets this variable and the
KERNEL_PATH [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KERNEL_PATH]
variable to ${STAGING_KERNEL_DIR [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#var-STAGING_KERNEL_DIR]} with the necessary Linux kernel build information
to build modules. If your module Makefile uses a different variable, you might want to
override the do_compile() [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-
tasks-compile] step, or create a patch to the Makefile to work with the more typical KERNEL_SRC
or KERNEL_PATH variables.

After you have prepared your recipe, you will likely want to include the module in your images. To do
this, see the documentation for the following variables in the Yocto Project Reference Manual and set
one of them appropriately for your machine configuration file:

• MACHINE_ESSENTIAL_EXTRA_RDEPENDS [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#var-MACHINE_ESSENTIAL_EXTRA_RDEPENDS]

• MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#var-MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS]

• MACHINE_EXTRA_RDEPENDS [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#var-MACHINE_EXTRA_RDEPENDS]

• MACHINE_EXTRA_RRECOMMENDS [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#var-MACHINE_EXTRA_RRECOMMENDS]

Modules are often not required for boot and can be excluded from certain build configurations. The
following allows for the most flexibility:

 MACHINE_EXTRA_RRECOMMENDS += "kernel-module-mymodule"

The value is derived by appending the module filename without the .ko extension to the string
"kernel-module-".

Because the variable is RRECOMMENDS [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#var-RRECOMMENDS] and not a RDEPENDS [http://www.yoctoproject.org/docs/1.8/ref-

http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-DESCRIPTION
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-DESCRIPTION
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-DESCRIPTION
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LICENSE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LICENSE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PV
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PV
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KERNEL_SRC
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KERNEL_SRC
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KERNEL_SRC
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-classes-module
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-classes-module
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-classes-module
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KERNEL_PATH
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KERNEL_PATH
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-STAGING_KERNEL_DIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-STAGING_KERNEL_DIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-STAGING_KERNEL_DIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-compile
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-compile
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#ref-tasks-compile
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_ESSENTIAL_EXTRA_RDEPENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_ESSENTIAL_EXTRA_RDEPENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_ESSENTIAL_EXTRA_RDEPENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_EXTRA_RDEPENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_EXTRA_RDEPENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_EXTRA_RDEPENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_EXTRA_RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_EXTRA_RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_EXTRA_RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-RDEPENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-RDEPENDS

Common Tasks

11

manual/ref-manual.html#var-RDEPENDS] variable, the build will not fail if this module is not available
to include in the image.

2.6. Inspecting Changes and Commits
A common question when working with a kernel is: "What changes have been applied to this tree?"
Rather than using "grep" across directories to see what has changed, you can use Git to inspect or
search the kernel tree. Using Git is an efficient way to see what has changed in the tree.

2.6.1. What Changed in a Kernel?
Following are a few examples that show how to use Git commands to examine changes. These
examples are by no means the only way to see changes.

Note
In the following examples, unless you provide a commit range, kernel.org history is blended
with Yocto Project kernel changes. You can form ranges by using branch names from the
kernel tree as the upper and lower commit markers with the Git commands. You can see the
branch names through the web interface to the Yocto Project source repositories at http://
git.yoctoproject.org/cgit.cgi.

To see a full range of the changes, use the git whatchanged command and specify a commit range
for the branch (<commit>..<commit>).

Here is an example that looks at what has changed in the emenlow branch of the linux-yocto-3.4
kernel. The lower commit range is the commit associated with the standard/base branch, while the
upper commit range is the commit associated with the standard/emenlow branch.

 $ git whatchanged origin/standard/base..origin/standard/emenlow

To see short, one line summaries of changes use the git log command:

 $ git log --oneline origin/standard/base..origin/standard/emenlow

Use this command to see code differences for the changes:

 $ git diff origin/standard/base..origin/standard/emenlow

Use this command to see the commit log messages and the text differences:

 $ git show origin/standard/base..origin/standard/emenlow

Use this command to create individual patches for each change. Here is an example that that creates
patch files for each commit and places them in your Documents directory:

 $ git format-patch -o $HOME/Documents origin/standard/base..origin/standard/emenlow

2.6.2. Showing a Particular Feature or Branch Change
Tags in the Yocto Project kernel tree divide changes for significant features or branches. The git show
<tag> command shows changes based on a tag. Here is an example that shows systemtap changes:

 $ git show systemtap

http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-RDEPENDS
http://git.yoctoproject.org/cgit.cgi
http://git.yoctoproject.org/cgit.cgi

Common Tasks

12

You can use the git branch --contains <tag> command to show the branches that contain a
particular feature. This command shows the branches that contain the systemtap feature:

 $ git branch --contains systemtap

13

Chapter 3. Working with Advanced
Metadata
3.1. Overview
In addition to supporting configuration fragments and patches, the Yocto Project
kernel tools also support rich Metadata [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#metadata] that you can use to define complex policies and Board Support Package
(BSP) support. The purpose of the Metadata and the tools that manage it, known as the kern-tools
(kern-tools-native_git.bb), is to help you manage the complexity of the configuration and sources
used to support multiple BSPs and Linux kernel types.

3.2. Using Kernel Metadata in a Recipe
The kernel sources in the Yocto Project contain kernel Metadata, which is located in the meta branches
of the kernel source Git repositories. This Metadata defines Board Support Packages (BSPs) that
correspond to definitions in linux-yocto recipes for the same BSPs. A BSP consists of an aggregation
of kernel policy and hardware-specific feature enablements. The BSP can be influenced from within
the linux-yocto recipe.

Note
Linux kernel source that contains kernel Metadata is said to be "linux-yocto style" kernel
source. A Linux kernel recipe that inherits from the linux-yocto.inc include file is said to
be a "linux-yocto style" recipe.

Every linux-yocto style recipe must define the KMACHINE [http://www.yoctoproject.org/docs/1.8/
ref-manual/ref-manual.html#var-KMACHINE] variable. This variable is typically set to the
same value as the MACHINE [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-
MACHINE] variable, which is used by BitBake [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#bitbake-term] (e.g. "edgerouter" or "fri2"). Multiple BSPs can reuse the same KMACHINE
name if they are built using the same BSP description. The "fri2" and "fri2-noemgd" BSP combination
in the meta-intel layer is a good example of two BSPs using the same KMACHINE value (i.e. "fri2").
See the BSP Descriptions section for more information.

The linux-yocto style recipes can optionally define the following variables:

 KBRANCH [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KBRANCH]
 KERNEL_FEATURES [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KERNEL_FEATURES]
 KBRANCH_DEFAULT [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KBRANCH_DEFAULT]
 LINUX_KERNEL_TYPE [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LINUX_KERNEL_TYPE]

KBRANCH_DEFAULT defines the Linux kernel source repository's default branch to use to build the Linux
kernel. The value is used as the default for KBRANCH, which can define an alternate branch typically
with a machine override as follows:

 KBRANCH_fri2 = "standard/fri2"

Unless you specify otherwise, KBRANCH_DEFAULT initializes to "master".

LINUX_KERNEL_TYPE defines the kernel type to be used in assembling the configuration.
If you do not specify a LINUX_KERNEL_TYPE, it defaults to "standard". Together
with KMACHINE [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KMACHINE],
LINUX_KERNEL_TYPE defines the search arguments used by the kernel tools to find the appropriate
description within the kernel Metadata with which to build out the sources and configuration. The
linux-yocto recipes define "standard", "tiny", and "preempt-rt" kernel types. See the Kernel Types
section for more information on kernel types.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KMACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KMACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KMACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KBRANCH
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KBRANCH
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KERNEL_FEATURES
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KERNEL_FEATURES
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KBRANCH_DEFAULT
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KBRANCH_DEFAULT
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LINUX_KERNEL_TYPE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LINUX_KERNEL_TYPE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KMACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KMACHINE

Working with Advanced Metadata

14

During the build, the kern-tools search for the BSP description file that most closely matches the
KMACHINE and LINUX_KERNEL_TYPE variables passed in from the recipe. The tools use the first BSP
description it finds that match both variables. If the tools cannot find a match, they issue a warning
such as the following:

 WARNING: Can't find any BSP hardware or required configuration fragments.
 WARNING: Looked at meta/cfg/broken/fri2-broken/hdw_frags.txt and
 meta/cfg/broken/fri2-broken/required_frags.txt in directory:
 meta/cfg/broken/fri2-broken

In this example, KMACHINE was set to "fri2-broken" and LINUX_KERNEL_TYPE was set to "broken".

The tools first search for the KMACHINE and then for the LINUX_KERNEL_TYPE. If the tools cannot find
a partial match, they will use the sources from the KBRANCH and any configuration specified in the
SRC_URI [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI].

You can use the KERNEL_FEATURES variable to include features (configuration fragments, patches, or
both) that are not already included by the KMACHINE and LINUX_KERNEL_TYPE variable combination.
For example, to include a feature specified as "features/netfilter.scc", specify:

 KERNEL_FEATURES += "features/netfilter.scc"

To include a feature called "cfg/sound.scc" just for the qemux86 machine, specify:

 KERNEL_FEATURES_append_qemux86 = "cfg/sound.scc"

The value of the entries in KERNEL_FEATURES are dependent on their location within the kernel
Metadata itself. The examples here are taken from the linux-yocto-3.4 repository where "features"
and "cfg" are subdirectories within the meta/cfg/kernel-cache directory. For more information, see
the "Kernel Metadata Syntax" section.

Note
The processing of the these variables has evolved some between the 0.9 and 1.3 releases
of the Yocto Project and associated kern-tools sources. The descriptions in this section are
accurate for 1.3 and later releases of the Yocto Project.

3.3. Kernel Metadata Location
Kernel Metadata can be defined in either the kernel recipe (recipe-space) or in the kernel tree (in-
tree). Where you choose to define the Metadata depends on what you want to do and how you intend
to work. Regardless of where you define the kernel Metadata, the syntax used applies equally.

If you are unfamiliar with the Linux kernel and only wish to apply a configuration and possibly a couple
of patches provided to you by others, the recipe-space method is recommended. This method is also
a good approach if you are working with Linux kernel sources you do not control or if you just do not
want to maintain a Linux kernel Git repository on your own. For partial information on how you can
define kernel Metadata in the recipe-space, see the "Modifying an Existing Recipe" section.

Conversely, if you are actively developing a kernel and are already maintaining a Linux kernel Git
repository of your own, you might find it more convenient to work with the kernel Metadata in the
same repository as the Linux kernel sources. This method can make iterative development of the
Linux kernel more efficient outside of the BitBake environment.

3.3.1. Recipe-Space Metadata
When stored in recipe-space, the kernel Metadata files reside in a directory hierarchy
below FILESEXTRAPATHS [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-
FILESEXTRAPATHS]. For a linux-yocto recipe or for a Linux kernel recipe derived by copying and
modifying oe-core/meta-skeleton/recipes-kernel/linux/linux-yocto-custom.bb to a recipe

http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS

Working with Advanced Metadata

15

in your layer, FILESEXTRAPATHS is typically set to ${THISDIR [http://www.yoctoproject.org/docs/1.8/
ref-manual/ref-manual.html#var-THISDIR]}/${PN [http://www.yoctoproject.org/docs/1.8/ref-manual/
ref-manual.html#var-PN]}. See the "Modifying an Existing Recipe" section for more information.

Here is an example that shows a trivial tree of kernel Metadata stored in recipe-space within a BSP
layer:

 meta-my_bsp_layer/
 `-- recipes-kernel
 `-- linux
 `-- linux-yocto
 |-- bsp-standard.scc
 |-- bsp.cfg
 `-- standard.cfg

When the Metadata is stored in recipe-space, you must take steps to ensure BitBake has the
necessary information to decide what files to fetch and when they need to be fetched again. It is only
necessary to specify the .scc files on the SRC_URI [http://www.yoctoproject.org/docs/1.8/ref-manual/
ref-manual.html#var-SRC_URI]. BitBake parses them and fetches any files referenced in the .scc files
by the include, patch, or kconf commands. Because of this, it is necessary to bump the recipe PR
[http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PR] value when changing the
content of files not explicitly listed in the SRC_URI.

3.3.2. In-Tree Metadata
When stored in-tree, the kernel Metadata files reside in the meta directory of the Linux kernel sources.
The meta directory can be present in the same repository branch as the sources, such as "master",
or meta can be its own orphan branch.

Note
An orphan branch in Git is a branch with unique history and content to the other branches
in the repository. Orphan branches are useful to track Metadata changes independently from
the sources of the Linux kernel, while still keeping them together in the same repository.

For the purposes of this document, we will discuss all in-tree Metadata as residing below the meta/
cfg/kernel-cache directory.

Following is an example that shows how a trivial tree of Metadata is stored in a custom Linux kernel
Git repository:

 meta/
 `-- cfg
 `-- kernel-cache
 |-- bsp-standard.scc
 |-- bsp.cfg
 `-- standard.cfg

To use a branch different from where the sources reside, specify the branch in the KMETA variable in
your Linux kernel recipe. Here is an example:

 KMETA = "meta"

To use the same branch as the sources, set KMETA to an empty string:

 KMETA = ""

If you are working with your own sources and want to create an orphan meta branch, use these
commands from within your Linux kernel Git repository:

http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-THISDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-THISDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-THISDIR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PN
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PN
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PN
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PR
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-PR

Working with Advanced Metadata

16

 $ git checkout --orphan meta
 $ git rm -rf .
 $ git commit --allow-empty -m "Create orphan meta branch"

If you modify the Metadata in the linux-yocto meta branch, you must not forget to update the
SRCREV [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRCREV] statements
in the kernel's recipe. In particular, you need to update the SRCREV_meta variable to match the commit
in the KMETA branch you wish to use. Changing the data in these branches and not updating the
SRCREV statements to match will cause the build to fetch an older commit.

3.4. Kernel Metadata Syntax
The kernel Metadata consists of three primary types of files: scc 1 description files, configuration
fragments, and patches. The scc files define variables and include or otherwise reference any of the
three file types. The description files are used to aggregate all types of kernel Metadata into what
ultimately describes the sources and the configuration required to build a Linux kernel tailored to a
specific machine.

The scc description files are used to define two fundamental types of kernel Metadata:

• Features

• Board Support Packages (BSPs)

Features aggregate sources in the form of patches and configuration fragments into a modular
reusable unit. You can use features to implement conceptually separate kernel Metadata descriptions
such as pure configuration fragments, simple patches, complex features, and kernel types. Kernel
types define general kernel features and policy to be reused in the BSPs.

BSPs define hardware-specific features and aggregate them with kernel types to form the final
description of what will be assembled and built.

While the kernel Metadata syntax does not enforce any logical separation of configuration fragments,
patches, features or kernel types, best practices dictate a logical separation of these types of
Metadata. The following Metadata file hierarchy is recommended:

 base/
 bsp/
 cfg/
 features/
 ktypes/
 patches/

The bsp directory contains the BSP descriptions. The remaining directories all contain "features".
Separating bsp from the rest of the structure aids conceptualizing intended usage.

Use these guidelines to help place your scc description files within the structure:

• If your file contains only configuration fragments, place the file in the cfg directory.

• If your file contains only source-code fixes, place the file in the patches directory.

• If your file encapsulates a major feature, often combining sources and configurations, place the
file in features directory.

• If your file aggregates non-hardware configuration and patches in order to define a base kernel
policy or major kernel type to be reused across multiple BSPs, place the file in ktypes directory.

These distinctions can easily become blurred - especially as out-of-tree features slowly merge
upstream over time. Also, remember that how the description files are placed is a purely logical

1 scc stands for Series Configuration Control, but the naming has less significance in the current implementation of the tooling
than it had in the past. Consider scc files to be description files.

http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRCREV
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRCREV

Working with Advanced Metadata

17

organization and has no impact on the functionality of the kernel Metadata. There is no impact
because all of cfg, features, patches, and ktypes, contain "features" as far as the kernel tools are
concerned.

Paths used in kernel Metadata files are relative to <base>, which is either FILESEXTRAPATHS
[http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS] if you are
creating Metadata in recipe-space, or meta/cfg/kernel-cache/ if you are creating Metadata in-tree.

3.4.1. Configuration
The simplest unit of kernel Metadata is the configuration-only feature. This feature consists of one
or more Linux kernel configuration parameters in a configuration fragment file (.cfg) and an .scc
file that describes the fragment.

The Symmetric Multi-Processing (SMP) fragment included in the linux-yocto-3.4 Git repository
consists of the following two files:

 cfg/smp.scc:
 define KFEATURE_DESCRIPTION "Enable SMP"
 kconf hardware smp.cfg

 cfg/smp.cfg:
 CONFIG_SMP=y
 CONFIG_SCHED_SMT=y

You can find information on configuration fragment files in the "Creating Configuration
Fragments [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-config-
fragments]" section of the Yocto Project Development Manual and in the "Generating Configuration
Files" section earlier in this manual.

KFEATURE_DESCRIPTION [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-
KFEATURE_DESCRIPTION] provides a short description of the fragment. Higher level kernel tools use
this description.

The kconf command is used to include the actual configuration fragment in an .scc file, and the
"hardware" keyword identifies the fragment as being hardware enabling, as opposed to general
policy, which would use the "non-hardware" keyword. The distinction is made for the benefit of the
configuration validation tools, which warn you if a hardware fragment overrides a policy set by a non-
hardware fragment.

Note
The description file can include multiple kconf statements, one per fragment.

As described in the "Generating Configuration Files" section, you can use the following BitBake
command to audit your configuration:

 $ bitbake linux-yocto -c kernel_configcheck -f

3.4.2. Patches
Patch descriptions are very similar to configuration fragment descriptions, which are described in the
previous section. However, instead of a .cfg file, these descriptions work with source patches.

A typical patch includes a description file and the patch itself:

 patches/mypatch.scc:
 patch mypatch.patch

 patches/mypatch.patch:
 typical-patch

http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-FILESEXTRAPATHS
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-config-fragments
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-config-fragments
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-config-fragments
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-config-fragments
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KFEATURE_DESCRIPTION
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KFEATURE_DESCRIPTION
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KFEATURE_DESCRIPTION

Working with Advanced Metadata

18

You can create the typical .patch file using diff -Nurp or git format-patch.

The description file can include multiple patch statements, one per patch.

3.4.3. Features
Features are complex kernel Metadata types that consist of configuration fragments (kconf), patches
(patch), and possibly other feature description files (include).

Here is an example that shows a feature description file:

 features/myfeature.scc
 define KFEATURE_DESCRIPTION "Enable myfeature"

 patch 0001-myfeature-core.patch
 patch 0002-myfeature-interface.patch

 include cfg/myfeature_dependency.scc
 kconf non-hardware myfeature.cfg

This example shows how the patch and kconf commands are used as well as how an additional
feature description file is included.

Typically, features are less granular than configuration fragments and are more likely than
configuration fragments and patches to be the types of things you want to specify in the
KERNEL_FEATURES variable of the Linux kernel recipe. See the "Using Kernel Metadata in a Recipe"
section earlier in the manual.

3.4.4. Kernel Types
A kernel type defines a high-level kernel policy by aggregating non-hardware configuration fragments
with patches you want to use when building a Linux kernels of a specific type. Syntactically, kernel
types are no different than features as described in the "Features" section. The LINUX_KERNEL_TYPE
variable in the kernel recipe selects the kernel type. See the "Using Kernel Metadata in a Recipe"
section for more information.

As an example, the linux-yocto-3.4 tree defines three kernel types: "standard", "tiny", and
"preempt-rt":

• "standard": Includes the generic Linux kernel policy of the Yocto Project linux-yocto kernel recipes.
This policy includes, among other things, which file systems, networking options, core kernel
features, and debugging and tracing options are supported.

• "preempt-rt": Applies the PREEMPT_RT patches and the configuration options required to build a
real-time Linux kernel. This kernel type inherits from the "standard" kernel type.

• "tiny": Defines a bare minimum configuration meant to serve as a base for very small Linux kernels.
The "tiny" kernel type is independent from the "standard" configuration. Although the "tiny" kernel
type does not currently include any source changes, it might in the future.

The "standard" kernel type is defined by standard.scc:

 # Include this kernel type fragment to get the standard features and
 # configuration values.

 # Include all standard features
 include standard-nocfg.scc

 kconf non-hardware standard.cfg

 # individual cfg block section

Working with Advanced Metadata

19

 include cfg/fs/devtmpfs.scc
 include cfg/fs/debugfs.scc
 include cfg/fs/btrfs.scc
 include cfg/fs/ext2.scc
 include cfg/fs/ext3.scc
 include cfg/fs/ext4.scc

 include cfg/net/ipv6.scc
 include cfg/net/ip_nf.scc
 include cfg/net/ip6_nf.scc
 include cfg/net/bridge.scc

As with any .scc file, a kernel type definition can aggregate other .scc files with include commands.
These definitions can also directly pull in configuration fragments and patches with the kconf and
patch commands, respectively.

Note
It is not strictly necessary to create a kernel type .scc file. The Board Support Package
(BSP) file can implicitly define the kernel type using a define KTYPE [http://
www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KTYPE] myktype
line. See the "BSP Descriptions" section for more information.

3.4.5. BSP Descriptions
BSP descriptions combine kernel types with hardware-specific features. The hardware-specific portion
is typically defined independently, and then aggregated with each supported kernel type. Consider
this simple BSP description that supports the "mybsp" machine:

 mybsp.scc:
 define KMACHINE mybsp
 define KTYPE standard
 define KARCH i386

 kconf mybsp.cfg

Every BSP description should define the KMACHINE [http://www.yoctoproject.org/docs/1.8/ref-
manual/ref-manual.html#var-KMACHINE], KTYPE [http://www.yoctoproject.org/docs/1.8/ref-manual/
ref-manual.html#var-KTYPE], and KARCH [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#var-KARCH] variables. These variables allow the OpenEmbedded build system to
identify the description as meeting the criteria set by the recipe being built. This simple example
supports the "mybsp" machine for the "standard" kernel and the "i386" architecture.

Be aware that a hard link between the KTYPE variable and a kernel type description file does not
exist. Thus, if you do not have kernel types defined in your kernel Metadata, you only need to ensure
that the kernel recipe's LINUX_KERNEL_TYPE [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#var-LINUX_KERNEL_TYPE] variable and the KTYPE variable in the BSP description file
match.

Note
Future versions of the tooling make the specification of KTYPE in the BSP optional.

If you did want to separate your kernel policy from your hardware configuration, you could do so by
specifying a kernel type, such as "standard" and including that description file in the BSP description
file. See the "Kernel Types" section for more information.

You might also have multiple hardware configurations that you aggregate into a single hardware
description file that you could include in the BSP description file, rather than referencing a single
.cfg file. Consider the following:

 mybsp.scc:
 define KMACHINE mybsp

http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KTYPE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KTYPE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KTYPE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KMACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KMACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KMACHINE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KTYPE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KTYPE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KTYPE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KARCH
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KARCH
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KARCH
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LINUX_KERNEL_TYPE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LINUX_KERNEL_TYPE
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-LINUX_KERNEL_TYPE

Working with Advanced Metadata

20

 define KTYPE standard
 define KARCH i386

 include standard.scc
 include mybsp-hw.scc

In the above example, standard.scc aggregates all the configuration fragments, patches, and
features that make up your standard kernel policy whereas mybsp-hw.scc aggregates all those
necessary to support the hardware available on the "mybsp" machine. For information on how
to break a complete .config file into the various configuration fragments, see the "Generating
Configuration Files" section.

Many real-world examples are more complex. Like any other .scc file, BSP descriptions can aggregate
features. Consider the Fish River Island 2 (fri2) BSP definition from the linux-yocto-3.4 Git
repository:

 fri2.scc:
 kconf hardware fri2.cfg

 include cfg/x86.scc
 include features/eg20t/eg20t.scc
 include cfg/dmaengine.scc
 include features/ericsson-3g/f5521gw.scc
 include features/power/intel.scc
 include cfg/efi.scc
 include features/usb/ehci-hcd.scc
 include features/usb/ohci-hcd.scc
 include features/iwlwifi/iwlwifi.scc

The fri2.scc description file includes a hardware configuration fragment (fri2.cfg) specific to the
Fish River Island 2 BSP as well as several more general configuration fragments and features enabling
hardware found on the machine. This description file is then included in each of the three "fri2"
description files for the supported kernel types (i.e. "standard", "preempt-rt", and "tiny"). Consider
the "fri2" description for the "standard" kernel type:

 fri2-standard.scc:
 define KMACHINE fri2
 define KTYPE standard
 define KARCH i386

 include ktypes/standard/standard.scc
 branch fri2

 git merge emgd-1.14

 include fri2.scc

 # Extra fri2 configs above the minimal defined in fri2.scc
 include cfg/efi-ext.scc
 include features/drm-emgd/drm-emgd.scc
 include cfg/vesafb.scc

 # default policy for standard kernels
 include cfg/usb-mass-storage.scc

The include command midway through the file includes the fri2.scc description that defines
all hardware enablements for the BSP that is common to all kernel types. Using this command
significantly reduces duplication.

This "fri2" standard description introduces a few more variables and commands that are worth further
discussion. Notice the branch fri2 command, which creates a machine-specific branch into which

Working with Advanced Metadata

21

source changes are applied. With this branch set up, the git merge command uses Git to merge in a
feature branch named "emgd-1.14". You could also handle this with the patch command. However,
for commonly used features such as this, feature branches are a convenient mechanism. See the
"Feature Branches" section for more information.

Now consider the "fri2" description for the "tiny" kernel type:

 fri2-tiny.scc:
 define KMACHINE fri2
 define KTYPE tiny
 define KARCH i386

 include ktypes/tiny/tiny.scc
 branch fri2

 include fri2.scc

As you might expect, the "tiny" description includes quite a bit less. In fact, it includes only the
minimal policy defined by the "tiny" kernel type and the hardware-specific configuration required for
booting the machine along with the most basic functionality of the system as defined in the base
"fri2" description file.

Notice again the three critical variables: KMACHINE, KTYPE, and KARCH. Of these variables, only the
KTYPE has changed. It is now set to "tiny".

3.5. Organizing Your Source
Many recipes based on the linux-yocto-custom.bb recipe use Linux kernel sources that have only a
single branch - "master". This type of repository structure is fine for linear development supporting a
single machine and architecture. However, if you work with multiple boards and architectures, a kernel
source repository with multiple branches is more efficient. For example, suppose you need a series
of patches for one board to boot. Sometimes, these patches are works-in-progress or fundamentally
wrong, yet they are still necessary for specific boards. In these situations, you most likely do not
want to include these patches in every kernel you build (i.e. have the patches as part of the lone
"master" branch). It is situations like these that give rise to multiple branches used within a Linux
kernel sources Git repository.

Repository organization strategies exist that maximize source reuse, remove redundancy, and
logically order your changes. This section presents strategies for the following cases:

• Encapsulating patches in a feature description and only including the patches in the BSP
descriptions of the applicable boards.

• Creating a machine branch in your kernel source repository and applying the patches on that branch
only.

• Creating a feature branch in your kernel source repository and merging that branch into your BSP
when needed.

The approach you take is entirely up to you and depends on what works best for your development
model.

3.5.1. Encapsulating Patches

if you are reusing patches from an external tree and are not working on the patches, you might
find the encapsulated feature to be appropriate. Given this scenario, you do not need to create any
branches in the source repository. Rather, you just take the static patches you need and encapsulate
them within a feature description. Once you have the feature description, you simply include that
into the BSP description as described in the "BSP Descriptions" section.

You can find information on how to create patches and BSP descriptions in the "Patches" and "BSP
Descriptions" sections.

Working with Advanced Metadata

22

3.5.2. Machine Branches

When you have multiple machines and architectures to support, or you are actively working on board
support, it is more efficient to create branches in the repository based on individual machines. Having
machine branches allows common source to remain in the "master" branch with any features specific
to a machine stored in the appropriate machine branch. This organization method frees you from
continually reintegrating your patches into a feature.

Once you have a new branch, you can set up your kernel Metadata to use the branch a couple different
ways. In the recipe, you can specify the new branch as the KBRANCH to use for the board as follows:

 KBRANCH = "mynewbranch"

Another method is to use the branch command in the BSP description:

 mybsp.scc:
 define KMACHINE mybsp
 define KTYPE standard
 define KARCH i386
 include standard.scc

 branch mynewbranch

 include mybsp-hw.scc

If you find yourself with numerous branches, you might consider using a hierarchical branching
system similar to what the linux-yocto Linux kernel repositories use:

 common/kernel_type/machine

If you had two kernel types, "standard" and "small" for instance, three machines, and common as
mydir, the branches in your Git repository might look like this:

 mydir/base
 mydir/standard/base
 mydir/standard/machine_a
 mydir/standard/machine_b
 mydir/standard/machine_c
 mydir/small/base
 mydir/small/machine_a

This organization can help clarify the branch relationships. In this case, mydir/standard/machine_a
includes everything in mydir/base and mydir/standard/base. The "standard" and "small" branches
add sources specific to those kernel types that for whatever reason are not appropriate for the other
branches.

Note
The "base" branches are an artifact of the way Git manages its data internally on the
filesystem: Git will not allow you to use mydir/standard and mydir/standard/machine_a
because it would have to create a file and a directory named "standard".

3.5.3. Feature Branches

When you are actively developing new features, it can be more efficient to work with that feature as
a branch, rather than as a set of patches that have to be regularly updated. The Yocto Project Linux
kernel tools provide for this with the git merge command.

Working with Advanced Metadata

23

To merge a feature branch into a BSP, insert the git merge command after any branch commands:

 mybsp.scc:
 define KMACHINE mybsp
 define KTYPE standard
 define KARCH i386
 include standard.scc

 branch mynewbranch
 git merge myfeature

 include mybsp-hw.scc

3.6. SCC Description File Reference
This section provides a brief reference for the commands you can use within an SCC description file
(.scc):

• branch [ref]: Creates a new branch relative to the current branch (typically ${KTYPE}) using the
currently checked-out branch, or "ref" if specified.

• define: Defines variables, such as KMACHINE, KTYPE, KARCH, and KFEATURE_DESCRIPTION.

• include SCC_FILE: Includes an SCC file in the current file. The file is parsed as if you had inserted
it inline.

• kconf [hardware|non-hardware] CFG_FILE: Queues a configuration fragment for merging into
the final Linux .config file.

• git merge GIT_BRANCH: Merges the feature branch into the current branch.

• patch PATCH_FILE: Applies the patch to the current Git branch.

24

Appendix A. Advanced Kernel
Concepts
A.1. Yocto Project Kernel Development and
Maintenance
Kernels available through the Yocto Project, like other kernels, are based off the Linux kernel releases
from http://www.kernel.org. At the beginning of a major development cycle, the Yocto Project team
chooses its kernel based on factors such as release timing, the anticipated release timing of final
upstream kernel.org versions, and Yocto Project feature requirements. Typically, the kernel chosen
is in the final stages of development by the community. In other words, the kernel is in the release
candidate or "rc" phase and not yet a final release. But, by being in the final stages of external
development, the team knows that the kernel.org final release will clearly be within the early stages
of the Yocto Project development window.

This balance allows the team to deliver the most up-to-date kernel possible, while still ensuring that
the team has a stable official release for the baseline Linux kernel version.

The ultimate source for kernels available through the Yocto Project are released kernels from
kernel.org. In addition to a foundational kernel from kernel.org, the kernels available contain
a mix of important new mainline developments, non-mainline developments (when there is no
alternative), Board Support Package (BSP) developments, and custom features. These additions result
in a commercially released Yocto Project Linux kernel that caters to specific embedded designer needs
for targeted hardware.

Once a kernel is officially released, the Yocto Project team goes into their next development cycle,
or upward revision (uprev) cycle, while still continuing maintenance on the released kernel. It is
important to note that the most sustainable and stable way to include feature development upstream
is through a kernel uprev process. Back-porting hundreds of individual fixes and minor features from
various kernel versions is not sustainable and can easily compromise quality.

During the uprev cycle, the Yocto Project team uses an ongoing analysis of kernel development, BSP
support, and release timing to select the best possible kernel.org version. The team continually
monitors community kernel development to look for significant features of interest. The team does
consider back-porting large features if they have a significant advantage. User or community demand
can also trigger a back-port or creation of new functionality in the Yocto Project baseline kernel during
the uprev cycle.

Generally speaking, every new kernel both adds features and introduces new bugs. These
consequences are the basic properties of upstream kernel development and are managed by the
Yocto Project team's kernel strategy. It is the Yocto Project team's policy to not back-port minor
features to the released kernel. They only consider back-porting significant technological jumps - and,
that is done after a complete gap analysis. The reason for this policy is that back-porting any small
to medium sized change from an evolving kernel can easily create mismatches, incompatibilities and
very subtle errors.

These policies result in both a stable and a cutting edge kernel that mixes forward ports of
existing features and significant and critical new functionality. Forward porting functionality in the
kernels available through the Yocto Project kernel can be thought of as a "micro uprev." The many
“micro uprevs” produce a kernel version with a mix of important new mainline, non-mainline, BSP
developments and feature integrations. This kernel gives insight into new features and allows focused
amounts of testing to be done on the kernel, which prevents surprises when selecting the next major
uprev. The quality of these cutting edge kernels is evolving and the kernels are used in leading edge
feature and BSP development.

A.2. Kernel Architecture
This section describes the architecture of the kernels available through the Yocto Project and provides
information on the mechanisms used to achieve that architecture.

http://www.kernel.org

Advanced Kernel Concepts

25

A.2.1. Overview
As mentioned earlier, a key goal of the Yocto Project is to present the developer with a kernel that
has a clear and continuous history that is visible to the user. The architecture and mechanisms used
achieve that goal in a manner similar to the upstream kernel.org.

You can think of a Yocto Project kernel as consisting of a baseline Linux kernel with added features
logically structured on top of the baseline. The features are tagged and organized by way of a
branching strategy implemented by the source code manager (SCM) Git. For information on Git
as applied to the Yocto Project, see the "Git [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#git]" section in the Yocto Project Development Manual.

The result is that the user has the ability to see the added features and the commits that make up
those features. In addition to being able to see added features, the user can also view the history
of what made up the baseline kernel.

The following illustration shows the conceptual Yocto Project kernel.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#git
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#git
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#git

Advanced Kernel Concepts

26

In the illustration, the "Kernel.org Branch Point" marks the specific spot (or release) from which the
Yocto Project kernel is created. From this point "up" in the tree, features and differences are organized
and tagged.

The "Yocto Project Baseline Kernel" contains functionality that is common to every kernel type and
BSP that is organized further up the tree. Placing these common features in the tree this way means
features do not have to be duplicated along individual branches of the structure.

From the Yocto Project Baseline Kernel, branch points represent specific functionality for individual
BSPs as well as real-time kernels. The illustration represents this through three BSP-specific branches
and a real-time kernel branch. Each branch represents some unique functionality for the BSP or a
real-time kernel.

In this example structure, the real-time kernel branch has common features for all real-time kernels
and contains more branches for individual BSP-specific real-time kernels. The illustration shows three
branches as an example. Each branch points the way to specific, unique features for a respective
real-time kernel as they apply to a given BSP.

The resulting tree structure presents a clear path of markers (or branches) to the developer that, for
all practical purposes, is the kernel needed for any given set of requirements.

A.2.2. Branching Strategy and Workflow
The Yocto Project team creates kernel branches at points where functionality is no longer shared
and thus, needs to be isolated. For example, board-specific incompatibilities would require different
functionality and would require a branch to separate the features. Likewise, for specific kernel
features, the same branching strategy is used.

This branching strategy results in a tree that has features organized to be specific for particular
functionality, single kernel types, or a subset of kernel types. This strategy also results in not having
to store the same feature twice internally in the tree. Rather, the kernel team stores the unique
differences required to apply the feature onto the kernel type in question.

Note
The Yocto Project team strives to place features in the tree such that they can be shared by
all boards and kernel types where possible. However, during development cycles or when
large features are merged, the team cannot always follow this practice. In those cases, the
team uses isolated branches to merge features.

BSP-specific code additions are handled in a similar manner to kernel-specific additions. Some BSPs
only make sense given certain kernel types. So, for these types, the team creates branches off the
end of that kernel type for all of the BSPs that are supported on that kernel type. From the perspective
of the tools that create the BSP branch, the BSP is really no different than a feature. Consequently, the
same branching strategy applies to BSPs as it does to features. So again, rather than store the BSP
twice, the team only stores the unique differences for the BSP across the supported multiple kernels.

While this strategy can result in a tree with a significant number of branches, it is important to
realize that from the developer's point of view, there is a linear path that travels from the baseline
kernel.org, through a select group of features and ends with their BSP-specific commits. In other
words, the divisions of the kernel are transparent and are not relevant to the developer on a day-to-
day basis. From the developer's perspective, this path is the "master" branch. The developer does
not need to be aware of the existence of any other branches at all. Of course, there is value in the
existence of these branches in the tree, should a person decide to explore them. For example, a
comparison between two BSPs at either the commit level or at the line-by-line code diff level is now
a trivial operation.

Working with the kernel as a structured tree follows recognized community best practices. In
particular, the kernel as shipped with the product, should be considered an "upstream source"
and viewed as a series of historical and documented modifications (commits). These modifications
represent the development and stabilization done by the Yocto Project kernel development team.

Because commits only change at significant release points in the product life cycle, developers can
work on a branch created from the last relevant commit in the shipped Yocto Project kernel. As
mentioned previously, the structure is transparent to the developer because the kernel tree is left in
this state after cloning and building the kernel.

Advanced Kernel Concepts

27

A.2.3. Source Code Manager - Git
The Source Code Manager (SCM) is Git. This SCM is the obvious mechanism for meeting the previously
mentioned goals. Not only is it the SCM for kernel.org but, Git continues to grow in popularity and
supports many different work flows, front-ends and management techniques.

You can find documentation on Git at http://git-scm.com/documentation. You can also get an
introduction to Git as it applies to the Yocto Project in the "Git [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#git]" section in the Yocto Project Development Manual. These
referenced sections overview Git and describe a minimal set of commands that allows you to be
functional using Git.

Note
You can use as much, or as little, of what Git has to offer to accomplish what you need for
your project. You do not have to be a "Git Master" in order to use it with the Yocto Project.

http://git-scm.com/documentation
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#git
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#git
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#git

28

Appendix B. Kernel Maintenance
B.1. Tree Construction
This section describes construction of the Yocto Project kernel source repositories as accomplished
by the Yocto Project team to create kernel repositories. These kernel repositories are found under
the heading "Yocto Linux Kernel" at http://git.yoctoproject.org/cgit.cgi and can be shipped as part
of a Yocto Project release. The team creates these repositories by compiling and executing the set
of feature descriptions for every BSP and feature in the product. Those feature descriptions list all
necessary patches, configuration, branching, tagging and feature divisions found in a kernel. Thus,
the Yocto Project kernel repository (or tree) is built.

The existence of this tree allows you to access and clone a particular Yocto Project kernel repository
and use it to build images based on their configurations and features.

You can find the files used to describe all the valid features and BSPs in the Yocto Project kernel in
any clone of the Yocto Project kernel source repository Git tree. For example, the following command
clones the Yocto Project baseline kernel that branched off of linux.org version 3.4:

 $ git clone git://git.yoctoproject.org/linux-yocto-3.4

For another example of how to set up a local Git repository of the Yocto Project kernel files, see
the "Yocto Project Kernel [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#local-
kernel-files]" bulleted item in the Yocto Project Development Manual.

Once you have cloned the kernel Git repository on your local machine, you can switch to the meta
branch within the repository. Here is an example that assumes the local Git repository for the kernel
is in a top-level directory named linux-yocto-3.4:

 $ cd linux-yocto-3.4
 $ git checkout -b meta origin/meta

Once you have checked out and switched to the meta branch, you can see a snapshot of all the kernel
configuration and feature descriptions that are used to build that particular kernel repository. These
descriptions are in the form of .scc files.

You should realize, however, that browsing your local kernel repository for feature descriptions and
patches is not an effective way to determine what is in a particular kernel branch. Instead, you should
use Git directly to discover the changes in a branch. Using Git is an efficient and flexible way to
inspect changes to the kernel.

Note
Ground up reconstruction of the complete kernel tree is an action only taken by the Yocto
Project team during an active development cycle. When you create a clone of the kernel Git
repository, you are simply making it efficiently available for building and development.

The following steps describe what happens when the Yocto Project Team constructs the Yocto Project
kernel source Git repository (or tree) found at http://git.yoctoproject.org/cgit.cgi given the introduction
of a new top-level kernel feature or BSP. These are the actions that effectively create the tree that
includes the new feature, patch or BSP:

1. A top-level kernel feature is passed to the kernel build subsystem. Normally, this feature is a BSP
for a particular kernel type.

2. The file that describes the top-level feature is located by searching these system directories:

• The in-tree kernel-cache directories, which are located in meta/cfg/kernel-cache

• Areas pointed to by SRC_URI statements found in recipes

http://git.yoctoproject.org/cgit.cgi
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#local-kernel-files
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#local-kernel-files
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#local-kernel-files
http://git.yoctoproject.org/cgit.cgi

Kernel Maintenance

29

For a typical build, the target of the search is a feature description in an .scc file whose name
follows this format:

 bsp_name-kernel_type.scc

3. Once located, the feature description is either compiled into a simple script of actions, or into an
existing equivalent script that is already part of the shipped kernel.

4. Extra features are appended to the top-level feature description. These features
can come from the KERNEL_FEATURES [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-
manual.html#var-KERNEL_FEATURES] variable in recipes.

5. Each extra feature is located, compiled and appended to the script as described in step three.

6. The script is executed to produce a series of meta-* directories. These directories are descriptions
of all the branches, tags, patches and configurations that need to be applied to the base Git
repository to completely create the source (build) branch for the new BSP or feature.

7. The base repository is cloned, and the actions listed in the meta-* directories are applied to the
tree.

8. The Git repository is left with the desired branch checked out and any required branching, patching
and tagging has been performed.

The kernel tree is now ready for developer consumption to be locally cloned, configured, and built
into a Yocto Project kernel specific to some target hardware.

Note

The generated meta-* directories add to the kernel as shipped with the Yocto Project release.
Any add-ons and configuration data are applied to the end of an existing branch. The full
repository generation that is found in the official Yocto Project kernel repositories at http://
git.yoctoproject.org/cgit.cgi is the combination of all supported boards and configurations.

The technique the Yocto Project team uses is flexible and allows for seamless blending of
an immutable history with additional patches specific to a deployment. Any additions to the
kernel become an integrated part of the branches.

B.2. Build Strategy
Once a local Git repository of the Yocto Project kernel exists on a development system, you can
consider the compilation phase of kernel development - building a kernel image. Some prerequisites
exist that are validated by the build process before compilation starts:

• The SRC_URI [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI]
points to the kernel Git repository.

• A BSP build branch exists. This branch has the following form:

 kernel_type/bsp_name

The OpenEmbedded build system makes sure these conditions exist before attempting compilation.
Other means, however, do exist, such as as bootstrapping a BSP.

Before building a kernel, the build process verifies the tree and configures the kernel by processing all
of the configuration "fragments" specified by feature descriptions in the .scc files. As the features are
compiled, associated kernel configuration fragments are noted and recorded in the meta-* series of
directories in their compilation order. The fragments are migrated, pre-processed and passed to the
Linux Kernel Configuration subsystem (lkc) as raw input in the form of a .config file. The lkc uses
its own internal dependency constraints to do the final processing of that information and generates
the final .config file that is used during compilation.

http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KERNEL_FEATURES
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KERNEL_FEATURES
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-KERNEL_FEATURES
http://git.yoctoproject.org/cgit.cgi
http://git.yoctoproject.org/cgit.cgi
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-SRC_URI

Kernel Maintenance

30

Using the board's architecture and other relevant values from the board's template, kernel
compilation is started and a kernel image is produced.

The other thing that you notice once you configure a kernel is that the build process generates a
build tree that is separate from your kernel's local Git source repository tree. This build tree has a
name that uses the following form, where ${MACHINE} is the metadata name of the machine (BSP)
and "kernel_type" is one of the Yocto Project supported kernel types (e.g. "standard"):

 linux-${MACHINE}-kernel_type-build

The existing support in the kernel.org tree achieves this default functionality.

This behavior means that all the generated files for a particular machine or BSP are now in the build
tree directory. The files include the final .config file, all the .o files, the .a files, and so forth. Since
each machine or BSP has its own separate Build Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#build-directory] in its own separate branch of the Git repository, you can
easily switch between different builds.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

31

Appendix C. Kernel Development
FAQ
C.1. Common Questions and Solutions
The following lists some solutions for common questions.

C.1.1.How do I use my own Linux kernel .config file?

Refer to the "Changing the Configuration" section for information.

C.1.2.How do I create configuration fragments?

Refer to the "Generating Configuration Files" section for information.

C.1.3.How do I use my own Linux kernel sources?

Refer to the "Working With Your Own Sources" section for information.

C.1.4.How do I install/not-install the kernel image on the rootfs?

The kernel image (e.g. vmlinuz) is provided by the kernel-image package. Image recipes
depend on kernel-base. To specify whether or not the kernel image is installed in the generated
root filesystem, override RDEPENDS_kernel-base to include or not include "kernel-image".

See the "Using .bbappend Files [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#using-bbappend-files]" section in the Yocto Project Development Manual for
information on how to use an append file to override metadata.

C.1.5.How do I install a specific kernel module?

Linux kernel modules are packaged individually. To ensure a specific kernel module is included
in an image, include it in the appropriate machine RRECOMMENDS [http://www.yoctoproject.org/
docs/1.8/ref-manual/ref-manual.html#var-RRECOMMENDS] variable.

These other variables are useful for installing specific modules:

 MACHINE_ESSENTIAL_EXTRA_RDEPENDS [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_ESSENTIAL_EXTRA_RDEPENDS]
 MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS]
 MACHINE_EXTRA_RDEPENDS [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_EXTRA_RDEPENDS]
 MACHINE_EXTRA_RRECOMMENDS [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_EXTRA_RRECOMMENDS]

For example, set the following in the qemux86.conf file to include the ab123 kernel modules
with images built for the qemux86 machine:

 MACHINE_EXTRA_RRECOMMENDS += "kernel-module-ab123"

For more information, see the "Incorporating Out-of-Tree Modules" section.

C.1.6.How do I change the Linux kernel command line?

The Linux kernel command line is typically specified in the machine config using the APPEND
variable. For example, you can add some helpful debug information doing the following:

 APPEND += "printk.time=y initcall_debug debug"

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-bbappend-files
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-bbappend-files
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-bbappend-files
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_ESSENTIAL_EXTRA_RDEPENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_ESSENTIAL_EXTRA_RDEPENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_EXTRA_RDEPENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_EXTRA_RDEPENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_EXTRA_RRECOMMENDS
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-MACHINE_EXTRA_RRECOMMENDS

	Yocto Project Linux Kernel Development Manual
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview
	1.2. Other Resources

	Chapter 2. Common Tasks
	2.1. Creating and Preparing a Layer
	2.2. Modifying an Existing Recipe
	2.2.1. Creating the Append File
	2.2.2. Applying Patches
	2.2.3. Changing the Configuration

	2.3. Using an Iterative Development Process
	2.3.1. "-dirty" String
	2.3.2. Generating Configuration Files
	2.3.3. Modifying Source Code

	2.4. Working With Your Own Sources
	2.5. Working with Out-of-Tree Modules
	2.5.1. Building Out-of-Tree Modules on the Target
	2.5.2. Incorporating Out-of-Tree Modules

	2.6. Inspecting Changes and Commits
	2.6.1. What Changed in a Kernel?
	2.6.2. Showing a Particular Feature or Branch Change

	Chapter 3. Working with Advanced Metadata
	3.1. Overview
	3.2. Using Kernel Metadata in a Recipe
	3.3. Kernel Metadata Location
	3.3.1. Recipe-Space Metadata
	3.3.2. In-Tree Metadata

	3.4. Kernel Metadata Syntax
	3.4.1. Configuration
	3.4.2. Patches
	3.4.3. Features
	3.4.4. Kernel Types
	3.4.5. BSP Descriptions

	3.5. Organizing Your Source
	3.5.1. Encapsulating Patches
	3.5.2. Machine Branches
	3.5.3. Feature Branches

	3.6. SCC Description File Reference

	Appendix A. Advanced Kernel Concepts
	A.1. Yocto Project Kernel Development and Maintenance
	A.2. Kernel Architecture
	A.2.1. Overview
	A.2.2. Branching Strategy and Workflow
	A.2.3. Source Code Manager - Git

	Appendix B. Kernel Maintenance
	B.1. Tree Construction
	B.2. Build Strategy

	Appendix C. Kernel Development FAQ
	C.1. Common Questions and Solutions

