: yocto -
Yocto Project

Reference Manual

Richard Purdie, Linux Foundation
<richard.purdie@linuxfoundation.org>

by Richard Purdie
Copyright © 2010-2014 Linux Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Share Alike 2.0 UK: England & Wales [http://creativecommons.org/licenses/by-sa/2.0/uk/] as published

by Creative Commons.

Note

For the latest version of this manual associated with this Yocto Project release, see the Yocto Project
Reference Manual [http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html] from the Yocto
Project website.

http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html

Table of Contents

I oYl o Yo 1¥ ot £ o] o F PP 1
L L INErOAUCEION e 1
1.2. DOCUMENTALION OVEIVIEW .oiuiiiiiiiiiiiii ittt ettt e e et e e e e e enes 1
1.3, System ReQUINEMENES ..iuiiiii i e et e e e e e e e e e e te e e e anenean 2

1.3.1. Supported Linux DistribULiONScciiiiiii e e 2
1.3.2. Required Packages for the Host Development Systemcoooviiiiiiiiiiiiinenenn, 3
1.3.3. Required Git, tar, and Python Versionsccooiiiiiiii e 5
1.4. Obtaining the YOCLO ProjeCtcv i e e 6
1.5. Development CheaCKOULScuiiii i e e e e e eneeen 7

2. USING the YOCTO ProjeCE ..uoeiie i e e e e e e e e e e et e e e eenen 8

2.1, RUNNING @ BUIA oo e e e e e e 8
2.1.1. BUIIA OVEIVIEW .iviiiiiiiiiiiie ettt e e et e et e n e e tnans 8
2.1.2. Building an Image Using GPL Componentsccoviiiiiiiiiiiiii e 8

2.2. Installing and Using the ReSUIT ..o e 8

2.3. Debugging Build FailUrescciiiiiiii e e e e e 9
2.3.1. Task FailUres ...cuiiiiiii i 9
2.3.2. RUNNING SPECIfIC TasKS .iviniiiii i e e e e e 9
2.3.3. DePendenCY GrapPhs .ot 10
2.3.4. General BitBake Problems ..o 10
2.3.5. Development Host SyStem ISSUESccuiiiiiiiiiii i e 10
2.3.6. Building with NO DependenCiescccuiiiiiiiii e e e e 10
2.3.7. Variab s oo 11
2.3.8. Recipe Logging MeChaniSmScciuiiiiiiiii e e 11
728G 20 T © o =T N 1T T 12

2.4. Maintaining Build Output QUalityccooiiiii e 12
2.4.1. Enabling and Disabling Build HiStoryccooviiiiiii e 12
2.4.2. Understanding What the Build History Containsccccociiiiiiiiiciiiii e 13

2.5. Speeding Up the BUild ..o e e 17

3. A Closer Look at the Yocto Project Development Environmentcccooviiiiiiiiiiiciiicncceeeen 19
3.1, User ConfiguUration ..o e e e 20
3.2. Metadata, Machine Configuration, and Policy Configurationc.ccoooiiiiiiiiiinnnnn. 21

07200 N 11 o TN = 1 23
3.2, 2. B P LAY Ol it 23
3.2.3. SO WAIE LAY O et e 23

0 T Yo 1 U] ¢ of = PP 24
3.3.1. Upstream Project RelEASESc.oiuiriiiii e 25
3.3.2. LOCaAl ProjeCES oiriie i e 25
3.3.3. Source Control Managers (Optional)cccovuiiiiiii e 26
G T B Y o T U ol =Y\ T o Y £ I 26

3.4, PaCKage FEEAS ...iuiiiii e 26

3D, BitBaKE 1euitiiii i 27
3.5.1. S0UrCe FEECNING ..oiniiiii i e 28
3.5, 2, PalCiNg oo e 29
3.5.3. Configuration and Compilation ... 30
3.5.4. Package SPltting ...ccouiiiiii i e 31
3.5.5. IMage GENEIatiON ..ovii i e 33
3.5.6. SDK GENEIALION .iuiiiiiiiii e 35

0 T TR 0 g =T 1= 36

3.7. Application Development SDK ... 37

I [=Yol al a1 [ol=] B B < =1 1 PP PR PP 39

V20 I (o Y o N = o =Y ot @0 o 0] Yo] =T oL =3 39
.10, BitBaKe v 39
4.1.2. Metadata (RECIPES) wuiniiiii it e e e 40
4. 1.3, ClaSSES ouituiitiiiiit ettt 40
4. 1.4, ConfigUIationN ..o 40

4.2. Cross-Development Toolchain Generationcooviiiiiiiiiii e 40

4.3. Shared State Cathe ... 43
4.3.1. Overall ArChit@CIUIE ...ouiiii e 43
4.3.2. ChecksUmMS (SIgNatures) ..ouiiieiii i e r e e e aees 43
4.3.3. Shared STate ..iuiiiiiiiiiii e 45

3 T o ==Y Vo 1 T od 46

B A X3 i e 47

N ST U o] o T] S TP 47
4.4.2. COMPIELING X332 it e 47
4.4.3. Using X32 RIGhE NOW ..oeniiiii e 48

S BT =1V -1 o To PP TP TP PP 48
S T 10 o] o T] S TP 48
4.5.2. Enabling Wayland in @an IMageccoiiiiiiii e 48
4.5.3. RUNNING WESTON ..ottt ettt ettt et et e e e aneenas 49

T W o= o £ S PP P PP 49
4.6.1. Tracking License Changesocuoieiiiiiiiiii e 49
4.6.2. Enabling Commercially Licensed RECIPESc.vvviiiiiiiiiiiiiini e 50

5. Migrating to a Newer YOCtO Project ReICASEc.oiviiiiiiiiii e 53
5.1. General Migration Considerationsc.oiuiiiiiiiii e 53
5.2. Moving to the Yocto Project 1.3 Rel@aSEceuiiniiiiii e 53
5.2.1. Local Configuration ... 53
o S (= Tof | o 1= PP P PP 54
5.2.3. Linux Kernel NamMIiNG ... e 55

5.3. Moving to the YOcto Project 1.4 Rel@aSEc.uieniiniiiiiiiei e 55
5.3 L. BitBaKE ot 55
5.3.2. BUII BENAVIOT ettt 56
5.3.3. Proxies and Fetching SOUICe ..o 56
5.3.4. Custom Interfaces File (netbase change)ccoocviiiiiiiiiii e 56
5.3.5. Remote DebUGGING ...euiiniiiieii e 56
5.3.6. Variables oo 56
5.3.7. Target Package Management with RPMccooiiiiiiiiiiii e 57
5.3.8. RECIPES MOVEA ...eiiiiiiiii e eaas 57
5.3.9. Removals and RENAMIEScuuiiiiiiiii e ans 57

5.4. Moving to the Yocto Project 1.5 RelEASEceuiviiiniiii e 58
5.4.1. Host DependencCy Changescovieiiiiiiiiiiiiiiee e e 58
5.4.2. atom-pc Board Support Package (BSP)c.coeiiiiiiiiiii 58
5.4.3. BitBaKe ..ieieiiiii i 58
5.4.4. QA WVaIMiNgS ouitiiiiiiiii et 59
5.4.5. Directory Layout Changesc..cuiiiiiiiiiie e 59
5.4.6. Shortened Git SRCREV ValUEScouiiiiiiiiiiiii e 59
5.4.7. IMAGE _FEATURES ..ottt e e e e et e et e e e e 59
D 8. U s 60
5.4.9. Removal of Package Manager Database Within Image Recipescc.cceevnennes 60
5.4.10. Images Now Rebuild Only on Changes Instead of Every Time 60
5.4.11. TaSK RECIPES .ouiiiiiiiiie et e e e e e et et e e e e e 60
5.4.012. BUSYBOX ittt 60
5.4.13. Automated IMage TeSHINGoiuieiiii e 60
5.4.14. BUIlA HiSTOIY oieniiiiiii e e 60

o N 8 TR U o [PPSR 61
5.4.16. Removed and Renamed RECIPESocuiiuiiiiiiiiiiiii e 61
5.4.17. Other CRangeS ..cuuiuiiiiiiii ittt ettt et e e enas 61

5.5. Moving to the Yocto Project 1.6 Rel@aSEec.cuniiniiiiiii e 62
5.5.1. ArCRLVEE ClasS ittt 62
5.5.2. Packaging Changesoouiiiiiiiiiii e 62

5. 5.3, Bt BaKE i 62
5.5.4. Changes to Variables ... 63
5.5.5. Directory Layout Changesceiiiiiiiiiiie et 63
5.5.6. Package TeSt (PLEST) tuuiuiiiiiiiiiiiii e 64
5.5.7. BUIIA ChANQEScuiiiiiiiiiiii ettt e 64

5. 5.8, MU= NA T LV Lot 64
5.5.9. COre-IMAg-DASIC 1.ttt et 64
5.5.10. LICENSING . .ettitiiiiitiie ettt ettt et eans 64
5.5.11. CFLAGS OPTIONS .ieniiiiiiiieie e ettt e e e e e e e e e e 64
5.5.12. Custom Image OULPUL TYPES ..uuiiiiiiiiiiiii e e aas 64

5. .03, TASKS ittt e e 64
5.5.14. update-alternative ProVider ... 65
5.5.15. VIrtClass OVEITIAES ..c.uiiuiiiieit ittt e e e e e 65
5.5.16. Removed and Renamed RECIPESovuiiuiiiiiiiiiiiii e 65
5.5.17. REMOVEA ClASSESuuiiniiiiiiiiiie e e e e e e e e et e e aeenas 65
5.5.18. Reference Board Support Packages (BSPS)ccviiiiiiiiiiiiiiiincneenee e 65

5.6. Moving to the Yocto Project 1.7 Rel@aSEceuieniiiiiii e 66

5.6.1. Changes to Setting QEMU PACKAGECONFIG Options in local.conf 66
5.6.2. Minimum Git VEISION ... e 66
5.6.3. Autotools Class Changesc.iiiiiiiii e 66
5.6.4. Binary Configuration Scripts Disabledcc.cooiiiiiiiii 66
5.6.5. eglibc 2.19 Replaced with glibc 2.20 ...cciiiiiiiiiiiii e 67
5.6.6. Kernel Module AUtoloadingoc.vieiiiiiiiiiii e 67
5.6.7. QA CheCk Changes ..ouiuiieiiiiiiiii e e e es 67
5.6.8. REMOVEA RECIPES ..uuiiiiiiiiieii e e e e e e e e 68
5.6.9. Miscellaneous Changesccuiiiiiiiie e 68
6. SOUICE DIreCtOry STIUCTUIE ...iveiii i e e e e 69
6.1. Top-Level Core COMPONENESiuiiiiiii e e e e e ees 69
6.1, 1. DIthaKE/ i 69
6.0, 2. DUL LA/ e e 69
6.1.3. dOCUMENTATION/ ooiiniiii e e e 69
B. 1.4, MEEA/ ieiieii i 69
6.1, 5. META- YOO/ i e 70
6.1.6. META-YOCTO-DSP/ e e 70
6.1, 7. META- SO U ST/ ittt 70
6.1.8. META-SKELETON/ it e 70
B.1.9. SO A P S/ ittt e 70
6.1.10. 0€-INIT-DULLA-ENV Lot 70
6.1.11. 0€-init-bUuild-ENV-MEMIES ...ttt aans 71
6.1.12. LICENSE, README, and README.hardwarecccoccoiiiiiiiiieinniineiineiinaiinennn 72
6.2. The Build DIirectory - BUL LA/ ..oeeiiiiiiiie e e e 72
6.2.1. buLild/BULTdNISTONY v 73
6.2.2. build/cont/local. CONT .ot 73
6.2.3. build/conf/bblayers. CoONT ... 73
6.2.4. build/conf/sanity INTO ...cooiiiiiiiii 74
6.2.5. BULTA/AOWNTLO0AAS/ oeiiiniiiiiie e e et e e e e aans 74
6.2.6. bUuLTd/SSTate-CaChe/ ooeiiii i 74
B.2. 7. DUL LA/ EMD/ e 74
6.2.8. build/tmp/bUildStats/ .o 74
6.2.9. bUL LA/ tMP/ CACRE/ e 74
6.2.10. bUL LA/ EMP/AEPTLOY/ et 74
6.2.11. build/tmp/deploy/deD/ ..o 74
6.2.12. build/ImMP/depPlOy/ FPM/ e e 74
6.2.13. build/tmMP/deploy/iPK/ oo 75
6.2.14. build/tmp/deploy/ LiCeNSES/ ouniieiii it 75
6.2.15. build/tmp/deploy/IMAgES/ ..o 75
6.2.16. build/tmp/deploy/SAK/ oo 75
6.2.17. build/tmp/sstate-Control/ i 75
6.2.18. bUL LA/ IMP/ SYSTO0TS/ ottt 75
6.2.19. bULLd/EMP/ STAMPS/ e 75
6.2.20. BULLA/EMP/ L0/ eniiiei e e 76
6.2.21. BULLA/EMP/WOTKY/ ettt et e et e e e eae e 76
6.2.22. build/tmp/work-shared/ ... 76
6.3. The Metadata - META/ ... e 76
6.3, 1. META/ CLlaS S0/ it iei ittt 76
B.3.2. META/ CONT /i e 76
6.3.3. meta/Ccont/MAaChine/ ..o 77
6.3.4. Meta/ CoNT/ALSTIO/ oo 77
6.3.5. meta/cont/machine-SAK/ ..o 77
B.3.6. META/ i LS/ it e 77
6.3, 7. META/ LaD/ i e 77
6.3.8. META/ FECIPES - DS P/ e 77
6.3.9. meta/recipes-ConnNeCtiVIitY/ .o 77
6.3.10. MEEA/ MECIPES - COMR/ ittt et ens 77
6.3.11. meta/recipes-deVtO0 LS/ . 77
6.3.12. meta/recipes-extended/ ... 77
6.3.13. Meta/ reCiPES -GNOME/ ittt e 77
6.3.14. meta/reCipes-graphiCs/ . 78
6.3.15. Meta/reCipes-KerNEL/ .o 78
6.3.16. Meta/reCipes-1ShA/ . 78

6.3.17. meta/recipes-multimedia/ ..occooiuiiiiiiiiiii e 78
6.3.18. Meta/ reCIiPES - O/ i 78
6.3.19. MEtA/ FECIPES - ML/ e 78
6.3.20. meta/ reCipes-Sat/ .o 78
6.3.21. meta/ reCipes-SUPPOIT/ i 78
6.3.22. MEEA/ S/ e 78
6.3.23. meta/recipes . IXT o 78

O = 111 PP 79
7.0, ALlAarCh . DD CLASS et 79
7.2, ArChiVer . DBCLass oo 79
7.3, AUTOT00LS . DDCLASS et 79
7.4. autotools-brokensep . bDCLasS .ot 80
7.5, DASE . DD CLASS ittt 80
7.6. bin PacKage . DDCLasS .oiuuiiiiiiii i 80
7.7, DINCONTLg.DDCLaSS et 80
7.8. binconfig-disabled.bhClass ..o 80
7.9, Dlacklist . DDCLass v 80
7.10. boot-direCtdisk.bBDCLass ..o 81
0 B R o Yo Yo & o A [o B o] o Y ol - 13 TP 81
7.02. DUGZITLa. DDCTLASS ettt 81
7.13. DULLANLISTOrY . DDCLASS ittt 81
7.14. buLIldStats . bDhCLass o 81
7.15. buildstats-summary.bbClass ..o 81
A N R oo Yol o [T o] o Yol - F- 1 S PP 82
7.017. ChrpPath . B CLaSS it 82
A R P o NV o o =] g o o Yol - F3 PP P PP 82
7.09. CMAKE . DD CLASS ittt e 82
A4 O B 1 R o] o Yol - Y- - TP 82
7.21. compress dOC.DBDCLASS ..iiiiiiiiicii e 82
7.22. copyleft compliancCe.bbhClass ..o 82
7.23. copyleft filter.bhClass .o 82
7.24. Core-image.bbhClass ..o 82
725, CPAN . DD LA S ottt 82
7.26. CrOSS . DD LASS ittt e 83
7.27. €ross-canadian.bbhClass ..o e 83
7.28. CroSSSAK. DDCTLASS Luuiitiiiii e 83
7.29. dEDian . Db CLass .oiuuiiiiiiiie i 83
7.30. dEPLOY . DDCLASS ittt aes 83
7.31. deVShell. DDCTLaASS ittt e e 83
7.32. distro features check.bbclasscoooiiiiiiiiiii 83
7.33. distrodata.bbClass ..o 83
7.34. distUTILS . DDCTLASS et 84
7.35. disTULILS3.hDCLaSS couiiieii i 84
7.36. eXTerNalsrC.DDCLASS vttt 84
7.37. eXTrausers . bBhCLass ..o 85
7.38. foNTCAChE. DDCTLASS e 85
7.39. GCONT . DD CLASS ittt e 85
7.40. geTTEXT . DDCLASS ittt 86
A 3 o 1o Lo LT] o Toll B E-1 TP 86
7.42. gnomebase . DhCTLass .uiieii e 86
7.43. grub-e i, DhCTlass oo 86
7.44. gsettings . DDClass oo 86
A T o ko [Lol o o Yol K- F-3 TP PSP 86
7.46. gtk-1C0oN-Cache.DBCLasSs .uiiuiiiiiii i 86
7.47. gtk-immodules-cache.bbhClass ... 87
7.48. gummiboot . DDCTLASS ouiieii i 87
7.49. gzipnative.bbClass . 87
7.50. 1CECC. DD LASS ittt e 87
7,51, AMAGE . DD CLASS ittt e 88
7.52. image typPeS . DDCLASS ouuiiiiii i 88
7.53. image_types uboot.bbhClass ... 88
7.54. image-Live.bhClass oo 88
7.55. image-mMKLLIDS . DDCLASS .oirniiiii i 88
7.56. iMage-pPrelink.DDCLass .o 89

7.57. image-swabh . bbClass ..o 89
7.58. image-VmAK.DDCLass ..o 89
7.59. INSANE . DDCTLASS iieiiiiiii e 89
7.60. INSSEIV . DDCTLASS ittt ittt 92
Y =Y ol 11T N o] o Tl - F 1 PP 92
7.62. Kernel-arCh.bDClass ..o 92
7.63. kernel-module-Split.bhClass ..o 93
7.64. KErnel-yOCT0O . DDCLASS «oiuuiiiiiiiii e 93
7.65. Lib package .bhClass .oouiieiiiiiie e 93
7.66. LiCENSE . DDCTLASS ittt 93
7.67. Linux-Kernel-base.bbclass ..o 93
7.68. 10GGING.DDCTLASS .uiitiii ittt 93
7.69. META . DD CLASS ottt 93
7.70. metadata SCM.DDCLASS ..iiiiiiii i 93
B 1 =T o] o Yol R Y- - PP 93
VA | ol oo] o o o Yol - F 3 PP TPTP 93
A0 T 1o To [V =T o] o Tl - F 1 ST PTPRPRN 94
7.74. MOAULE-DASE . DDCLASS oieiiiiii e 94
775, MULELLAD* . DDCTLASS i 94
7.76. NATIVE.DDCLASS ittt 94
7.77. NAativesdK.DDCTLass . 94
7.78. 08 LANT . DDCLASS ittt e 95
7.79. OWN-MIirrors . DDCLASS oot e 95
7.80. PACKAGE . BDCTLASS ittt 95
7.81. package deb.bbhClass ..o 96
7.82. package dipK.DDCLaSS iuuiiiiiiiii e 96
7.83. package rpm.DDCLASS ouuiiiiii e 96
7.84. package tar.bDhCLass oo 96
7.85. Packagedata.bhClass ... e 96
7.86. PACKagegroUP . DDCLASS .oiuniiiiiieii i 97
7.87. PAckageinto . bhCLass oo e 97
7.88. PATCN . DD CLASS ittt 97
7.89. pPerlnative.bBbClass oo 97
7.90. PIXDUTCAChE . DDCLASS oiiiiiiii e 97
7.91. pKGCONTIG.DDCTLASS euieiii i 97
7.92. populate SAK.DDCLASS .oiuuiiiiiiiiiiii e 97
7.93. populate sdk *.DDCLasSs ...t 97
7.94. PreXPOrt.DDCTLasS .o 98
7.95. PramMPOrt . DCTLASS et 98
7.96. PrSerV . DD CLASS ittt 98
7,97, PLEST . DD LA S ittt 98
7.98. PTEST-gnOmME . DDCLASS iuuiiiiiii e 99
7.99. pYThon-dir.BhClass oo 99
7.100. pythonnative.bBhClass ..o 99
7.10L. geMU. DD CTLASS e e 99
7.102. gMAKe™® . DD CLASS iiuiiiiii it e 99
7,003, GEA% DD CLaSS it 99
7.104. relocatable.bbhelass .. 99
7.105. report-error.bbClass i 100
7.106. rm WOTK.DDCLASS oieiiiiiiiiii ittt e 100
7,007, r00tTS™ DD CLASS iitniit it 100
7.108. SANITY . DDCLASS ittt 100
7.109. SCONS . DDCLASS couniiiiiiiii it 101
7.1020. SAL.DDCTLASS et e 101
7.111. setuptools.bDhCLass i 101
7.112. setuptools3.bbClass oo 101
7,003, SaP . DDCLASS e e 101
7.114. siteconTig.bbClass . 101
7.115. SiteiNTO.DDCLASS ittt 101
7.1016. SPAX.DDCLASS e 101
7,007, SStATE . DD LASS ittt 102
7.118. Staging.bDCLaSS iiuuiitiiii i e 102
7.119. SYSLiNUX.BDCLASS ittt 102
7.120. SYSTEMA . DDCLASS .oiuiiitiiiiie it e 102

2 7 T = 1 1= T o o Y oll U= T 103

7.122, £esTimage. BCTLasS wuiiiiiiiiii i 103
7.123, £eXINTO.DDCLASS ittt 103
7.124, tinderclient.bbClass oo 103
7.0125, £0aSTEI . DDCLASS ittt 103
7.126. toolchain-sCripts.bhClass .o 103
7.127. typeCheCK . BCTLAsS et 103
7.128. Ub00t-CONTig.DDCLaSS ovniiiii 104
7.129. UNINATIVE. DCTLASS ettt 104
7.130. update-alternatives.bbclass ..o 104
7.131. update-rc.d.bBClass .. 104
7.132. USEradd.bDCLass .oiuiiiiiii e 105
7.133. useradd-staticids.bbClass ..o 105
7.134, Uutility-tasks . DDCLass .o 105
7,035, UL LS . DD CLASS cirniiiiiiii et e 105
7.136. Vala.bbhClass oo 105
7. 137, WAt DD O aSS e 105
8. TASKS it 106
8.1. Normal RecCipe Build TasKSc.iuiiiiiiii e 106
8.1.1. dO DULLA oieeiiiiie i 106
8.1.2. dO COMPITLE 1ouiiiiiiiii ettt et et 106
8.1.3. do_compile ptest Dasecciiiiiiiiiiii 106
8.1.4. dO_CONTIQUIE ooeiiiiii 106
8.1.5. do_configure ptest base ..o, 106

S0 S e [o o [T o 1 o PP PTPI 106
8.1.7. do_TeTCh i 106
8.1.8. d0 INSTATL 1ouiiiiiiiii i 106
8.1.9. do_install ptest Daseccoiiiiiiiiiii e 106
8.1.10. dO PACKAGE e 106
8.1.11. dO PACKAGE (@ .iruieniiniiiiiee et e e e aaaas 107
8.1.12. do_package write debcocoiiiiiiiiiiiii 107
8.1.13. do_package write ipKcooiiiiiiii 107
8.1.14. do_package Write Ipmcoocoiiiiiiiiii 107
8.1.15. do_package write tar ... 107
8.1.16. do_Packagedatac.iiniii i 107
8.1.17. do_PatCh .o 107
8.1.18. d0_POPULAtE TIC ciiriiiiiiiiiiii e 107
8.1.19. do_popULAte SAK ..couiiiiiiiiiiii e 107
8.1.20. dO_popULAte SYSITOOT ouuiitiiiiii it et 107
8.1.21. dO FM WOTK Lottt e 107
8.1.22. do M WOTK @l oottt e e e 107
8.1.23. do unpack .. 107

8.2. ManUAIlY Called TASKSeiieiiieeieie ittt e et e et e e eteeeneas 108
8.2.1. dO_CheCKUIL .ot 108
8.2.2. d0_CheCKUILIaTl ..ot e 108
8.2.3. dO CLEAN ittt 108
8.2.4. d0_CLEANALL ..ooiiii i 108
8.2.5. d0 Cleansstate ..o 108
8.2.6. d0_deVShell ..o 109
8.2.7. do_TetChall ..o 109
8.2.8. d0 LS tTASKS .iiiriiiiiiiiii e 109
8.2.9. dO_PACKAGE INUEX .uiviriitiiiiit ittt 109

8.3. Image-Related TasKScuuiiiiiii e 109
8.3.1. do_DOo0OTIMG .ovieriiii 109
8.3.2. do_bundle Iinitramfs ... 109
8.3.3. d0_ 00T S L 109
8.3.4. do_TeSTimagecoeviiiiiiii i 109
8.3.5. do_testimage autocccooiiiiiiiiiiii s 109
8.3.6. dOo_ VMAKIMG ..oivvniiiiiii 110

8.4. Kernel-Related TasKs ..o 110
8.4.1. do_compile kernelmodulesccccoiiiiiriiiiiiiiiiiiii e 110
8.4.2. do diffCoNTig .oooviiiiiiiii i 110
8.4.3. do_kernel CheCKOoUTLooiiiiiiiiii 110

8.4.4. do_kernel configCheCKcoiiiiiiiiiiiiii 110

8.4.5. do_kernel CONTLIGMEiiiiriiiiiiii e 110

8.4.6. do_kernel Tink VMLINUX ..oouiiiiiiiiiiiiiieii ettt e 110

8.4.7. dO_MENUCONTIQ oevviiiiiiii e 110

8.4.8. do_savedefconTig ...ccoiiiiiiiii 110

8.4.9. d0_SIZECNECK .ivviiiiiiiii i 110

8.4.10. dO STIIP iiviiiiiiii i 110

8.4.11. do_ubOOt MKIMAGE ..ceviiiiiiiiiiii 110

8.4.12. do _validate DranChes ..o 110

8.5. MiISCEIlANEOUS TASKS ..vnieiiieiiii e et et e 111
8.5.1. do_generate gt config file ..o 111

8.5.2. O SPUX ittt 111

9. QA Error and WarNing MESS@OESuuiiuiiuiiiiiei ettt ettt et et e e e 112
1S I R [oY e Yo 1§ ot o] o H PP PP 112

9.2. Errors @nd WarmiNgSoueuiuiiii et e e e e et et es 112

9.3. Configuring and Disabling QA Checkscoiiiiiiiii e 117

B0 T 1o g =T = PP P PP 118
L =T = PP 120
11.1. MAcChiNg FEATUIESeiiiiii e e e e e e e e e ans 120
11.2. DISErO FEATUIES ..ouiiiiii et e e e et e et e e e e e aneanas 121
11.3. IMAQGE FEATUIES ...oeieiiii ettt 122
11.4. Feature BackfilliNg ... 123

12, Variables GlOSSArY .. 124
13, Variable CoMnteXE .o 216
13.1. CoNFIQUIAtION ..oeie i et 216
13.1.1. Distribution (DiStrO) ..cceiviiiiiiiiiii s 216

13.1.2. MACNING et e 216

L1303, LOCAI it 216

R T U= T o] PP PRP 217

B 0 R (=T LU 1 =T I PP TP 217

13.2.2. DEPENUENCIES ..uitiiiiiiiii ittt ettt ettt ettt et e e e e e e e eas 217

13,23, Patis e 217

13.2.4. Extra Build INfOrmation ..o 217

T L PP PPRPTRR 218
15. Contributing to the YOCLO Project ... 224
L15.1. INEFOAUCTION ot e et e e e et e et e e e e e e eneenas 224
15.2. TraCKing BUGS ..oeuiiiiiiiiiiii ettt ettt e et et e aas 224
15.3. MAiliNG [ISES ovnieiiii i 224
15.4. Internet Relay Chat (IRC) ..ivivuiiiiiiiii e e et e e e aneaas 224
e T I 1o PP PPT 224

J T ST o T o o 1 o YU o T3P 225

Chapter 1. Introduction

1.1. Introduction

This manual provides reference information for the current release of the Yocto Project. The Yocto
Project is an open-source collaboration project focused on embedded Linux developers. Amongst
other things, the Yocto Project uses the OpenEmbedded build system, which is based on the Poky
project, to construct complete Linux images. You can find complete introductory and getting started
information on the Yocto Project by reading the Yocto Project Quick Start [http://www.yoctoproject.org/
docs/1.8/yocto-project-gs/yocto-project-gs.html]. For task-based information using the Yocto Project,
see the Yocto Project Development Manual [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html] and the Yocto Project Linux Kernel Development Manual [http://www.yoctoproject.org/
docs/1.8/kernel-dev/kernel-dev.html]. For Board Support Package (BSP) structure information, see
the Yocto Project Board Support Package (BSP) Developer's Guide [http://www.yoctoproject.org/
docs/1.8/bsp-guide/bsp-guide.html]. You can find information on tracing and profiling in the Yocto
Project Profiling and Tracing Manual [http://www.yoctoproject.org/docs/1.8/profile-manual/profile-
manual.html#profile-manual]. For information on BitBake, which is the task execution tool the
OpenEmbedded build system is based on, see the BitBake User Manual [http://www.yoctoproject.org/
docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual]. Finally, you can also
find lots of Yocto Project information on the Yocto Project website [http://www.yoctoproject.org].

1.2. Documentation Overview

This reference manual consists of the following:

* Using the Yocto Project: Provides an overview of the components that make up the Yocto Project
followed by information about debugging images created in the Yocto Project.

* A Closer Look at the Yocto Project Development Environment: Provides a more detailed look at the
Yocto Project development environment within the context of development.

Technical Details: Describes fundamental Yocto Project components as well as an explanation
behind how the Yocto Project uses shared state (sstate) cache to speed build time.

Migrating to a Newer Yocto Project Release: Describes release-specific information that helps you
move from one Yocto Project Release to another.

Directory Structure: Describes the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#source-directory] created either by unpacking a released Yocto
Project tarball on your host development system, or by cloning the upstream Poky [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky] Git repository.

* Classes: Describes the classes used in the Yocto Project.
» Tasks: Describes the tasks defined by the OpenEmbedded build system.
* QA Error and Warning Messages: Lists and describes QA warning and error messages.

* Images: Describes the standard images that the Yocto Project supports.

Features: Describes mechanisms for creating distribution, machine, and image features during the
build process using the OpenEmbedded build system.

Variables Glossary: Presents most variables used by the OpenEmbedded build system, which uses
BitBake. Entries describe the function of the variable and how to apply them.

Variable Context: Provides variable locality or context.

* FAQ: Provides answers for commonly asked questions in the Yocto Project development
environment.

Contributing to the Yocto Project: Provides guidance on how you can contribute back to the Yocto
Project.

http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/profile-manual/profile-manual.html#profile-manual
http://www.yoctoproject.org/docs/1.8/profile-manual/profile-manual.html#profile-manual
http://www.yoctoproject.org/docs/1.8/profile-manual/profile-manual.html#profile-manual
http://www.yoctoproject.org/docs/1.8/profile-manual/profile-manual.html#profile-manual
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky

1.3. System Requirements

For general Yocto Project system requirements, see the "What You Need and How You Get It [http://
www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-gs.html#yp-resources]" section in the
Yocto Project Quick Start. The remainder of this section provides details on system requirements not
covered in the Yocto Project Quick Start.

1.3.1. Supported Linux Distributions

Currently, the Yocto Project is supported on the following distributions:

Note

Yocto Project releases are tested against the stable Linux distributions in the following list. The
Yocto Project should work on other distributions but validation is not performed against them.

In particular, the Yocto Project does not support and currently has no plans to support rolling-
releases or development distributions due to their constantly changing nature. We welcome
patches and bug reports, but keep in mind that our priority is on the supported platforms
listed below.

If you encounter problems, please go to Yocto Project Bugzilla [http://
bugzilla.yoctoproject.org] and submit a bug. We are interested in hearing about your
experience.

* Ubuntu 12.04 (LTS)

* Ubuntu 13.10

* Ubuntu 14.04 (LTS)

* Fedora release 19 (Schrédinger's Cat)
* Fedora release 20 (Heisenbug)

* CentOS release 6.4

* CentOS release 6.5

* Debian GNU/Linux 7.0 (Wheezy)

* Debian GNU/Linux 7.1 (Wheezy)

Debian GNU/Linux 7.2 (Wheezy)

Debian GNU/Linux 7.3 (Wheezy)

Debian GNU/Linux 7.4 (Wheezy)

Debian GNU/Linux 7.5 (Wheezy)

Debian GNU/Linux 7.6 (Wheezy)
* openSUSE 12.2
* openSUSE 12.3
* openSUSE 13.1

Note

While the Yocto Project Team attempts to ensure all Yocto Project releases are one hundred
percent compatible with each officially supported Linux distribution, instances might exist
where you encounter a problem while using the Yocto Project on a specific distribution.
For example, the CentOS 6.4 distribution does not include the Gtk+ 2.20.0 and PyGtk
2.21.0 (or higher) packages, which are required to run Hob [http://www.yoctoproject.org/
tools-resources/projects/hob].

http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html#yp-resources
http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html#yp-resources
http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html#yp-resources
http://bugzilla.yoctoproject.org
http://bugzilla.yoctoproject.org
http://bugzilla.yoctoproject.org
http://www.yoctoproject.org/tools-resources/projects/hob
http://www.yoctoproject.org/tools-resources/projects/hob
http://www.yoctoproject.org/tools-resources/projects/hob

1.3.2. Required Packages for the Host Development
System

The list of packages you need on the host development system can be large when covering all

build scenarios using the Yocto Project. This section provides required packages according to Linux
distribution and function.

1.3.2.1. Ubuntu and Debian

The following list shows the required packages by function given a supported Ubuntu or Debian Linux
distribution:

* Essentials: Packages needed to build an image on a headless system:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \
build-essential chrpath socat

* Graphical and Eclipse Plug-In Extras: Packages recommended if the host system has graphics
support or if you are going to use the Eclipse IDE:

$ sudo apt-get install libsdll.2-dev xterm

* Documentation: Packages needed if you are going to build out the Yocto Project documentation
manuals:

$ sudo apt-get install make xsltproc docbook-utils fop dblatex xmlto

» ADT Installer Extras: Packages needed if you are going to be using the Application Development
Toolkit (ADT) Installer [http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-
the-adt-installer]:

$ sudo apt-get install autoconf automake libtool libglib2.0-dev

1.3.2.2. Fedora Packages

The following list shows the required packages by function given a supported Fedora Linux
distribution:

* Essentials: Packages needed to build an image for a headless system:

$ sudo yum install gawk make wget tar bzip2 gzip python unzip perl patch \
diffutils diffstat git cpp gcc gcc-c++ glibc-devel texinfo chrpath \
ccache perl-Data-Dumper perl-Text-ParseWords perl-Thread-Queue socat

* Graphical and Eclipse Plug-In Extras: Packages recommended if the host system has graphics
support or if you are going to use the Eclipse IDE:

$ sudo yum install SDL-devel xterm perl-Thread-Queue

* Documentation: Packages needed if you are going to build out the Yocto Project documentation
manuals:

$ sudo yum install make docbook-style-dsssl docbook-style-xsl \

http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer

docbook-dtds docbook-utils fop libxslt dblatex xmlto

* ADT Installer Extras: Packages needed if you are going to be using the Application Development
Toolkit (ADT) Installer [http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-
the-adt-installer]:

$ sudo yum install autoconf automake libtool glib2-devel

1.3.2.3. openSUSE Packages

The following list shows the required packages by function given a supported openSUSE Linux
distribution:

* Essentials: Packages needed to build an image for a headless system:

$ sudo zypper install python gcc gcc-c++ git chrpath make wget python-xml \
diffstat texinfo python-curses patch socat

* Graphical and Eclipse Plug-In Extras: Packages recommended if the host system has graphics
support or if you are going to use the Eclipse IDE:

$ sudo zypper install libSDL-devel xterm

* Documentation: Packages needed if you are going to build out the Yocto Project documentation
manuals:

$ sudo zypper install make fop xsltproc dblatex xmlto

» ADT Installer Extras: Packages needed if you are going to be using the Application Development
Toolkit (ADT) Installer [http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-
the-adt-installer]:

$ sudo zypper install autoconf automake libtool glib2-devel

1.3.2.4. CentOS Packages

The following list shows the required packages by function given a supported CentOS Linux
distribution:

Note

For CentQOS 6.x, some of the versions of the components provided by the distribution are too
old (e.g. Git, Python, and tar). It is recommended that you install the buildtools in order to
provide versions that will work with the OpenEmbedded build system. For information on how
to install the buildtools tarball, see the "Required Git, Tar, and Python Versions" section.

» Essentials: Packages needed to build an image for a headless system:

$ sudo yum install gawk make wget tar bzip2 gzip python unzip perl patch \
diffutils diffstat git cpp gcc gcc-c++ glibc-devel texinfo chrpath socat

* Graphical and Eclipse Plug-In Extras: Packages recommended if the host system has graphics
support or if you are going to use the Eclipse IDE:

http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer

$ sudo yum install SDL-devel xterm

* Documentation: Packages needed if you are going to build out the Yocto Project documentation
manuals:

$ sudo yum install make docbook-style-dsssl docbook-style-xsl \
docbook-dtds docbook-utils fop libxslt dblatex xmlto

* ADT Installer Extras: Packages needed if you are going to be using the Application Development
Toolkit (ADT) Installer [http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-
the-adt-installer]:

$ sudo yum install autoconf automake libtool glib2-devel

1.3.3. Required Git, tar, and Python Versions

In order to use the build system, your host development system must meet the following version
requirements for Git, tar, and Python:

* Git 1.7.8 or greater
» tar 1.24 or greater
* Python 2.7.3 or greater not including Python 3.x, which is not supported.

If your host development system does not meet all these requirements, you can resolve this by
installing a buildtools tarball that contains these tools. You can get the tarball one of two ways:
download a pre-built tarball or use BitBake to build the tarball.

1.3.3.1. Downloading a Pre-Builtbuildtools Tarball

Downloading and running a pre-built buildtools installer is the easiest of the two methods by which
you can get these tools:

1. Locate and download the *.sh at http://downloads.yoctoproject.org/releases/yocto/yocto-1.8/
buildtools/.

2. Execute the installation script. Here is an example:

$ sh poky-eglibc-x86 64-buildtools-tarball-x86 64-buildtools-nativesdk-standalone-1.8.sh

During execution, a prompt appears that allows you to choose the installation directory. For
example, you could choose the following:

/home/your-username/buildtools
3. Source the tools environment setup script by using a command like the following:
$ source /home/your-username/buildtools/environment-setup-i586-poky-linux
Of course, you need to supply your installation directory and be sure to use the right file (i.e. i585

or x86-64).

After you have sourced the setup script, the tools are added to PATH and any other environment
variables required to run the tools are initialized. The results are working versions versions of Git,
tar, Python and chrpath.

http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#using-the-adt-installer
http://downloads.yoctoproject.org/releases/yocto/yocto-1.8/buildtools/
http://downloads.yoctoproject.org/releases/yocto/yocto-1.8/buildtools/

1.3.3.2. Building Your Ownbuildtools Tarball

Building and running your own buildtools installer applies only when you have a build host that can
already run BitBake. In this case, you use that machine to build the .sh file and then take steps to
transfer and run it on a machine that does not meet the minimal Git, tar, and Python requirements.

Here are the steps to take to build and run your own buildtools installer:

1. On the machine that is able to run BitBake, be sure you have set up your build environment with
the setup script (oe-init-build-env or oe-init-build-env-memres).

2. Run the BitBake command to build the tarball:

$ bitbake buildtools-tarball

Note

The SDKMACHINE variable in your local. conf file determines whether you build tools for

a 32-bit or 64-bit system.
Once the build completes, you can find the .sh file that installs the tools in the tmp/deploy/
sdk subdirectory of the Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#build-directory]. The installer file has the string "buildtools" in the name.

3. Transfer the .sh file from the build host to the machine that does not meet the Git, tar, or Python
requirements.

4. 0n the machine that does not meet the requirements, run the .sh file to install the tools. Here
is an example:

$ sh poky-eglibc-x86 64-buildtools-tarball-x86 64-buildtools-nativesdk-standalone-1.8.sh

During execution, a prompt appears that allows you to choose the installation directory. For
example, you could choose the following:

/home/your-username/buildtools
5. Source the tools environment setup script by using a command like the following:
$ source /home/your-username/buildtools/environment-setup-i586-poky-linux
Of course, you need to supply your installation directory and be sure to use the right file (i.e. i585
or x86-64).
After you have sourced the setup script, the tools are added to PATH and any other environment

variables required to run the tools are initialized. The results are working versions versions of Git,
tar, Python and chrpath.

1.4. Obtaining the Yocto Project

The Yocto Project development team makes the Yocto Project available through a number of methods:

* Source Repositories: Working from a copy of the upstream poky repository is the preferred method
for obtaining and using a Yocto Project release. You can view the Yocto Project Source Repositories
at http://qgit.yoctoproject.org/cgit.cgi. In particular, you can find the poky repository at http://
git.yoctoproject.org/cgit/cqgit.cgi/poky/.

* Releases: Stable, tested releases are available as tarballs through http://
downloads.yoctoproject.org/releases/yocto/.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://git.yoctoproject.org/cgit.cgi
http://git.yoctoproject.org/cgit/cgit.cgi/poky/
http://git.yoctoproject.org/cgit/cgit.cgi/poky/
http://downloads.yoctoproject.org/releases/yocto/
http://downloads.yoctoproject.org/releases/yocto/

* Nightly Builds: These tarball releases are available at http://autobuilder.yoctoproject.org/nightly.
These builds include Yocto Project releases, meta-toolchain tarball installation scripts, and
experimental builds.

* Yocto Project Website: You can find tarball releases of the Yocto Project and supported BSPs at the
Yocto Project website [http://www.yoctoproject.org]. Along with these downloads, you can find lots
of other information at this site.

1.5. Development Checkouts

Development using the Yocto Project requires a local Source Directory [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#source-directory]. You can set up the Source Directory
by cloning a copy of the upstream poky [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#poky] Git repository. For information on how to do this, see the "Getting Set Up
[http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#getting-setup]" section in the
Yocto Project Development Manual.

http://autobuilder.yoctoproject.org/nightly
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#getting-setup
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#getting-setup

Chapter 2. Using the Yocto Project

This chapter describes common usage for the Yocto Project. The information is introductory in nature
as other manuals in the Yocto Project documentation set provide more details on how to use the
Yocto Project.

2.1. Running a Build

This section provides a summary of the build process and provides information for less obvious
aspects of the build process. For general information on how to build an image using the
OpenEmbedded build system, see the "Building an Image [http://www.yoctoproject.org/docs/1.8/
yocto-project-qs/yocto-project-gs.html#building-image]" section of the Yocto Project Quick Start.

2.1.1. Build Overview

The first thing you need to do is set up the OpenEmbedded build environment by sourcing an
environment setup script (i.e. oe-init-build-env or oe-init-build-env-memres). Here is an
example:

$ source oe-init-build-env [build dir]

The build _dir argument is optional and specifies the directory the OpenEmbedded build system
uses for the build - the Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#build-directory]. If you do not specify a Build Directory, it defaults to a directory named
build in your current working directory. A common practice is to use a different Build Directory for
different targets. For example, ~/build/x86 for a gqemux86 target, and ~/build/arm for a gemuarm
target.

Once the build environment is set up, you can build a target using:
$ bitbake target

The target is the name of the recipe you want to build. Common targets are the images in meta/
recipes-core/images, meta/recipes-sato/images, etc. all found in the Source Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory]. Or, the target can
be the name of a recipe for a specific piece of software such as BusyBox. For more details about the
images the OpenEmbedded build system supports, see the "Images" chapter.

Note

Building an image without GNU General Public License Version 3 (GPLv3), or similarly licensed,
components is supported for only minimal and base images. See the "Images" chapter for
more information.

2.1.2. Building an Image Using GPL Components

When building an image using GPL components, you need to maintain your original settings and not
switch back and forth applying different versions of the GNU General Public License. If you rebuild
using different versions of GPL, dependency errors might occur due to some components not being
rebuilt.

2.2. Installing and Using the Result

Once an image has been built, it often needs to be installed. The images and kernels built by
the OpenEmbedded build system are placed in the Build Directory [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#build-directory] in tmp/deploy/images. For information on
how to run pre-built images such as gemux86 and gemuarm, see the "Using Pre-Built Binaries
and QEMU [http://www.yoctoproject.org/docs/1.8/yocto-project-gs/yocto-project-gs.html#using-pre-

http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html#building-image
http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html#building-image
http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html#building-image
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html#using-pre-built
http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html#using-pre-built
http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html#using-pre-built

built]" section in the Yocto Project Quick Start. For information about how to install these images, see
the documentation for your particular board or machine.

2.3. Debugging Build Failures

The exact method for debugging build failures depends on the nature of the problem and on the
system's area from which the bug originates. Standard debugging practices such as comparison
against the last known working version with examination of the changes and the re-application of
steps to identify the one causing the problem are valid for the Yocto Project just as they are for
any other system. Even though it is impossible to detail every possible potential failure, this section
provides some general tips to aid in debugging.

A useful feature for debugging is the error reporting tool. Configuring the Yocto Project to use this
tool causes the OpenEmbedded build system to produce error reporting commands as part of the
console output. You can enter the commands after the build completes to log error information into a
common database, that can help you figure out what might be going wrong. For information on how
to enable and use this feature, see the "Using the Error Reporting Tool [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#using-the-error-reporting-tool]" section in the Yocto Project
Development Manual.

For discussions on debugging, see the "Debugging With the GNU Project Debugger
(GDB) Remotely [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-gdb-
remotedebug]" and "Working within Eclipse [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#adt-eclipse]" sections in the Yocto Project Development Manual.

Note

The remainder of this section presents many examples of the bitbake command. You
can learn about BitBake by reading the BitBake User Manual [http://www.yoctoproject.org/
docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual].

2.3.1. Task Failures

The log file for shell tasks is available in ${WORKDIR}/temp/log.do_taskname.pid. For example, the
do_compile task for the QEMU minimal image for the x86 machine (gemux86) might be tmp/work/
gemux86-poky-linux/core-image-minimal/1.0-r@/temp/log.do compile.20830. To see what
BitBake [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term] runs to
generate that log, look at the corresponding run.do_taskname.pid file located in the same directory.

Presently, the output from Python tasks is sent directly to the console.

2.3.2. Running Specific Tasks

Any given package consists of a set of tasks. The standard BitBake behavior in most
cases is: do_fetch, do_unpack, do_patch, do_configure, do_compile, do_install, do_ package,
do _package write *,and do_build. The default task is do_build and any tasks on which it depends
build first. Some tasks, such as do_devshell, are not part of the default build chain. If you wish to

run a task that is not part of the default build chain, you can use the -c option in BitBake. Here is
an example:

$ bitbake matchbox-desktop -c devshell

If you wish to rerun a task, use the -f force option. For example, the following sequence forces
recompilation after changing files in the work directory.

$ bitbake matchbox-desktop

make some changes to the source code in the work directory

http://www.yoctoproject.org/docs/1.8/yocto-project-qs/yocto-project-qs.html#using-pre-built
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-the-error-reporting-tool
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-the-error-reporting-tool
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-the-error-reporting-tool
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-gdb-remotedebug
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-gdb-remotedebug
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-gdb-remotedebug
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-gdb-remotedebug
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#adt-eclipse
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#adt-eclipse
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#adt-eclipse
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term

$ bitbake matchbox-desktop -c compile -f
$ bitbake matchbox-desktop

This sequence first builds and then recompiles matchbox-desktop. The last command reruns all tasks
(basically the packaging tasks) after the compile. BitBake recognizes that the do_compile task was
rerun and therefore understands that the other tasks also need to be run again.

You can view a list of tasks in a given package by running the do_listtasks task as follows:
$ bitbake matchbox-desktop -c listtasks

The results appear as output to the console and are also in the file ${WORKDIR}/temp/
log.do listtasks.

2.3.3. Dependency Graphs

Sometimes it can be hard to see why BitBake wants to build other packages before building a given
package you have specified. The bitbake -g targetname command creates the pn-buildlist,
pn-depends.dot, package-depends.dot, and task-depends.dot files in the current directory. These
files show what will be built and the package and task dependencies, which are useful for debugging
problems. You can use the bitbake -g -u depexp targetname command to display the results in
a more human-readable form.

2.3.4. General BitBake Problems

You can see debug output from BitBake by using the -D option. The debug output gives more
information about what BitBake is doing and the reason behind it. Each -D option you use increases
the logging level. The most common usage is -DDD.

The output from bitbake -DDD -v targetname can reveal why BitBake chose a certain version of a
package or why BitBake picked a certain provider. This command could also help you in a situation
where you think BitBake did something unexpected.

2.3.5. Development Host System Issues

Sometimes issues on the host development system can cause your build to fail. Following are known,
host-specific problems. Be sure to always consult the Release Notes [http://www.yoctoproject.org/
download/yocto-project-18-poky-1300] for a look at all release-related issues.

* eglibc-initial fails to build: If your development host system has the unpatched GNU Make 3.82,
the do_install task fails for eglibc-initial during the build.

Typically, every distribution that ships GNU Make 3.82 as the default already has the patched
version. However, some distributions, such as Debian, have GNU Make 3.82 as an option, which
is unpatched. You will see this error on these types of distributions. Switch to GNU Make 3.81 or
patch your make to solve the problem.

2.3.6. Building with No Dependencies

To build a specific recipe (.bb file), you can use the following command form:
$ bitbake -b somepath/somerecipe.bb

This command form does not check for dependencies. Consequently, you should use it only when
you know existing dependencies have been met.

Note

You can also specify fragments of the filename. In this case, BitBake checks for a unique
match.

http://www.yoctoproject.org/download/yocto-project-18-poky-1300
http://www.yoctoproject.org/download/yocto-project-18-poky-1300
http://www.yoctoproject.org/download/yocto-project-18-poky-1300

2.3.7. Variables

You can use the -e BitBake option to display the parsing environment for a configuration. The following
displays the general parsing environment:

$ bitbake -e
This next example shows the parsing environment for a specific recipe:

$ bitbake -e recipename

2.3.8. Recipe Logging Mechanisms

Best practices exist while writing recipes that both log build progress and act on build conditions such
as warnings and errors. Both Python and Bash language bindings exist for the logging mechanism:

» Python: For Python functions, BitBake supports several loglevels: bb.fatal, bb.error, bb.warn,
bb.note, bb.plain, and bb.debug.

» Bash: For Bash functions, the same set of loglevels exist and are accessed with a similar syntax:
bbfatal, bberror, bbwarn, bbnote, bbplain, and bbdebug.

For guidance on how logging is handled in both Python and Bash recipes, see the logging.bbclass
file in the meta/classes folder of the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#source-directory].

2.3.8.1. Logging With Python

When creating recipes using Python and inserting code that handles build logs, keep in mind the goal
is to have informative logs while keeping the console as "silent" as possible. Also, if you want status
messages in the log, use the "debug"” loglevel.

Following is an example written in Python. The code handles logging for a function that determines
the number of tasks needed to be run. See the "do_listtasks" section for additional information:

python do listtasks() {
bb.debug(2, "Starting to figure out the task list")
if noteworthy condition:
bb.note("There are 47 tasks to run")
bb.debug(2, "Got to point xyz")
if warning trigger:
bb.warn("Detected warning trigger, this might be a problem later.")
if recoverable error:
bb.error("Hit recoverable error, you really need to fix this!")
if fatal error:
bb.fatal("fatal error detected, unable to print the task list")
bb.plain("The tasks present are abc")
bb.debug(2, "Finished figuring out the tasklist")

2.3.8.2. Logging With Bash

When creating recipes using Bash and inserting code that handles build logs, you have the same
goals - informative with minimal console output. The syntax you use for recipes written in Bash is
similar to that of recipes written in Python described in the previous section.

Following is an example written in Bash. The code logs the progress of the do_my function function.

do _my function() {

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

bbdebug 2 "Running do my function™"
if [exceptional condition]; then
bbnote "Hit exceptional condition"
fi
bbdebug 2 "Got to point xyz"
if [warning trigger]; then
bbwarn "Detected warning trigger, this might cause a problem later."
fi
if [recoverable error 1; then
bberror "Hit recoverable error, correcting"
fi
if [fatal error]; then
bbfatal "fatal error detected"
fi
bbdebug 2 "Completed do my function"

2.3.9. Other Tips

Here are some other tips that you might find useful:

* When adding new packages, it is worth watching for undesirable items making their way into
compiler command lines. For example, you do not want references to local system files like /usr/
1ib/ or /usr/include/.

* If you want to remove the psplash boot splashscreen, add psplash=false to the kernel command
line. Doing so prevents psplash from loading and thus allows you to see the console. It is also
possible to switch out of the splashscreen by switching the virtual console (e.g. Fn+Left or Fn+Right
on a Zaurus).

2.4. Maintaining Build Output Quality

Many factors can influence the quality of a build. For example, if you upgrade a recipe to use a new
version of an upstream software package or you experiment with some new configuration options,
subtle changes can occur that you might not detect until later. Consider the case where your recipe
is using a newer version of an upstream package. In this case, a new version of a piece of software
might introduce an optional dependency on another library, which is auto-detected. If that library has
already been built when the software is building, the software will link to the built library and that
library will be pulled into your image along with the new software even if you did not want the library.

The buildhistory class exists to help you maintain the quality of your build output. You can use the
class to highlight unexpected and possibly unwanted changes in the build output. When you enable
build history, it records information about the contents of each package and image and then commits
that information to a local Git repository where you can examine the information.

The remainder of this section describes the following:
* How you can enable and disable build history

* How to understand what the build history contains
* How to limit the information used for build history

* How to examine the build history from both a command-line and web interface

2.4.1. Enabling and Disabling Build History

Build history is disabled by default. To enable it, add the following INHERIT statement and set the
BUILDHISTORY_ COMMIT variable to "1" at the end of your conf/local.conf file found in the Build
Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory]:

INHERIT += "buildhistory"
BUILDHISTORY_ COMMIT = "1"

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

Enabling build history as previously described causes the build process to collect build output
information and commit it to a local Git [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#git] repository.

Note

Enabling build history increases your build times slightly, particularly for images, and
increases the amount of disk space used during the build.

You can disable build history by removing the previous statements from your conf/local. conf file.

2.4.2. Understanding What the Build History Contains

Build history information is kept in ${TOPDIR}/buildhistory in the Build Directory as
defined by the BUILDHISTORY DIR variable. The following is an example abbreviated listing:

|
il buildhistory
’— metadata-revs

$— | images
il atom_pc
il eglibc
wl core-image-minimal

il image-files
build-id.txt
depends.dot
depends-nokernel.dot
depends-nokernel-nolibc.dot
depends-nokernel-nolibc-noupdate.dot
depends-nokernel-nolibc-noupdate-nomodules.dot
files-in-image.txt
image-info.txt
installed-package-names.txt
installed-package-sizes.txt
installed-packages.txt

»— il packages
il core2-poky-linux

i*,.‘ busybox
b— il busybox
. il latest
»— il busybox-dbg
all latest
#— . busybox-dev
Ll latest
p— Ll busybox-doc

L,.‘ latest
.
.
.

At the top level, there is a metadata-revs file that lists the revisions of the repositories for the layers
enabled when the build was produced. The rest of the data splits into separate packages, images
and sdk directories, the contents of which are described below.

2.4.2.1. Build History Package Information

The history for each package contains a text file that has name-value pairs with information about
the package. For example, buildhistory/packages/core2-poky-linux/busybox/busybox/latest
contains the following:

PV 1.19.3

PR = r3

RDEPENDS = update-rc.d eglibc (>= 2.13)

RRECOMMENDS = busybox-syslog busybox-udhcpc

PKGSIZE = 564701

FILES = /usr/bin/* /usr/sbin/* /usr/libexec/* /usr/1lib/lib*.so.* \
/etc /com /var /bin/* /sbin/* /1lib/*.so.* /usr/share/busybox \
/usr/lib/busybox/* /usr/share/pixmaps /usr/share/applications \
/usr/share/idl /usr/share/omf /usr/share/sounds /usr/lib/bonobo/servers

FILELIST = /etc/busybox.links /etc/init.d/hwclock.sh /bin/busybox /bin/sh

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#git
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#git
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#git

Most of these name-value pairs correspond to variables used to produce the package. The exceptions
are FILELIST, which is the actual list of files in the package, and PKGSIZE, which is the total size of
files in the package in bytes.

There is also a file corresponding to the recipe from which the package came (e.g. buildhistory/
packages/core2-poky-linux/busybox/latest):

PV = 1.19.3

PR = r3

DEPENDS = virtual/i586-poky-linux-gcc virtual/i586-poky-linux-compilerlibs \
virtual/libc update-rc.d-native

PACKAGES = busybox-httpd busybox-udhcpd busybox-udhcpc busybox-syslog \
busybox-mdev busybox-dbg busybox busybox-doc busybox-dev \
busybox-staticdev busybox-locale

Finally, for those recipes fetched from a version control system (e.g., Git), a file exists that lists source
revisions that are specified in the recipe and lists the actual revisions used during the build. Listed
and actual revisions might differ when SRCREV is set to ${AUTOREV}. Here is an example assuming
buildhistory/packages/emenlow-poky-linux/linux-yocto/latest srcrev):

SRCREV_machine = "b5c37febe24eec194bb29d22fdd55d73bcc709bf"
SRCREV_machine = "b5c37febe24eec194bb29d22fdd55d73bcc709bf"
SRCREV_emgd = "caea08c988e0f41103bbel8eafca20348f95da0n2"
SRCREV_emgd = "caea08c988e0f41103bbel8eafca20348f95da02"

SRCREV meta = "c2ed0fl1l6fdec628242a682897d5d86df4547cf24"
SRCREV meta = "c2ed0fl6fdec628242a682897d5d86df4547cf24"

You can use the buildhistory-collect-srcrevs command to collect the stored SRCREV values from
build history and report them in a format suitable for use in global configuration (e.g., local.conf
or a distro include file) to override floating AUTOREV values to a fixed set of revisions. Here is some
example output from this command:

emenlow-poky-linux

SRCREV_machine pn-linux-yocto = "b5c37febe24eecl94bb29d22fdd55d73bcc709bf"
SRCREV_emgd pn-linux-yocto "caea08c988e0f41103bbel8eafca20348f95dan2"
SRCREV_meta pn-linux-yocto "c2ed0f16fdec628242a682897d5d86df4547cf24"

core2-poky-linux

SRCREV_pn-kmod = "62081c0f68905b22f375156d4532fd37fa5c8d33"
SRCREV_pn-blktrace = "d6918c8832793b4205ed3bfede78c2f915c23385"
SRCREV_pn-opkg = "649"

Note

Here are some notes on using the buildhistory-collect-srcrevs command:

* By default, only values where the SRCREV was not hardcoded (usually when AUTOREV was
used) are reported. Use the -a option to see all SRCREV values.

* The output statements might not have any effect if overrides are applied elsewhere in the
build system configuration. Use the -f option to add the forcevariable override to each
output line if you need to work around this restriction.

* The script does apply special handling when building for multiple machines. However, the
script does place a comment before each set of values that specifies which triplet to which
they belong as shown above (e.g., emenlow-poky-linux).

2.4.2.2. Build History Image Information

The files produced for each image are as follows:

» image-files: A directory containing selected files from the root filesystem. The files are defined
by BUILDHISTORY IMAGE FILES.

* build-id.txt: Human-readable information about the build configuration and metadata source
revisions. This file contains the full build header as printed by BitBake.

» * dot: Dependency graphs for the image that are compatible with graphviz.

» files-in-image.txt: Alist of files in the image with permissions, owner, group, size, and symlink
information.

* image-info.txt: A text file containing name-value pairs with information about the image. See
the following listing example for more information.

» installed-package-names.txt: A list of installed packages by name only.
* installed-package-sizes.txt: A list of installed packages ordered by size.

* installed-packages.txt: A list of installed packages with full package filenames.

Note

Installed package information is able to be gathered and produced even if package
management is disabled for the final image.

Here is an example of image-info.txt:

DISTRO = poky

DISTRO VERSION = 1.1+snapshot-20120207

USER CLASSES = image-mklibs image-prelink

IMAGE CLASSES = image types

IMAGE_FEATURES = debug-tweaks x1l-base apps-xll-core \
package-management ssh-server-dropbear package-management

IMAGE LINGUAS = en-us en-gb

IMAGE_INSTALL = packagegroup-core-boot packagegroup-base-extended

BAD RECOMMENDATIONS =

ROOTFS_POSTPROCESS COMMAND = buildhistory get image installed ; rootfs update timestamp ;

IMAGE_POSTPROCESS COMMAND = buildhistory get imageinfo ;

IMAGESIZE = 171816

Other than IMAGESIZE, which is the total size of the files in the image in Kbytes, the name-value pairs
are variables that may have influenced the content of the image. This information is often useful
when you are trying to determine why a change in the package or file listings has occurred.

2.4.2.3. Using Build History to Gather Image Information Only

As you can see, build history produces image information, including dependency graphs, so you
can see why something was pulled into the image. If you are just interested in this information
and not interested in collecting specific package or SDK information, you can enable writing only
image information without any history by adding the following to your conf/local.conf file found
in the Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-
directoryl:

INHERIT += "buildhistory"
BUILDHISTORY COMMIT = "@"
BUILDHISTORY FEATURES = "image"

Here, you set the BUILDHISTORY FEATURES variable to use the image feature only.
2.4.2.4. Build History SDK Information

Build history collects similar information on the contents of SDKs (e.g. meta-toolchain or bitbake
-c populate sdk imagename) as compared to information it collects for images. The following list
shows the files produced for each SDK:

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

o files-in-sdk.txt: A list of files in the SDK with permissions, owner, group, size, and symlink
information. This list includes both the host and target parts of the SDK.

* sdk-info.txt: A text file containing name-value pairs with information about the SDK. See the
following listing example for more information.

* The following information appears under each of the host and target directories for the portions
of the SDK that run on the host and on the target, respectively:

e depends.dot: Dependency graph for the SDK that is compatible with graphviz.

* installed-package-names.txt: A list of installed packages by name only.

e installed-package-sizes.txt: A list of installed packages ordered by size.

« installed-packages.txt: A list of installed packages with full package filenames.

Here is an example of sdk-info.txt:

DISTRO = poky

DISTRO VERSION = 1.3+snapshot-20130327
SDK_NAME = poky-eglibc-i686-arm

SDK VERSION = 1.3+snapshot

SDKMACHINE =
SDKIMAGE FEATURES =
BAD RECOMMENDATIONS
SDKSIZE = 352712

dev-pkgs dbg-pkgs

Other than SDKSIZE, which is the total size of the files in the SDK in Kbytes, the name-value pairs are
variables that might have influenced the content of the SDK. This information is often useful when
you are trying to determine why a change in the package or file listings has occurred.

2.4.2.5. Examining Build History Information

You can examine build history output from the command line or from a web interface.

To see any changes that have occurred (assuming you have BUILDHISTORY COMMIT = "1"), you can
simply use any Git command that allows you to view the history of a repository. Here is one method:

$ git log -p

You need to realize, however, that this method does show changes that are not significant (e.g. a
package's size changing by a few bytes).

A command-line tool called buildhistory-diff does exist, though, that queries the Git repository
and prints just the differences that might be significant in human-readable form. Here is an example:

$ ~/poky/poky/scripts/buildhistory-diff . HEAD"

Changes to images/gemux86 64/eglibc/core-image-minimal (files-in-image.txt):
/etc/anotherpkg.conf was added
/sbin/anotherpkg was added
* (installed-package-names.txt):
* anotherpkg was added

Changes to images/gemux86 64/eglibc/core-image-minimal (installed-package-names.txt):
anotherpkg was added

packages/qemux86 64-poky-linux/v86d: PACKAGES: added "v86d-extras"
* PR changed from "r@" to "rl"
* PV changed from "0.1.10" to "0.1.12"

packages/qemux86 64-poky-1linux/v86d/v86d: PKGSIZE changed from 110579 to 144381 (+30%)
* PR changed from "r@" to "rl"
* PV changed from "0.1.10" to "0.1.12"

To see changes to the build history using a web interface, follow the instruction in the README file
here. http://git.yoctoproject.org/cgit/cgit.cgi/buildhistory-web/.

Here is a sample screenshot of the interface:
& Buiidhist ory - Mozille Firefox
FireFox v | Buildhistory | g

Warning item

Summary P iy 5L @-poky Hinus g sabi 'caire'c aing-diéy: BDEPENDS: rérmoved “libe 11 -Aim-dév® added ik 11 -div®
Stalus Action Required Reviewsd by paule on Oct. 9, 2092 11:51 pom, (0 minules ago)
Description o
P packages/aravste-poky-linus -gnusabl /cairoSeairo-dév: RDEPENDS: removed “libxli-trim-dev® added “libull-de

Lin-rerview Resciva Ignoea

Comments
paula - Oct, 9, 2012, 11:81 pom (0 minutes ago)

we need to determine 1f this 1s legit.

Post a comment

2.5. Speeding Up the Build

Build time can be an issue. By default, the build system uses three simple controls to try and maximize
build efficiency:

* BB_NUMBER_THREADS

* BB_NUMBER PARSE THREADS [http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-
user-manual.html#var-BB_NUMBER_PARSE_THREADS]

* PARALLEL_ MAKE

These three variables all scale to the number of processor cores available on the build system.
This auto-scaling ensures that the build system fundamentally takes advantage of potential parallel
operations during the build based on the build machine's capabilities.

http://git.yoctoproject.org/cgit/cgit.cgi/buildhistory-web/
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#var-BB_NUMBER_PARSE_THREADS
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#var-BB_NUMBER_PARSE_THREADS
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#var-BB_NUMBER_PARSE_THREADS

If you need to achieve even faster builds than what the build system produces by default, you can
consider and implement some of the following:

* BB_NUMBER THREADS, BB_NUMBER PARSE_ THREADS, and PARALLEL MAKE: As previously mentioned,
the build system scales the values for these variables. However, you can manually override them
in your local. conf file if you are not satisfied with the defaults.

File system type: The file system type that the build is being performed on can also influence
performance. Using ext4 is recommended as compared to ext2 and ext3 due to ext4 improved
features such as extents.

Disabling the updating of access time using noatime: The noatime mount option prevents the build
system from updating file and directory access times.

Setting a longer commit: Using the "commit=" mount option increases the interval in seconds
between disk cache writes. Changing this interval from the five second default to something longer
increases the risk of data loss but decreases the need to write to the disk, thus increasing the build
performance.

* Choosing the packaging backend: Of the available packaging backends, IPK is the fastest.
Additionally, selecting a singular packaging backend also helps.

* Using /tmp as a temporary file system: While this can help speed up the build, the benefits
are limited due to the compiler using -pipe. The build system goes to some lengths to
avoid sync() calls into the file system on the principle that if there was a significant failure,
the Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-
directory] contents could easily be rebuilt.

Inheriting the rm_work class: Inheriting this class has shown to speed up builds due to significantly
lower amounts of data stored in the data cache as well as on disk. Inheriting this class also makes
cleanup of TMPDIR faster, at the expense of being easily able to dive into the source code. File
system maintainers have recommended that the fastest way to clean up large numbers of files is
to reformat partitions rather than delete files due to the linear nature of partitions. This, of course,
assumes you structure the disk partitions and file systems in a way that this is practical.

Aside from the previous list, you should keep some trade offs in mind that can help you speed up
the build:

* Exclude debug symbols and other debug information: If you do not need these symbols and other
debug information, disabling the *-dbg package generation can speed up the build. You can disable
this generation by setting the INHIBIT PACKAGE DEBUG_SPLIT variable to "1".

* Disable static library generation for recipes derived from autoconf or libtool: Following is an
example showing how to disable static libraries and still provide an override to handle exceptions:

STATICLIBCONF = "--disable-static"
STATICLIBCONF sqlite3-native = ""
EXTRA_OECONF += "${STATICLIBCONF}"

Notes

* Some recipes need static libraries in order to work correctly (e.g. pseudo-native needs
sqlite3-native). Overrides, as in the previous example, account for these kinds of
exceptions.

* Some packages have packaging code that assumes the presence of the static libraries.
If so, you might need to exclude them as well.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

Chapter 3. A Closer Look at
the Yocto Project Development
Environment

This chapter takes a more detailed look at the Yocto Project development environment. The
following diagram represents the development environment at a high level. The remainder
of this chapter expands on the fundamental input, output, process, and Metadata [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata]) blocks in the Yocto Project
development environment.

Uostanm Openembedded Architecture Workfl

Proiect Local SCMs
bt . Projects {optional) Upstream Source Output F
Releases Metadata/lnputs Process
Build system B output i

Configuration

Package Feeds

Source
Fetching

rpm
Generation

Output
Analysis for
Patch package dab Image s
Application [splitting plus . Generation Gen

Generation

onfiguratio
{ Compile /
Autoreconf
as needed

dpk
Generation

The generalized Yocto Project Development Environment consists of several functional areas:
* User Configuration: Metadata you can use to control the build process.

* Metadata Layers: Various layers that provide software, machine, and distro Metadata.

e Source Files: Upstream releases, local projects, and SCMs.

* Build System: Processes under the control of BitBake [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#bitbake-term]. This block expands on how BitBake fetches source,
applies patches, completes compilation, analyzes output for package generation, creates and tests
packages, generates images, and generates cross-development tools.

* Package Feeds: Directories containing output packages (RPM, DEB or IPK), which are subsequently
used in the construction of an image or SDK, produced by the build system. These feeds can also be
copied and shared using a web server or other means to facilitate extending or updating existing
images on devices at runtime if runtime package management is enabled.

* Images: Images produced by the development process.

e Application Development SDK: Cross-development tools that are produced along with an image or
separately with BitBake.

19

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term

3.1. User Configuration

User configuration helps define the build. Through user configuration, you can tell BitBake the target
architecture for which you are building the image, where to store downloaded source, and other build
properties.

The following figure shows an expanded representation of the "User Configuration" box of the general
Yocto Project Development Environment figure [19]:

Source Directory {poky directory)

bitbake User Configuration

documentation Edits
meta-hob Build Directory ¢ T

meta-skeleton

meta-yocto-bsp = bitbake <target>
meta-yocto canf
conf bblayers.conf

bblayers.conf.sample - local.conf

local.conf.sample site. conf

local.conf.sample.extended auto.conf

site.conf.sample BitBake
meta

oe-init-build-env *

ipts
SCrip oe-init-build-env

-setup-builddi {——_} L .
Of-setupriuior oe-init-build-env-memres

BitBake needs some basic configuration files in order to complete a build. These files are *.conf
files. The minimally necessary ones reside as example files in the Source Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory]. For simplicity, this
section refers to the Source Directory as the "Poky Directory."

When you clone the poky Git repository or you download and unpack a Yocto Project release, you can
set up the Source Directory to be named anything you want. For this discussion, the cloned repository
uses the default name poky.

Note

The Poky repository is primarily an aggregation of existing repositories. It is not a canonical
upstream source.

The meta-yocto layer inside Poky contains a conf directory that has example configuration files.
These example files are used as a basis for creating actual configuration files when you source the
build environment script (i.e. oe-init-build-env or oe-init-build-env-memres).

Sourcing the build environment script creates a Build Directory [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#build-directory] if one does not already exist. BitBake uses the Build
Directory for all its work during builds. The Build Directory has a conf directory that contains default
versions of your local.conf and bblayers.conf configuration files. These default configuration files
are created only if versions do not already exist in the Build Directory at the time you source the
build environment setup script.

Because the Poky repository is fundamentally an aggregation of existing repositories, some users
might be familiar with running the oe-init-build-env or oe-init-build-env-memres script in
the context of separate OpenEmbedded-Core and BitBake repositories rather than a single Poky
repository. This discussion assumes the script is executed from within a cloned or unpacked version
of Poky.

Depending on where the script is sourced, different sub-scripts are called to set up the Build Directory
(Yocto or OpenEmbedded). Specifically, the script scripts/oe-setup-builddir inside the poky

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

directory sets up the Build Directory and seeds the directory (if necessary) with configuration files
appropriate for the Yocto Project development environment.

Note

The scripts/oe-setup-builddir script uses the $TEMPLATECONF variable to determine
which sample configuration files to locate.

The local. conf file provides many basic variables that define a build environment. Here is a list of
a few. To see the default configurations in a Llocal. conf file created by the build environment script,
see the local.conf.sample in the meta-yocto layer:

* Parallelism Options: Controlled by the BB_NUMBER THREADS and PARALLEL MAKE variables.
* Target Machine Selection: Controlled by the MACHINE variable.

* Download Directory: Controlled by the DL _DIR variable.

» Shared State Directory: Controlled by the SSTATE DIR variable.

* Build Output: Controlled by the TMPDIR variable.

Note

Configurations set in the conf/local.conf file can also be set in the conf/site.conf and
conf/auto.conf configuration files.

The bblayers. conf file tells BitBake what layers you want considered during the build. By default,
the layers listed in this file include layers minimally needed by the build system. However, you must
manually add any custom layers you have created. You can find more information on working with the
bblayers.conf file in the "Enabling Your Layer [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#enabling-your-layer]" section in the Yocto Project Development Manual.

The files site.conf and auto.conf are not created by the environment initialization script. If you
want these configuration files, you must create them yourself:

* site.conf: You can use the conf/site.conf configuration file to configure multiple build
directories. For example, suppose you had several build environments and they shared some
common features. You can set these default build properties here. A good example is perhaps the
level of parallelism you want to use through the BB_NUMBER THREADS and PARALLEL MAKE variables.

One useful scenario for using the conf/site. conf file is to extend your BBPATH variable to include
the path to a conf/site.conf. Then, when BitBake looks for Metadata using BBPATH, it finds
the conf/site.conf file and applies your common configurations found in the file. To override
configurations in a particular build directory, alter the similar configurations within that build
directory's conf/local. conf file.

* auto.conf: This file is not hand-created. Rather, the file is usually created and written to by an
autobuilder. The settings put into the file are typically the same as you would find in the conf/
local.conf or the conf/site.conf files.

You can edit all configuration files to further define any particular build environment. This process is
represented by the "User Configuration Edits" box in the figure.

When you launch your build with the bitbake target command, BitBake sorts out the configurations
to ultimately define your build environment.

3.2. Metadata, Machine Configuration, and
Policy Configuration

The previous section described the user configurations that define BitBake's global behavior. This
section takes a closer look at the layers the build system uses to further control the build. These
layers provide Metadata for the software, machine, and policy.

In general, three types of layer input exist:

* Policy Configuration: Distribution Layers provide top-level or general policies for the image or SDK
being built. For example, this layer would dictate whether BitBake produces RPM or IPK packages.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#enabling-your-layer
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#enabling-your-layer
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#enabling-your-layer

A Closer Look at the Yocto Project Development Environment

* Machine Configuration: Board Support Package (BSP) layers provide machine configurations. This
type of information is specific to a particular target architecture.

* Metadata: Software layers contain user-supplied recipe files, patches, and append files.
The following figure shows an expanded representation of the Metadata, Machine Configuration,

and Policy Configuration input (layers) boxes of the general Yocto Project Development Environment
figure [19]:

Layers
Distro Layer BSP Layer
COPYING
README
classes
*.bbclass :E:;:,;‘E
conf conf
distro
Iim:lun:ha: machine
Fi, <machine>.conf Build Directory
=distro=.conf re‘l:eiw:;.;znf canf
layer.conf P P bblayers.conf
P formfacter
- farmfactor
files <machines l
: machcanfig
defeonf
“h '8 farmfactor* bbappend
i recipes-core bitbake <target>
<recipes
<recipe=.bh
-:reclpeg-e files Metadata
crecipes.bbappend <recipe=.bbappend Machine Configuration
recipes-graphics Policy Configuration
<recipe>
ol C B {ri::ﬁzec;ine:-
COPYING * conf
README =recipe>.bbappend
conf recipes-kernel
layer.conf linux
re-:ipesr-* files BitBake
<recipe> <machine=.cfg
=recipe=.bb =machine>scc
<recipes =recipe>.bbappend
=recipe=.bhb
files
* patch

In general, all layers have a similar structure. They all contain a licensing file (e.g. COPYING) if the
layer is to be distributed, a README file as good practice and especially if the layer is to be distributed,
a configuration directory, and recipe directories.

22

The Yocto Project has many layers that can be used. You can see a web-interface listing of
them on the Source Repositories [http://git.yoctoproject.org/] page. The layers are shown at the
bottom categorized under "Yocto Metadata Layers." These layers are fundamentally a subset of the
OpenEmbedded Metadata Index [http://layers.openembedded.org/layerindex/layers/], which lists all
layers provided by the OpenEmbedded community.

Note

Layers exist in the Yocto Project Source Repositories that cannot be found in the
OpenEmbedded Metadata Index. These layers are either deprecated or experimental in
nature.

BitBake uses the conf/bblayers. conf file, which is part of the user configuration, to find what layers
it should be using as part of the build.

For more information on layers, see the "Understanding and Creating
Layers [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-
creating-layers]" section in the Yocto Project Development Manual.

3.2.1. Distro Layer

The distribution layer provides policy configurations for your distribution. Best practices dictate
that you isolate these types of configurations into their own layer. Settings you provide in conf/
distro/distro.conf override similar settings that BitBake finds in your conf/local. conf file in the
Build Directory.

The following list provides some explanation and references for what you typically find in the
distribution layer:

* classes: Class files (.bbclass) hold common functionality that can be shared among recipes in the
distribution. When your recipes inherit a class, they take on the settings and functions for that class.
You can read more about class files in the "Classes" section.

» conf: This area holds configuration files for the layer (conf/layer.conf), the distribution (conf/
distro/distro.conf), and any distribution-wide include files.

* recipes-*: Recipes and append files that affect common functionality across the distribution. This
area could include recipes and append files to add distribution-specific configuration, initialization
scripts, custom image recipes, and so forth.

3.2.2. BSP Layer

The BSP Layer provides machine configurations. Everything in this layer is specific to the machine for
which you are building the image or the SDK. A common structure or form is defined for BSP layers.
You can learn more about this structure in the Yocto Project Board Support Package (BSP) Developer's
Guide [http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html].

Note

In order for a BSP layer to be considered compliant with the Yocto Project, it must meet some
structural requirements.

The BSP Layer's configuration directory contains configuration files for the machine (conf/
machine/machine.conf) and, of course, the layer (conf/layer.conf).

The remainder of the layer is dedicated to specific recipes by function: recipes-bsp, recipes-
core, recipes-graphics, and recipes-kernel. Metadata can exist for multiple formfactors, graphics
support systems, and so forth.

Note

While the figure shows several recipes-* directories, not all these directories appear in all
BSP layers.

3.2.3. Software Layer

The software layer provides the Metadata for additional software packages used during the build.
This layer does not include Metadata that is specific to the distribution or the machine, which are
found in their respective layers.

http://git.yoctoproject.org/
http://git.yoctoproject.org/
http://layers.openembedded.org/layerindex/layers/
http://layers.openembedded.org/layerindex/layers/
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html

This layer contains any new recipes that your project needs in the form of recipe files.

3.3. Sources

In order for the OpenEmbedded build system to create an image or any target, it must be able to
access source files. The general Yocto Project Development Environment figure[19] represents
source files using the "Upstream Project Releases", "Local Projects", and "SCMs (optional)" boxes. The
figure represents mirrors, which also play a role in locating source files, with the "Source Mirror(s)"
box.

The method by which source files are ultimately organized is a function of the project. For example,
for released software, projects tend to use tarballs or other archived files that can capture the state of
a release guaranteeing that it is statically represented. On the other hand, for a project that is more
dynamic or experimental in nature, a project might keep source files in a repository controlled by a
Source Control Manager (SCM) such as Git. Pulling source from a repository allows you to control the
point in the repository (the revision) from which you want to build software. Finally, a combination of
the two might exist, which would give the consumer a choice when deciding where to get source files.

BitBake uses the SRC URI variable to point to source files regardless of their location. Each recipe
must have a SRC_URI variable that points to the source.

Another area that plays a significant role in where source files come from is pointed to by the DL_DIR
variable. This area is a cache that can hold previously downloaded source. You can also instruct
the OpenEmbedded build system to create tarballs from Git repositories, which is not the default
behavior, and store them in the DL_DIR by using the BB. GENERATE_MIRROR TARBALLS variable.

Judicious use of a DL_DIR directory can save the build system a trip across the Internet when looking
for files. A good method for using a download directory is to have DL_DIR point to an area outside of
your Build Directory. Doing so allows you to safely delete the Build Directory if needed without fear
of removing any downloaded source file.

A Closer Look at the Yocto Project Development Environment

The remainder of this section provides a deeper look into the source files and the
mirrors. Here is a more detailed look at the source file area of the base figure:

Upstream Project Releases Local Projects SCMs (optional)
P Local Source Tree linux-yocto
<directory> Git
busybox-0.60.3.tar.bz2 =file=
=file= i
- <directory> mtd-utils
<fila:= Git
gt-everywhere-opensource-src-4.8.5.tar.gz <file=
=directory>
opkg
dbus
Local Source Tree subversion
dbus-glib-0.100.2 tar.gz <directory=>
<file=
<recipe> <file>
<directory=
Tarball, ZIF Fle, or <file=
Other Archive Files <file=
=directory=
Source Mirror(s)
Mirrors Pre-Mirrors (Local Shared Directories)
Remotely Stored Archive Files Locally Stored Archive Files
BitBake

Source
Fetching and
Unpacking

3.3.1. Upstream Project Releases

Upstream project releases exist anywhere in the form of an archived file (e.g. tarball or zip file). These
files correspond to individual recipes. For example, the figure uses specific releases each for BusyBox,
Qt, and Dbus. An archive file can be for any released product that can be built using a recipe.

3.3.2. Local Projects

Local projects are custom bits of software the user provides. These bits reside somewhere local to a
project - perhaps a directory into which the user checks in items (e.g. a local directory containing a
development source tree used by the group).

25

The canonical method through which to include a local project is to use the externalsrc class to
include that local project. You use either the local. conf or a recipe's append file to override or set
the recipe to point to the local directory on your disk to pull in the whole source tree.

For information on how to use the externalsrc class, see the "externalsrc.bbclass" section.

3.3.3. Source Control Managers (Optional)

Another place the build system can get source files from is through an SCM such as Git or Subversion.
In this case, a repository is cloned or checked out. The do_fetch task inside BitBake uses the SRC_URI
variable and the argument's prefix to determine the correct fetcher module.

Note

For information on how to have the OpenEmbedded build system generate tarballs for Git
repositories and place them in the DL_DIR directory, see the BB GENERATE_MIRROR TARBALLS
variable.

When fetching a repository, BitBake uses the SRCREV variable to determine the specific revision from
which to build.

3.3.4. Source Mirror(s)

Two kinds of mirrors exist: pre-mirrors and regular mirrors. The PREMIRRORS and MIRRORS variables
point to these, respectively. BitBake checks pre-mirrors before looking upstream for any source files.
Pre-mirrors are appropriate when you have a shared directory that is not a directory defined by the
DL _DIR variable. A Pre-mirror typically points to a shared directory that is local to your organization.

Regular mirrors can be any site across the Internet that is used as an alternative location for source
code should the primary site not be functioning for some reason or another.

3.4. Package Feeds

When the OpenEmbedded build system generates an image or an SDK, it gets the packages from a
package feed area located in the Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#build-directory]. The general Yocto Project Development Environment figur¢19]
shows this package feeds area in the upper-right corner.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

A Closer Look at the Yocto Project Development Environment

This section looks a little closer into the package feeds area used
by the build system. Here is a more detailed look at the area:

BitBake Package Feeds

Build Directory

poky
build

tmp
deploy

<package_type= PACKAGE_CLASSES
<package_arch> PACKAGE_ARCH

* <type=
* <type=
deb P

Generation

=package_arch>

Generation

Image SDK
Generation Generatian

Package feeds are an intermediary step in the build process. BitBake generates packages whose
types are defined by the PACKAGE_CLASSES variable. Before placing the packages into package feeds,
the build process validates them with generated output quality assurance checks through the insane
class.

The package feed area resides in tmp/deploy of the Build Directory. Folders are created that
correspond to the package type (IPK, DEB, or RPM) created. Further organization is derived through
the value of the PACKAGE ARCH variable for each package. For example, packages can exist for
the i586 or gemux86 architectures. The package files themselves reside within the appropriate
architecture folder.

BitBake uses the do _package write * tasks to place generated packages into the package
holding area (e.g. do_package write ipk for IPK packages). See the "do package write deb",
"do package write ipk", "do package write rpm", and "do package write tar" sections for
additional information.

3.5. BitBake

The OpenEmbedded build system uses BitBake [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#bitbake-term] to produce images. You can see from the general Yocto Project

27

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term

A Closer Look at the Yocto Project Development Environment

Development Environment figure [19], the BitBake area consists of several functional areas. This
section takes a closer look at each of those areas.

Separate documentation exists for the BitBake tool. See the
BitBake User Manual [http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-
manual.html#bitbake-user-manual] for reference material on BitBake.

3.5.1. Source Fetching

The first stages of building a recipe are to fetch and unpack the source code:

Upstream
Project
Releases

Local SCMs
Projects (optional)

Source Mirror(s)

Build Directory
tmp %
work
${PACKAGE_ARCH}-poky-${TARGET_DS}

S{PN}
${PV]-S{PR} =&
S{PN}-S{PV} -
S{MACHINE}-poky-S{TARGET 05}

S{PN}
S{PVI-S{PR]
S{PN}-5{PV}

The do_fetch and do_unpack tasks fetch the source files and unpack them into the work directory.

Note

For every local file (e.g. file://) that is part of a recipe's SRC_URI statement, the
OpenEmbedded build system takes a checksum of the file for the recipe and inserts the
checksum into the signature for the do_fetch. If any local file has been modified, the
do_fetch task and all tasks that depend on it are re-executed.
By default, everything is accomplished in the Build Directory [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#build-directory], which has a defined structure. For additional general
information on the Build Directory, see the "build/" section.

Unpacked source files are pointed to by the S variable. Each recipe has an area in the Build Directory
where the unpacked source code resides. The name of that directory for any given recipe is defined
from several different variables. You can see the variables that define these directories by looking
at the figure:

e TMPDIR - The base directory where the OpenEmbedded build system performs all its work during
the build.

¢ PACKAGE_ARCH - The architecture of the built package or packages.

28

http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

A Closer Look at the Yocto Project Development Environment

TARGET _0S - The operating system of the target device.

PN - The name of the built package.

PV - The version of the recipe used to build the package.

PR - The revision of the recipe used to build the package.

WORKDIR - The location within TMPDIR where a specific package is built.

S - Contains the unpacked source files for a given recipe.

3.5.2. Patching

Once source code is fetched and unpacked, BitBake locates
patch files and applies them to the source files:

Upstream
Project
Releases

Local SCMs
Projects (optional)

Source Mirror(s)

Patch Application

Build Directory

Recipes
P ${PACKAGE_ARCH}-poky-S{TARGET_OS}

${PN}
S${PVI-S{PR}
S{PN}-5{PV} <&
S{MACHINE}-poky-${TARGET_OS}
S${PN}
${PV-S{PR}
${PN}-S{PV)

SRC_URI="..%
<pateh_file= Y

Patch Files

* patch
* diff

The do_patch task processes recipes by using the SRC_URI variable to locate applicable patch files,
which by default are *.patch or *.diff files, or any file if "apply=yes" is specified for the file in
SRC_URI.

BitBake finds and applies multiple patches for a single recipe in the order in which it finds the patches.
Patches are applied to the recipe's source files located in the S directory.

For more information on how the source directories are created, see the "Source Fetching" section.

29

A Closer Look at the Yocto Project Development Environment

3.5.3. Configuration and Compilation

After source code is patched, BitBake executes tasks that configure and compile the source code:

Upstream
Project
Releases

Local SCMs
Projects (optional)

Source Mirror(s)

Build Directory
tmp <

wark
S{PACKAGE_ARCH}-poky-${TARGET 05}
S{PN}
S{PV-S{PR} &
S{PNESIPV] -
image
S{MACHINE}-poky-S{TARGET_05}
5{PN}
S{PV}-5{PR} <€
S{PN}-5{PV} <&
image -

Configuration f Compile [

Autoreconf as Needed TMPDIR

WORKOIR
5/B
(0]

This step in the build process consists of three tasks:

* do_configure: This task configures the source by enabling and disabling any build-time and
configuration options for the software being built. Configurations can come from the recipe itself
as well as from an inherited class. Additionally, the software itself might configure itself depending
on the target for which it is being built.

The configurations handled by the do_configure task are specific to source code configuration for
the source code being built by the recipe.

If you are using the autotools class, you can add additional configuration options by using the
EXTRA OECONF variable. For information on how this variable works within that class, see the meta/
classes/autotools.bbclass file.

* do_compile: Once a configuration task has been satisfied, BitBake compiles the source using the
do_compile task. Compilation occurs in the directory pointed to by the B variable. Realize that the
B directory is, by default, the same as the S directory.

* do_install: Once compilation is done, BitBake executes the do_install task. This task copies
files from the B directory and places them in a holding area pointed to by the D variable.

30

A Closer Look at the Yocto Project Development Environment

3.5.4. Package Splitting

After source code is configured and compiled, the OpenEmbedded build
system analyzes the results and splits the output into packages:

Upstream
Project
Releases

Local SCMs
Projects (optional)

trmp { TMPDIR
work

${PACKAGE_ARCH}-poky-${TARGET_OS}
5PN}
T S{PVI-S{PR} < WORKDIR
S{PN}-S{PV] < 5/B
image - (8]
package -+ PKGD

- Build Directory

- packages-split PEGDEST
S{PN}
- 1 3 S{MACHINE}-poky-S{TARGET_OS}
S{PN}
S{PV}-5{PR} < WORKDIR

S{PN}-5{PV} 5/B
Output Analysis for image ‘ D

Package Splitting Plus package <€ PKGD
Package Relationships

packages-split PKGDEST
S{PN}

The do_package and do_packagedata tasks combine to analyze the files found in the D directory
and split them into subsets based on available packages and files. The analyzing process involves
the following as well as other items: splitting out debugging symbols, looking at shared library
dependencies between packages, and looking at package relationships. The do_packagedata task
creates package metadata based on the analysis such that the OpenEmbedded build system can
generate the final packages. Working, staged, and intermediate results of the analysis and package
splitting process use these areas:

* PKGD - The destination directory for packages before they are split.

¢ PKGDATA DIR - A shared, global-state directory that holds data generated during the packaging
process.

31

pkgdata PKGDESTWORK

pkgdata PKGDESTWORK

* PKGDESTWORK - A temporary work area used by the do_package task.
* PKGDEST - The parent directory for packages after they have been split.

The FILES variable defines the files that go into each package in PACKAGES. If you want details on
how this is accomplished, you can look at the package class.

Depending on the type of packages being created (RPM, DEB, or IPK), the do_package write * task
creates the actual packages and places them in the Package Feed area, which is ${TMPDIR}/deploy.
You can see the "Package Feeds" section for more detail on that part of the build process.

Note

Support for creating feeds directly from the deploy/* directories does not exist. Creating
such feeds usually requires some kind of feed maintenance mechanism that would upload the
new packages into an official package feed (e.g. the Angstrém distribution). This functionality
is highly distribution-specific and thus is not provided out of the box.

A Closer Look at the Yocto Project Development Environment

3.5.5. Image Generation

Once packages are split and stored in the Package Feeds area, the
OpenEmbedded build system wuses BitBake to generate the root filesystem image:

Upstream
Project
Releases

Local SCMs
Projects (optional)

Source Mirr

The image generation process consists of several stages and depends on many variables. The
do rootfs task uses these key variables to help create the list of packages to actually install:

IMAGE INSTALL: Lists out the base set of packages to install from the Package Feeds area.

PACKAGE_EXCLUDE: Specifies packages that should not be installed.

IMAGE FEATURES: Specifies features to include in the image. Most of these features map to
additional packages for installation.

PACKAGE_CLASSES: Specifies the package backend to use and consequently helps determine where
to locate packages within the Package Feeds area.

* IMAGE_LINGUAS: Determines the language(s) for which additional language support packages are
installed.

Package installation is under control of the package manager (e.g. smart/rpm, opkg, or apt/dpkg)
regardless of whether or not package management is enabled for the target. At the end of the process,
if package management is not enabled for the target, the package manager's data files are deleted
from the root filesystem.

During image generation, the build system attempts to run all post-installation scripts. Any that
fail to run on the build host are run on the target when the target system is first booted. If
you are using a read-only root filesystem [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#creating-a-read-only-root-filesystem], all the post installation scripts must succeed
during the package installation phase since the root filesystem is read-only.

During Optimization, optimizing processes are run across the image. These processes include mklibs
and prelink. The mklibs process optimizes the size of the libraries. A prelink process optimizes
the dynamic linking of shared libraries to reduce start up time of executables.

Along with writing out the root filesystem image, the do rootfs task creates a manifest file
(.manifest) in the same directory as the root filesystem image that lists out, line-by-line, the installed
packages. This manifest file is useful for the testimage class, for example, to determine whether or
not to run specific tests. See the IMAGE_MANIFEST variable for additional information.

Part of the image generation process includes compressing the root filesystem image. Compression is
accomplished through several optimization routines designed to reduce the overall size of the image.

After the root filesystem has been constructed, the image generation process turns everything
into an image file or a set of image files. The formats used for the root filesystem depend on the
IMAGE_FSTYPES variable.

Note

The entire image generation process is run under Pseudo. Running under Pseudo ensures
that the files in the root filesystem have correct ownership.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-read-only-root-filesystem
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-read-only-root-filesystem
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-read-only-root-filesystem

A Closer Look at the Yocto Project Development Environment

3.5.6. SDK Generation

The OpenEmbedded build system uses BitBake to generate the Software Development Kit (SDK)
installer script:

SEenEan Local SCMs
Projects (optional)

Project
Releases

Source Mirro

SDK Generation
do_populate sdk

fouild/ftmp/deploy/sdk/*.sh

Note

For more information on the cross-development toolchain generation, see the "Cross-
Development Toolchain Generation" section. For information on advantages gained
when building a cross-development toolchain using the do populate sdk task, see the
"Optionally Building a Toolchain Installer [http://www.yoctoproject.org/docs/1.8/adt-manual/
adt-manual.html#optionally-building-a-toolchain-installer]" section in the Yocto Project
Application Developer's Guide.

Like image generation, the SDK script process consists of several stages and depends on many
variables. The do_populate_ sdk task uses these key variables to help create the list of packages to
actually install. For information on the variables listed in the figure, see the "Application Development
SDK" section.

35

http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer

A Closer Look at the Yocto Project Development Environment

The do_populate sdk task handles two parts: a target part and a host part. The target part is the
part built for the target hardware and includes libraries and headers. The host part is the part of the
SDK that runs on the SDKMACHINE.

Once both parts are constructed, the do populate sdk task performs some cleanup on both
parts. After the cleanup, the task creates a cross-development environment setup script and any
configuration files that might be needed.

The final output of the task is the Cross-development toolchain installation script (.sh file), which
includes the environment setup script.

3.6. Images

The images produced by the OpenEmbedded build system are compressed forms of
the root filesystem that are ready to boot on a target device. You can see from
the general Yocto Project Development Environment figure [19] that BitBake output,
in part, consists of images. This section is going to look more closely at this output:

BitBake

Image

Generation

hitbake <image>

Images

build
trmp
deploy DEPLOY DIR
images
<machine> DEPLOY_DIR_IMAGE
<kernel-image= KERMEL_IMAGETYPE
<root-filesystem-image> IMAGE_FSTYPES

<kernel-modules> MODULE_TARBALL_DEPLOY
<bootloaders>

<symlinks>

For a list of example images that the Yocto Project provides, see the "Images" chapter.

Images are written out to the Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#build-directory] inside the tmp/deploy/images/machine/ folder as shown in the figure.
This folder contains any files expected to be loaded on the target device. The DEPLOY_DIR variable
points to the deploy directory, while the DEPLOY DIR IMAGE variable points to the appropriate
directory containing images for the current configuration.

e kernel-image: A kernel binary file. The KERNEL IMAGETYPE variable setting determines the naming
scheme for the kernel image file. Depending on that variable, the file could begin with a variety

36

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

A Closer Look at the Yocto Project Development Environment

of naming strings. The deploy/images/machine directory can contain multiple image files for the
machine.

e root-filesystem-image: Root filesystems for the target device (e.g. *.ext3 or *.bz2 files).
The IMAGE FSTYPES variable setting determines the root filesystem image type. The deploy/
images/machine directory can contain multiple root filesystems for the machine.

e kernel-modules: Tarballs that contain all the modules built for the kernel. Kernel module tarballs
exist for legacy purposes and can be suppressed by setting the MODULE_TARBALL_DEPLOY variable
to "0". The deploy/images/machine directory can contain multiple kernel module tarballs for the
machine.

* bootloaders: Bootloaders supporting the image, if applicable to the target machine. The deploy/
images/machine directory can contain multiple bootloaders for the machine.

e symlinks: The deploy/images/machine folder contains a symbolic link that points to the most
recently built file for each machine. These links might be useful for external scripts that need to
obtain the latest version of each file.

3.7. Application Development SDK

In the general Yocto Project Development Environment figurg19], the output labeled "Application
Development SDK" represents an SDK. This section is going to take a closer look at this output:

BitBake

SDK

Generation

bitbake -c populate_sdk <imagename>

Application
Development SDK

DEPLOY_DIR

SDKIMAGE_FEATURES
<*.sh files> SDEMACHINE
TOOLCHAIN_HOST TASK
TOOLCHAIN_TARGET_TASK

The specific form of this output is a self-extracting SDK installer (*.sh) that, when run, installs
the SDK, which consists of a cross-development toolchain, a set of libraries and headers, and an
SDK environment setup script. Running this installer essentially sets up your cross-development
environment. You can think of the cross-toolchain as the "host" part because it runs on the SDK
machine. You can think of the libraries and headers as the "target" part because they are built for the
target hardware. The setup script is added so that you can initialize the environment before using
the tools.

Note

The Yocto Project supports several methods by which you can set up this cross-development
environment. These methods include downloading pre-built SDK installers, building and
installing your own SDK installer, or running an Application Development Toolkit (ADT)

37

Once built, the SDK installers are written out to the deploy/sdk folder inside the Build Directory

installer to install not just cross-development toolchains but also additional tools to help in
this type of development.

For background information on cross-development toolchains in the Yocto Project
development environment, see the "Cross-Development Toolchain Generation" section.
For information on setting up a cross-development environment, see the
"Installing the ADT and Toolchains [http://www.yoctoproject.org/docs/1.8/adt-manual/adt-
manual.html#installing-the-adt]" section in the Yocto Project Application Developer's Guide.

[http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory] as shown
the figure at the beginning of this section. Several variables exist that help configure these files:

» TOOLCHAIN TARGET TASK: Lists packages that make up the target part of the SDK (i.e. the part built
for the target hardware).

DEPLOY_DIR: Points to the deploy directory.

SDKMACHINE: Specifies the architecture of the machine on which the cross-development tools are
run to create packages for the target hardware.

SDKIMAGE FEATURES: Lists the features to include in the "target" part of the SDK.

TOOLCHAIN HOST TASK: Lists packages that make up the host part of the SDK (i.e. the part that
runs on the SDKMACHINE). When you use bitbake -c populate sdk imagename to create the SDK,
a set of default packages apply. This variable allows you to add more packages.

* SDKPATH: Defines the default SDK installation path offered by the installation script.

http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#installing-the-adt
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#installing-the-adt
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#installing-the-adt
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

Chapter 4. Technical Details

This chapter provides technical details for various parts of the Yocto Project. Currently, topics include
Yocto Project components, cross-toolchain generation, shared state (sstate) cache, x32, Wayland
support, and Licenses.

4.1. Yocto Project Components

The BitBake [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term] task
executor together with various types of configuration files form the OpenEmbedded Core. This section
overviews these components by describing their use and how they interact.

BitBake handles the parsing and execution of the data files. The data itself is of various types:
* Recipes: Provides details about particular pieces of software.
* Class Data: Abstracts common build information (e.g. how to build a Linux kernel).

» Configuration Data: Defines machine-specific settings, policy decisions, and so forth. Configuration
data acts as the glue to bind everything together.

BitBake knows how to combine multiple data sources together and refers
to each data source as a layer. For information on layers, see the
"Understanding and Creating Layers [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#understanding-and-creating-layers]" section of the Yocto Project Development Manual.

Following are some brief details on these core components. For additional information on how
these components interact during a build, see the "A Closer Look at the Yocto Project Development
Environment" Chapter.

4.1.1. BitBake

BitBake is the tool at the heart of the OpenEmbedded build system and is
responsible for parsing the Metadata [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#metadatal, generating a list of tasks from it, and then executing those tasks.

This section briefly introduces BitBake. If you want more information on BitBake, see
the BitBake User Manual [http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-
manual.html#bitbake-user-manual].

To see a list of the options BitBake supports, use either of the following commands:

$ bitbake -h
$ bitbake --help

The most common usage for BitBake is bitbake packagename, where packagename is the name of
the package you want to build (referred to as the "target" in this manual). The target often equates to
the first part of a recipe's filename (e.g. "foo" for a recipe named foo 1.3.0-r0.bb). So, to process
the matchbox-desktop 1.2.3.bb recipe file, you might type the following:

$ bitbake matchbox-desktop

Several different versions of matchbox-desktop might exist. BitBake chooses the one selected by
the distribution configuration. You can get more details about how BitBake chooses between different
target versions and providers in the "Preferences [http://www.yoctoproject.org/docs/1.8/bitbake-user-
manual/bitbake-user-manual.html#bb-bitbake-preferences]" section of the BitBake User Manual.

BitBake also tries to execute any dependent tasks first. So for example, before building matchbox-
desktop, BitBake would build a cross compiler and eglibc if they had not already been built.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bitbake-user-manual
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bb-bitbake-preferences
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bb-bitbake-preferences
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#bb-bitbake-preferences

Note

This release of the Yocto Project does not support the glibc GNU version of the Unix standard
C library. By default, the OpenEmbedded build system builds with eglibc.

A useful BitBake option to consider is the -k or --continue option. This option instructs BitBake to
try and continue processing the job as long as possible even after encountering an error. When an
error occurs, the target that failed and those that depend on it cannot be remade. However, when
you use this option other dependencies can still be processed.

4.1.2. Metadata (Recipes)

Files that have the .bb suffix are "recipes" files. In general, a recipe contains information about a
single piece of software. This information includes the location from which to download the unaltered
source, any source patches to be applied to that source (if needed), which special configuration
options to apply, how to compile the source files, and how to package the compiled output.

The term "package" is sometimes used to refer to recipes. However, since the word "package" is
used for the packaged output from the OpenEmbedded build system (i.e. .ipk or .deb files), this
document avoids using the term "package" when referring to recipes.

4.1.3. Classes

Class files (.bbclass) contain information that is useful to share between Metadata [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata] files. An example is the
autotools class, which contains common settings for any application that Autotools uses. The
"Classes" chapter provides details about classes and how to use them.

4.1.4. Configuration

The configuration files (. conf) define various configuration variables that govern the OpenEmbedded
build process. These files fall into several areas that define machine configuration options,
distribution configuration options, compiler tuning options, general common configuration options,
and user configuration options in local.conf, which is found in the Build Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory].

4.2. Cross-Development Toolchain Generation

The Yocto Project does most of the work for you when it comes to creating cross-development
toolchains [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#cross-development-
toolchain]. This section provides some technical background on how cross-development toolchains
are created and used. For more information on toolchains, you can also see the Yocto Project
Application Developer's Guide [http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html].

In the Yocto Project development environment, cross-development toolchains are used to build
the image and applications that run on the target hardware. With just a few commands, the
OpenEmbedded build system creates these necessary toolchains for you.

The following figure shows a high-level build environment regarding toolchain construction and use.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#cross-development-toolchain
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#cross-development-toolchain
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#cross-development-toolchain
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#cross-development-toolchain
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html

®

Build Host

BCC-Cross -—} Target Image
bitbake <target=

Relocatable SDK

gcc-cross-canadian
gec-crosssdk === binutils-cross-canadian

meta-toolchain Other nativesdk-* Tools

bithake <imagename> -c populate_sdk

©,

SDEKEMACHINE

Installed SDK

Target Device
gco-cross-canadian

binutils-cross-canadian
Other nativesdk-* Tools

!

Target Applications Target Applications

Target Image

The Build Host produces three toclchains: 1) gec-cross, which builds the target image. 2] gec-crosssdk, which is a transitory
@ toclchain and produces relocatahle code that executes on the SDEMACHIME. 3) goc-cross-canadian, which executes on the
SDKMACHINE and produces target applications.

@ The SDKMACHIME, which may or may naot be the same as the Build Host, runs geo-cross-canadian to create target
applications.

® The Target Device run the Target Image and Target Applications.

Most of the work occurs on the Build Host. This is the machine used to build images and generally
work within the the Yocto Project environment. When you run BitBake to create an image, the
OpenEmbedded build system uses the host gcc compiler to bootstrap a cross-compiler named gcc-
cross. The gcc-cross compiler is what BitBake uses to compile source files when creating the target
image. You can think of gcc-cross simply as an automatically generated cross-compiler that is used
internally within BitBake only.

The chain of events that occurs when gcc-cross is bootstrapped is as follows:
gcc -> binutils-cross -> gcc-cross-initial -> linux-libc-headers -> eglibc-initial -> eglibc

* gcc: The build host's GNU Compiler Collection (GCC).

* binutils-cross: The bare minimum binary utilities needed in order to runthe gcc-cross-initial
phase of the bootstrap operation.

e gcc-cross-initial: An early stage of the bootstrap process for creating the cross-compiler. This
stage builds enough of the gcc-cross, the C library, and other pieces needed to finish building
the final cross-compiler in later stages. This tool is a "native" package (i.e. it is designed to run
on the build host).

e linux-libc-headers: Headers needed for the cross-compiler.

* eglibc-initial: An initial version of the Embedded GLIBC needed to bootstrap eglibc.

* gcc-cross: The final stage of the bootstrap process for the cross-compiler. This stage results in the
actual cross-compiler that BitBake uses when it builds an image for a targeted device.

Note

If you are replacing this cross compiler toolchain with a custom version, you must replace
gcc-cross.
This tool is also a "native" package (i.e. it is designed to run on the build host).

* gcc-runtime: Runtime libraries resulting from the toolchain bootstrapping process. This tool
produces a binary that consists of the runtime libraries need for the targeted device.

You can use the OpenEmbedded build system to build an installer for the relocatable SDK used
to develop applications. When you run the installer, it installs the toolchain, which contains
the development tools (e.g., the gcc-cross-canadian), binutils-cross-canadian, and other
nativesdk-* tools you need to cross-compile and test your software. The figure shows the commands
you use to easily build out this toolchain. This cross-development toolchain is built to execute on the
SDKMACHINE, which might or might not be the same machine as the Build Host.

Note

If your target architecture is supported by the Yocto Project, you can take advantage of pre-
built images that ship with the Yocto Project and already contain cross-development toolchain
installers.

Here is the bootstrap process for the relocatable toolchain:
gcc -> binutils-crosssdk -> gcc-crosssdk-initial -> linux-libc-headers ->
eglibc-initial -> nativesdk-eglibc -> gcc-crosssdk -> gcc-cross-canadian

* gcc: The build host's GNU Compiler Collection (GCC).

* binutils-crosssdk: The bare minimum binary utilities needed in order to run the gcc-crosssdk-
initial phase of the bootstrap operation.

* gcc-crosssdk-initial: An early stage of the bootstrap process for creating the cross-compiler.
This stage builds enough of the gcc-crosssdk and supporting pieces so that the final stage of the
bootstrap process can produce the finished cross-compiler. This tool is a "native" binary that runs
on the build host.

e linux-libc-headers: Headers needed for the cross-compiler.

* eglibc-initial: An initial version of the Embedded GLIBC needed to bootstrap nativesdk-
eglibc.

nativesdk-eglibc: The Embedded GLIBC needed to bootstrap the gcc-crosssdk.

* gcc-crosssdk: The final stage of the bootstrap process for the relocatable cross-compiler. The
gcc-crosssdk is a transitory compiler and never leaves the build host. Its purpose is to help in
the bootstrap process to create the eventual relocatable gcc-cross-canadian compiler, which is
relocatable. This tool is also a "native" package (i.e. it is designed to run on the build host).

* gcc-cross-canadian: The final relocatable cross-compiler. When run on the SDKMACHINE, this tool
produces executable code that runs on the target device. Only one cross-canadian compiler is
produced per architecture since they can be targeted at different processor optimizations using
configurations passed to the compiler through the compile commands. This circumvents the need
for multiple compilers and thus reduces the size of the toolchains.

Note

For information on advantages gained when building a cross-development toolchain installer,
see the "Optionally Building a Toolchain Installer [http://www.yoctoproject.org/docs/1.8/
adt-manual/adt-manual.html#optionally-building-a-toolchain-installer]" section in the Yocto
Project Application Developer's Guide.

http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer

4.3. Shared State Cache

By design, the OpenEmbedded build system builds everything from scratch unless BitBake can
determine that parts do not need to be rebuilt. Fundamentally, building from scratch is attractive
as it means all parts are built fresh and there is no possibility of stale data causing problems. When
developers hit problems, they typically default back to building from scratch so they know the state
of things from the start.

Building an image from scratch is both an advantage and a disadvantage to the process. As mentioned
in the previous paragraph, building from scratch ensures that everything is current and starts from a
known state. However, building from scratch also takes much longer as it generally means rebuilding
things that do not necessarily need to be rebuilt.

The Yocto Project implements shared state code that supports incremental builds. The implementation
of the shared state code answers the following questions that were fundamental roadblocks within
the OpenEmbedded incremental build support system:

* What pieces of the system have changed and what pieces have not changed?
* How are changed pieces of software removed and replaced?

* How are pre-built components that do not need to be rebuilt from scratch used when they are
available?

For the first question, the build system detects changes in the "inputs" to a given task by creating a
checksum (or signature) of the task's inputs. If the checksum changes, the system assumes the inputs
have changed and the task needs to be rerun. For the second question, the shared state (sstate) code
tracks which tasks add which output to the build process. This means the output from a given task
can be removed, upgraded or otherwise manipulated. The third question is partly addressed by the
solution for the second question assuming the build system can fetch the sstate objects from remote
locations and install them if they are deemed to be valid.

Note

The OpenEmbedded build system does not maintain PR information as part of the shared
state packages. Consequently, considerations exist that affect maintaining shared state
feeds. For information on how the OpenEmbedded build system works with packages
and can track incrementing PR information, see the "Incrementing a Package Revision
Number [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#incrementing-
a-package-revision-number]" section.

The rest of this section goes into detail about the overall incremental build architecture, the
checksums (signatures), shared state, and some tips and tricks.

4.3.1. Overall Architecture

When determining what parts of the system need to be built, BitBake works on a per-task basis rather
than a per-recipe basis. You might wonder why using a per-task basis is preferred over a per-recipe
basis. To help explain, consider having the IPK packaging backend enabled and then switching to DEB.
In this case, the do_install and do_package task outputs are still valid. However, with a per-recipe
approach, the build would not include the .deb files. Consequently, you would have to invalidate the
whole build and rerun it. Rerunning everything is not the best solution. Also, in this case, the core must
be "taught" much about specific tasks. This methodology does not scale well and does not allow users
to easily add new tasks in layers or as external recipes without touching the packaged-staging core.

4.3.2. Checksums (Signatures)

The shared state code uses a checksum, which is a unique signature of a task's inputs, to determine
if a task needs to be run again. Because it is a change in a task's inputs that triggers a rerun, the
process needs to detect all the inputs to a given task. For shell tasks, this turns out to be fairly easy
because the build process generates a "run" shell script for each task and it is possible to create a
checksum that gives you a good idea of when the task's data changes.

To complicate the problem, there are things that should not be included in the checksum. First, there
is the actual specific build path of a given task - the WORKDIR. It does not matter if the work directory

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#incrementing-a-package-revision-number
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#incrementing-a-package-revision-number
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#incrementing-a-package-revision-number
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#incrementing-a-package-revision-number

changes because it should not affect the output for target packages. Also, the build process has the
objective of making native or cross packages relocatable. The checksum therefore needs to exclude
WORKDIR. The simplistic approach for excluding the work directory is to set WORKDIR to some fixed
value and create the checksum for the "run" script.

Another problem results from the "run" scripts containing functions that might or might not get called.
The incremental build solution contains code that figures out dependencies between shell functions.
This code is used to prune the "run" scripts down to the minimum set, thereby alleviating this problem
and making the "run" scripts much more readable as a bonus.

So far we have solutions for shell scripts. What about Python tasks? The same approach applies
even though these tasks are more difficult. The process needs to figure out what variables a Python
function accesses and what functions it calls. Again, the incremental build solution contains code that
first figures out the variable and function dependencies, and then creates a checksum for the data
used as the input to the task.

Like the WORKDIR case, situations exist where dependencies should be ignored. For these cases, you
can instruct the build process to ignore a dependency by using a line like the following:

PACKAGE_ARCHS[vardepsexclude] = "MACHINE"

This example ensures that the PACKAGE _ARCHS variable does not depend on the value of MACHINE,
even if it does reference it.

Equally, there are cases where we need to add dependencies BitBake is not able to find. You can
accomplish this by using a line like the following:

PACKAGE_ARCHS[vardeps] = "MACHINE"

This example explicitly adds the MACHINE variable as a dependency for PACKAGE ARCHS.

Consider a case with in-line Python, for example, where BitBake is not able to figure out dependencies.
When running in debug mode (i.e. using -DDD), BitBake produces output when it discovers something
for which it cannot figure out dependencies. The Yocto Project team has currently not managed to
cover those dependencies in detail and is aware of the need to fix this situation.

Thus far, this section has limited discussion to the direct inputs into a task. Information based
on direct inputs is referred to as the "basehash" in the code. However, there is still the question
of a task's indirect inputs - the things that were already built and present in the Build Directory
[http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory]. The checksum
(or signature) for a particular task needs to add the hashes of all the tasks on which the particular task
depends. Choosing which dependencies to add is a policy decision. However, the effect is to generate
a master checksum that combines the basehash and the hashes of the task's dependencies.

At the code level, there are a variety of ways both the basehash and the dependent task hashes can
be influenced. Within the BitBake configuration file, we can give BitBake some extra information to
help it construct the basehash. The following statement effectively results in a list of global variable
dependency excludes - variables never included in any checksum:

BB _HASHBASE WHITELIST ?= "TMPDIR FILE PATH PWD BB TASKHASH BBPATH DL DIR \
SSTATE DIR THISDIR FILESEXTRAPATHS FILE DIRNAME HOME LOGNAME SHELL TERM \
USER FILESPATH STAGING DIR HOST STAGING DIR TARGET COREBASE PRSERV HOST \
PRSERV_DUMPDIR PRSERV_DUMPFILE PRSERV LOCKDOWN PARALLEL MAKE \
CCACHE_DIR EXTERNAL TOOLCHAIN CCACHE CCACHE DISABLE LICENSE PATH SDKPKGSUFFIX"

The previous example excludes WORKDIR since that variable is actually constructed as a path within
TMPDIR, which is on the whitelist.

The rules for deciding which hashes of dependent tasks to include through dependency chains are
more complex and are generally accomplished with a Python function. The code in meta/lib/oe/
sstatesig.py shows two examples of this and also illustrates how you can insert your own policy into

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

the system if so desired. This file defines the two basic signature generators OE-Core uses: "OEBasic"
and "OEBasicHash". By default, there is a dummy "noop" signature handler enabled in BitBake. This
means that behavioris unchanged from previous versions. OE-Core uses the "OEBasicHash" signature
handler by default through this setting in the bitbake. conf file:

BB _SIGNATURE_HANDLER ?= "OEBasicHash"

The "OEBasicHash" BB_SIGNATURE HANDLER is the same as the "OEBasic" version but adds the
task hash to the stamp files. This results in any Metadata [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#metadata] change that changes the task hash, automatically causing
the task to be run again. This removes the need to bump PR values, and changes to Metadata
automatically ripple across the build.

It is also worth noting that the end result of these signature generators is to make some dependency
and hash information available to the build. This information includes:

* BB_BASEHASH task-taskname: The base hashes for each task in the recipe.
* BB BASEHASH filename:taskname: The base hashes for each dependent task.

* BBHASHDEPS filename:taskname: The task dependencies for each task.

BB_TASKHASH: The hash of the currently running task.

4.3.3. Shared State

Checksums and dependencies, as discussed in the previous section, solve half the problem of
supporting a shared state. The other part of the problem is being able to use checksum information
during the build and being able to reuse or rebuild specific components.

The sstate class is a relatively generic implementation of how to "capture" a snapshot of a given
task. The idea is that the build process does not care about the source of a task's output. Output
could be freshly built or it could be downloaded and unpacked from somewhere - the build process
does not need to worry about its origin.

There are two types of output, one is just about creating a directory in WORKDIR. A good example is
the output of either do_install or do_package. The other type of output occurs when a set of data
is merged into a shared directory tree such as the sysroot.

The Yocto Project team has tried to keep the details of the implementation hidden in sstate class.
From a user's perspective, adding shared state wrapping to a task is as simple as this do_deploy
example taken from the deploy class:

DEPLOYDIR = "${WORKDIR}/deploy-${PN}"

SSTATETASKS += "do_deploy"

do deploy[sstate-name] = "deploy"

do deploy[sstate-inputdirs] = "${DEPLOYDIR}"

do deploy[sstate-outputdirs] = "${DEPLOY DIR IMAGE}"

python do deploy setscene () {
sstate setscene(d)

addtask do _deploy setscene
do deploy[dirs] = "${DEPLOYDIR} ${B}"

In this example, we add some extra flags to the task, a name field ("deploy"), an input directory where
the task sends data, and the output directory where the data from the task should eventually be
copied. We also add a _setscene variant of the task and add the task name to the SSTATETASKS list.

If you have a directory whose contents you need to preserve, you can do this with a line like the
following:

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata

do _package[sstate-plaindirs] = "${PKGD} ${PKGDEST}"
This method, as well as the following example, also works for multiple directories.

do_package[sstate-inputdirs] = "${PKGDESTWORK} ${SHLIBSWORKDIR}"
do_package[sstate-outputdirs] = "${PKGDATA DIR} ${SHLIBSDIR}"
do package[sstate-lockfile] = "${PACKAGELOCK}"

These methods also include the ability to take a lockfile when manipulating shared state directory
structures since some cases are sensitive to file additions or removals.

Behind the scenes, the shared state code works by looking in SSTATE_DIR and SSTATE_MIRRORS for
shared state files. Here is an example:

SSTATE_MIRRORS 7= "\
file://.* http://someserver.tld/share/sstate/PATH \n \
file://.* file:///some/local/dir/sstate/PATH"

Note

The shared state directory (SSTATE_DIR) is organized into two-character subdirectories,
where the subdirectory names are based on the first two characters of the hash. If the shared
state directory structure for a mirror has the same structure as SSTATE_DIR, you must specify
"PATH" as part of the URI to enable the build system to map to the appropriate subdirectory.

The shared state package validity can be detected just by looking at the filename since the filename
contains the task checksum (or signature) as described earlier in this section. If a valid shared state
package is found, the build process downloads it and uses it to accelerate the task.

The build processes use the * setscene tasks for the task acceleration phase. BitBake goes through
this phase before the main execution code and tries to accelerate any tasks for which it can find
shared state packages. If a shared state package for a task is available, the shared state package is
used. This means the task and any tasks on which it is dependent are not executed.

As a real world example, the aim is when building an IPK-based image, only the
do package write ipk tasks would have their shared state packages fetched and extracted. Since
the sysroot is not used, it would never get extracted. This is another reason why a task-based
approach is preferred over a recipe-based approach, which would have to install the output from
every task.

4.3.4. Tips and Tricks

The code in the build system that supports incremental builds is not simple code. This section presents
some tips and tricks that help you work around issues related to shared state code.

4.3.4.1. Debugging

When things go wrong, debugging needs to be straightforward. Because of this, the Yocto Project
includes strong debugging tools:

* Whenever a shared state package is written out, so is a corresponding .siginfo file. This practice
results in a pickled Python database of all the metadata that went into creating the hash for a given
shared state package.

* If you run BitBake with the - -dump-signatures (or -S) option, BitBake dumps out .siginfo filesin
the stamp directory for every task it would have executed instead of building the specified target
package.

* Thereis a bitbake-diffsigs command that can process .siginfo files. If you specify one of these
files, BitBake dumps out the dependency information in the file. If you specify two files, BitBake
compares the two files and dumps out the differences between the two. This more easily helps
answer the question of "What changed between X and Y?"

4.3.4.2. Invalidating Shared State

The OpenEmbedded build system uses checksums and shared state cache to avoid unnecessarily
rebuilding tasks. Collectively, this scheme is known as "shared state code."

As with all schemes, this one has some drawbacks. It is possible that you could make implicit changes
to your code that the checksum calculations do not take into account. These implicit changes affect
a task's output but do not trigger the shared state code into rebuilding a recipe. Consider an example
during which a tool changes its output. Assume that the output of rpmdeps changes. The result of the
change should be that all the package and package write rpm shared state cache items become
invalid. However, because the change to the output is external to the code and therefore implicit,
the associated shared state cache items do not become invalidated. In this case, the build process
uses the cached items rather than running the task again. Obviously, these types of implicit changes
can cause problems.

To avoid these problems during the build, you need to understand the effects of any changes you
make. Realize that changes you make directly to a function are automatically factored into the
checksum calculation. Thus, these explicit changes invalidate the associated area of shared state
cache. However, you need to be aware of any implicit changes that are not obvious changes to the
code and could affect the output of a given task.

When you identify an implicit change, you can easily take steps to invalidate the cache and force
the tasks to run. The steps you can take are as simple as changing a function's comments in the
source code. For example, to invalidate package shared state files, change the comment statements
of do_package or the comments of one of the functions it calls. Even though the change is purely
cosmetic, it causes the checksum to be recalculated and forces the OpenEmbedded build system to
run the task again.

Note

For an example of a commit that makes a cosmetic change to invalidate shared state, see
this commit [http://git.yoctoproject.org/cgit.cgi/poky/commit/meta/classes/package.bbclass?
id=737f8bbb4f27b4837047cb9b4fbfe01dfde36d54].

4.4, x32

x32 is a processor-specific Application Binary Interface (psABI) for x86_64. An ABI defines the calling
conventions between functions in a processing environment. The interface determines what registers
are used and what the sizes are for various C data types.

Some processing environments prefer using 32-bit applications even when running on Intel 64-bit
platforms. Consider the i386 psABI, which is a very old 32-bit ABI for Intel 64-bit platforms. The i386
psABI does not provide efficient use and access of the Intel 64-bit processor resources, leaving the
system underutilized. Now consider the x86_64 psABI. This ABl is newer and uses 64-bits for data sizes
and program pointers. The extra bits increase the footprint size of the programs, libraries, and also
increases the memory and file system size requirements. Executing under the x32 psABI enables user
programs to utilize CPU and system resources more efficiently while keeping the memory footprint
of the applications low. Extra bits are used for registers but not for addressing mechanisms.

4.4.1. Support

This Yocto Project release supports the final specifications of x32 psABI. Support for x32 psABI exists
as follows:

* You can create packages and images in x32 psABI format on x86_64 architecture targets.
* You can successfully build many recipes with the x32 toolchain.

* You can create and boot core-image-minimal and core-image-sato images.

4.4.2. Completing x32

Future Plans for the x32 psABI in the Yocto Project include the following:

* Enhance and fix the few remaining recipes so they work with and support x32 toolchains.

http://git.yoctoproject.org/cgit.cgi/poky/commit/meta/classes/package.bbclass?id=737f8bbb4f27b4837047cb9b4fbfe01dfde36d54
http://git.yoctoproject.org/cgit.cgi/poky/commit/meta/classes/package.bbclass?id=737f8bbb4f27b4837047cb9b4fbfe01dfde36d54
http://git.yoctoproject.org/cgit.cgi/poky/commit/meta/classes/package.bbclass?id=737f8bbb4f27b4837047cb9b4fbfe01dfde36d54

* Enhance RPM Package Manager (RPM) support for x32 binaries.

* Support larger images.

4.4.3. Using x32 Right Now

Follow these steps to use the x32 spABI:

* Enable the x32 psABI tuning file for x86_64 machines by editing the conf/local. conf like this:

MACHINE = "qgemux86-64"

DEFAULTTUNE = "x86-64-x32"

baselib = "${@d.getVar('BASE LIB tune-' + (d.getVar('DEFAULTTUNE', True) \
or "INVALID'), True) or 'lib'}"

#MACHINE = "genericx86"

#DEFAULTTUNE = "core2-64-x32"

* As usual, use BitBake to build an image that supports the x32 psABI. Here is an example:
$ bitbake core-image-sato
e As usual, run your image using QEMU:

$ rungemu gemux86-64 core-image-sato

4.5. Wayland

Wayland [http://en.wikipedia.org/wiki/Wayland_(display_server_protocol)] is a computer display
server protocol that provides a method for compositing window managers to communicate directly
with applications and video hardware and expects them to communicate with input hardware using
other libraries. Using Wayland with supporting targets can result in better control over graphics frame
rendering than an application might otherwise achieve.

The Yocto Project provides the Wayland protocol libraries and the reference Weston [http://
en.wikipedia.org/wiki/Wayland_(display_server_protocol)#Weston] compositor as part of its release.
This section describes what you need to do to implement Wayland and use the compositor when
building an image for a supporting target.

4.5.1. Support

The Wayland protocol libraries and the reference Weston compositor ship as integrated packages
in the meta layer of the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#source-directory]. Specifically, you can find the recipes that build both Wayland and
Weston at meta/recipes-graphics/wayland.

You can build both the Wayland and Weston packages for use only with targets that accept the Mesa
3D and Direct Rendering Infrastructure [http://dri.freedesktop.org/wiki/], which is also known as Mesa
DRI. This implies that you cannot build and use the packages if your target uses, for example, the
Intel® Embedded Media and Graphics Driver (Intel® EMGD) that overrides Mesa DRI.

Note

Due to lack of EGL support, Weston 1.0.3 will not run directly on the emulated QEMU hardware.
However, this version of Weston will run under X emulation without issues.

4.5.2. Enabling Wayland in an Image

To enable Wayland, you need to enable it to be built and enable it to be included in the image.

http://en.wikipedia.org/wiki/Wayland_(display_server_protocol)
http://en.wikipedia.org/wiki/Wayland_(display_server_protocol)
http://en.wikipedia.org/wiki/Wayland_(display_server_protocol)#Weston
http://en.wikipedia.org/wiki/Wayland_(display_server_protocol)#Weston
http://en.wikipedia.org/wiki/Wayland_(display_server_protocol)#Weston
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://dri.freedesktop.org/wiki/
http://dri.freedesktop.org/wiki/
http://dri.freedesktop.org/wiki/

4.5.2.1. Building

To cause Mesa to build the wayland-egl platform and Weston to build Wayland with Kernel
Mode Setting (KMS [https://wiki.archlinux.org/index.php/Kernel_Mode_Setting]) support, include the
"wayland" flag in the DISTRO_FEATURES statement in your local. conf file:

DISTRO FEATURES append = " wayland"

Note
If X11 has been enabled elsewhere, Weston will build Wayland with X11 support

4.5.2.2. Installing

To install the Wayland feature into an image, you must include the following
CORE_IMAGE EXTRA INSTALL statement in your local.conf file:

CORE_IMAGE_EXTRA INSTALL += "wayland weston"

4.5.3. Running Weston

To run Weston inside X11, enabling it as described earlier and building a Sato image is sufficient. If
you are running your image under Sato, a Weston Launcher appears in the "Utility" category.

Alternatively, you can run Weston through the command-line interpretor (CLI), which is better suited
for development work. To run Weston under the CLI, you need to do the following after your image
is built:

1. Run these commands to export XDG_RUNTIME DIR:

mkdir -p /tmp/$USER-weston
chmod 0700 /tmp/$USER-weston
export XDG_RUNTIME DIR=/tmp/$USER-weston

2. Launch Weston in the shell:

weston

4.6. Licenses

This section describes the mechanism by which the OpenEmbedded build system tracks changes
to licensing text. The section also describes how to enable commercially licensed recipes, which by
default are disabled.

For information that can help you maintain compliance with various open source
licensing during the lifecycle of the product, see the "Maintaining Open Source License
Compliance During Your Project's Lifecycle [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle]" section
in the Yocto Project Development Manual.

4.6.1. Tracking License Changes

The license of an upstream project might change in the future. In order to prevent these changes
going unnoticed, the LIC FILES CHKSUM variable tracks changes to the license text. The checksums
are validated at the end of the configure step, and if the checksums do not match, the build will fail.

https://wiki.archlinux.org/index.php/Kernel_Mode_Setting
https://wiki.archlinux.org/index.php/Kernel_Mode_Setting
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle

4.6.1.1. Specifying theLIC_FILES_ CHKSUM Variable

The LIC_FILES CHKSUM variable contains checksums of the license text in the source code for the
recipe. Following is an example of how to specify LIC_FILES CHKSUM:

LIC FILES CHKSUM = "file://COPYING;md5=xxxx \
file://licfilel.txt;beginline=5;endline=29;md5=yyyy \
file://licfile2.txt;endline=50;md5=zzzz \

The build system uses the S variable as the default directory when searching files listed in
LIC FILES CHKSUM. The previous example employs the default directory.

Consider this next example:

LIC FILES CHKSUM = "file://src/ls.c;beginline=5;endline=16;\
md5=bbl4ed3c4cda583abc85401304b5cd4e"

LIC FILES CHKSUM = "file://${WORKDIR}/license.html;md5=5c94767cedb5d6987c902ac850ded2c6"

The first line locates a file in ${S}/src/1ls.c. The second line refers to a file in WORKDIR.

Note that LIC_ FILES CHKSUM variable is mandatory for all recipes, unless the LICENSE variable is
set to "CLOSED".

4.6.1.2. Explanation of Syntax

As mentioned in the previous section, the LIC_FILES CHKSUM variable lists all the important files that
contain the license text for the source code. It is possible to specify a checksum for an entire file, or
a specific section of a file (specified by beginning and ending line numbers with the "beginline" and
"endline" parameters, respectively). The latter is useful for source files with a license notice header,
README documents, and so forth. If you do not use the "beginline" parameter, then it is assumed
that the text begins on the first line of the file. Similarly, if you do not use the "endline" parameter,
it is assumed that the license text ends with the last line of the file.

The "md5" parameter stores the md5 checksum of the license text. If the license text changes in any
way as compared to this parameter then a mismatch occurs. This mismatch triggers a build failure
and notifies the developer. Notification allows the developer to review and address the license text
changes. Also note that if a mismatch occurs during the build, the correct md5 checksum is placed
in the build log and can be easily copied to the recipe.

There is no limit to how many files you can specify using the LIC FILES CHKSUM variable. Generally,
however, every project requires a few specifications for license tracking. Many projects have a
"COPYING" file that stores the license information for all the source code files. This practice allows
you to just track the "COPYING" file as long as it is kept up to date.

Tip

If you specify an empty or invalid "md5" parameter, BitBake returns an md5 mis-match error
and displays the correct "md5" parameter value during the build. The correct parameter is
also captured in the build log.

Tip
If the whole file contains only license text, you do not need to use the "beginline" and "endline"
parameters.

4.6.2. Enabling Commercially Licensed Recipes

By default, the OpenEmbedded build system disables components that have commercial or other
special licensing requirements. Such requirements are defined on a recipe-by-recipe basis through
the LICENSE_FLAGS variable definition in the affected recipe. For instance, the poky/meta/recipes-
multimedia/gstreamer/gst-plugins-ugly recipe contains the following statement:

LICENSE FLAGS = "commercial"

Here is a slightly more complicated example that contains both an explicit recipe name and version
(after variable expansion):

LICENSE FLAGS = "license ${PN} ${PV}"

In order for a component restricted by a LICENSE FLAGS definition to be enabled and included
in an image, it needs to have a matching entry in the global LICENSE FLAGS WHITELIST
variable, which is a variable typically defined in your local.conf file. For example, to
enable the poky/meta/recipes-multimedia/gstreamer/gst-plugins-ugly package, you could
add either the string "commercial_gst-plugins-ugly" or the more general string "commercial" to
LICENSE FLAGS WHITELIST. See the "License Flag Matching" section for a full explanation of how
LICENSE FLAGS matching works. Here is the example:

LICENSE FLAGS WHITELIST = "commercial gst-plugins-ugly"

Likewise, to additionally enable the package built from the recipe containing LICENSE_ FLAGS
= "license ${PN} ${PV}", and assuming that the actual recipe name was emgd 1.10.bb, the
following string would enable that package as well as the original gst-plugins-ugly package:

LICENSE FLAGS WHITELIST = "commercial gst-plugins-ugly license emgd 1.10"

As a convenience, you do not need to specify the complete license string in the whitelist for every
package. You can use an abbreviated form, which consists of just the first portion or portions of the
license string before the initial underscore character or characters. A partial string will match any
license that contains the given string as the first portion of its license. For example, the following
whitelist string will also match both of the packages previously mentioned as well as any other
packages that have licenses starting with "commercial" or "license".

LICENSE FLAGS WHITELIST = "commercial license"

4.6.2.1. License Flag Matching

License flag matching allows you to control what recipes the OpenEmbedded build system includes in
the build. Fundamentally, the build system attempts to match LICENSE_FLAGS strings found in recipes
against LICENSE_FLAGS WHITELIST strings found in the whitelist. A match causes the build system to
include a recipe in the build, while failure to find a match causes the build system to exclude a recipe.

In general, license flag matching is simple. However, understanding some concepts will help you
correctly and effectively use matching.

Before a flag defined by a particular recipe is tested against the contents of the whitelist, the
expanded string _${PN} is appended to the flag. This expansion makes each LICENSE FLAGS value
recipe-specific. After expansion, the string is then matched against the whitelist. Thus, specifying
LICENSE FLAGS = "commercial" inrecipe "foo", for example, results in the string "commercial foo".
And, to create a match, that string must appear in the whitelist.

Judicious use of the LICENSE FLAGS strings and the contents of the LICENSE FLAGS WHITELIST
variable allows you a lot of flexibility for including or excluding recipes based on licensing. For
example, you can broaden the matching capabilities by using license flags string subsets in the
whitelist.

Note

When using a string subset, be sure to use the part of the expanded string that precedes the
appended underscore character (e.g. usethispart 1.3, usethispart 1.4, and so forth).

For example, simply specifying the string "commercial" in the whitelist matches any expanded
LICENSE_FLAGS definition that starts with the string "commercial" such as "commercial_foo" and
"commercial_bar", which are the strings the build system automatically generates for hypothetical
recipes named "foo" and "bar" assuming those recipes simply specify the following:

LICENSE_FLAGS = "commercial"

Thus, you can choose to exhaustively enumerate each license flag in the whitelist and allow only
specific recipes into the image, or you can use a string subset that causes a broader range of matches
to allow a range of recipes into the image.

This scheme works even if the LICENSE_FLAGS string already has _${PN} appended. For example, the
build system turns the license flag "commercial_1.2_foo" into "commercial_1.2_foo_foo" and would
match both the general "commercial" and the specific "commercial_1.2_foo" strings found in the
whitelist, as expected.

Here are some other scenarios:

* You can specify a versioned string in the recipe such as "commercial_foo_1.2" in a "foo" recipe.
The build system expands this string to "commercial_foo_1.2_foo". Combine this license flag with
a whitelist that has the string "commercial" and you match the flag along with any other flag that
starts with the string "commercial".

* Under the same circumstances, you can use "commercial foo" in the whitelist and the build
system not only matches "commercial_foo 1.2" but also matches any license flag with the string
"commercial_foo", regardless of the version.

* You can be very specific and use both the package and version parts in the whitelist (e.g.
"commercial_foo_1.2") to specifically match a versioned recipe.

4.6.2.2. Other Variables Related to Commercial Licenses

Other helpful variables related to commercial license handling exist and are defined in the poky/
meta/conf/distro/include/default-distrovars.inc file:

COMMERCIAL_AUDIO PLUGINS ?= "*"
COMMERCIAL_VIDEO PLUGINS ?= "*"
COMMERCIAL_QT = ""

If you want to enable these components, you can do so by making sure you have statements similar
to the following in your local. conf configuration file:

COMMERCIAL AUDIO PLUGINS = "gst-plugins-ugly-mad \
gst-plugins-ugly-mpegaudioparse"
COMMERCIAL VIDEO PLUGINS = "gst-plugins-ugly-mpeg2dec \
gst-plugins-ugly-mpegstream gst-plugins-bad-mpegvideoparse"
COMMERCIAL_QT ?= "qmmp"
LICENSE FLAGS WHITELIST = "commercial gst-plugins-ugly commercial gst-plugins-bad commercial

Of course, you could also create a matching whitelist for those components using the more general
"commercial" in the whitelist, but that would also enable all the other packages with LICENSE_FLAGS
containing "commercial", which you may or may not want:

LICENSE FLAGS WHITELIST = "commercial"

Specifying audio and video plug-ins as part of the COMMERCIAL AUDIO PLUGINS and
COMMERCIAL VIDEO PLUGINS statements or commercial Qt components as part of the COMMERCIAL QT
statement (along with the enabling LICENSE_FLAGS WHITELIST) includes the plug-ins or components
into built images, thus adding support for media formats or components.

Chapter 5. Migrating to a Newer
Yocto Project Release

This chapter provides information you can use to migrate work to a newer Yocto Project release. You
can find the same information in the release notes for a given release.

5.1. General Migration Considerations

Some considerations are not tied to a specific Yocto Project release. This section presents information
you should consider when migrating to any new Yocto Project release.

* Dealing with Customized Recipes: Issues could arise if you take older recipes that contain
customizations and simply copy them forward expecting them to work after you migrate to new
Yocto Project metadata. For example, suppose you have a recipe in your layer that is a customized
version of a core recipe copied from the earlier release, rather than through the use of an append
file. When you migrate to a newer version of Yocto Project, the metadata (e.g. perhaps an include
file used by the recipe) could have changed in a way that would break the build. Say, for example,
a function is removed from an include file and the customized recipe tries to call that function.

You could "forward-port" all your customizations in your recipe so that everything works for the new
release. However, this is not the optimal solution as you would have to repeat this process with
each new release if changes occur that give rise to problems.

The better solution (where practical) is to use append files (*.bbappend) to capture any
customizations you want to make to a recipe. Doing so, isolates your changes from the main recipe
making them much more manageable. However, sometimes it is not practical to use an append
file. A good example of this is when introducing a newer or older version of a recipe in another layer.

Updating Append Files: Since append files generally only contain your customizations, they often
do not need to be adjusted for new releases. However, if the . bbappend file is specific to a particular
version of the recipe (i.e. its name does not use the % wildcard) and the version of the recipe to
which it is appending has changed, then you will at a minimum need to rename the append file to
match the name of the recipe file. A mismatch between an append file and its corresponding recipe
file (. bb) will trigger an error during parsing.

Depending on the type of customization the append file applies, other incompatibilities might occur
when you upgrade. For example, if your append file applies a patch and the recipe to which it is
appending is updated to a newer version, the patch might no longer apply. If this is the case and
assuming the patch is still needed, you must modify the patch file so that it does apply.

5.2. Moving to the Yocto Project 1.3 Release

This section provides migration information for moving to the Yocto Project 1.3 Release from the prior
release.

5.2.1. Local Configuration

Differences include changes for SSTATE_MIRRORS and bblayers. conf.

5.2.1.1. SSTATE_MIRRORS

The shared state cache (sstate-cache), as pointed to by SSTATE DIR, by default now has two-
character subdirectories to prevent issues arising from too many files in the same directory. Also,
native sstate-cache packages will go into a subdirectory named using the distro ID string. If you copy
the newly structured sstate-cache to a mirror location (either local or remote) and then point to it
in SSTATE_MIRRORS, you need to append "PATH" to the end of the mirror URL so that the path used
by BitBake before the mirror substitution is appended to the path used to access the mirror. Here
is an example:

SSTATE_MIRRORS = "file://.* http://someserver.tld/share/sstate/PATH"

5.2.1.2. bblayers.conf

The meta-yocto layer consists of two parts that correspond to the Poky reference distribution and the
reference hardware Board Support Packages (BSPs), respectively: meta-yocto and meta-yocto-bsp.
When running BitBake or Hob for the first time after upgrading, your conf/bblayers. conf file will be
updated to handle this change and you will be asked to re-run or restart for the changes to take effect.

5.2.2. Recipes

Differences include changes for the following:
* Python function whitespace

* proto=in SRC URI

* nativesdk

* Task recipes

IMAGE_FEATURES

* Removed recipes

5.2.2.1. Python Function Whitespace

All Python functions must now use four spaces for indentation. Previously, an inconsistent mix
of spaces and tabs existed, which made extending these functions using _append or prepend
complicated given that Python treats whitespace as syntactically significant. If you are defining or
extending any Python functions (e.g. populate_ packages, do_unpack, do_patch and so forth) in
custom recipes or classes, you need to ensure you are using consistent four-space indentation.

5.2.2.2. proto= in SRC_URI

Any use of proto= in SRC_URI needs to be changed to protocol=. In particular, this applies to the
following URIs:

* svn://
* bzr://
* hg://

* osc://

Other URIs were already using protocol=. This change improves consistency.

5.2.2.3. nativesdk

The suffix nativesdk is now implemented as a prefix, which simplifies a lot of the packaging code
for nativesdk recipes. All custom nativesdk recipes and any references need to be updated to use
nativesdk-* instead of *-nativesdk.

5.2.2.4. Task Recipes

"Task" recipes are now known as "Package groups" and have been renamed from task-*.bb to
packagegroup-*.bb. Existing references to the previous task-* names should work in most cases as
there is an automatic upgrade path for most packages. However, you should update references in your
own recipes and configurations as they could be removed in future releases. You should also rename
any custom task-* recipes to packagegroup-*, and change them to inherit packagegroup instead of
task, as well as taking the opportunity to remove anything now handled by packagegroup.bbclass,
such as providing -dev and -dbg packages, setting LIC FILES CHKSUM, and so forth. See the
"packagegroup.bbclass" section for further details.

5.2.2.5. IMAGE_FEATURES

Image recipes that previously included "apps-console-core" in IMAGE FEATURES should now include
"splash" instead to enable the boot-up splash screen. Retaining "apps-console-core" will still
include the splash screen but generates a warning. The "apps-x11l-core" and "apps-x1ll-games"
IMAGE_ FEATURES features have been removed.

5.2.2.6. Removed Recipes

The following recipes have been removed. For most of them, it is unlikely that you would have
any references to them in your own Metadata [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#metadatal. However, you should check your metadata against this list to be sure:

e 1ibx11-trim: Replaced by 1ibx11, which has a negligible size difference with modern Xorg.

* xserver-xorg-lite: Use xserver-xorg, which has a negligible size difference when DRI and GLX
modules are not installed.

xserver-kdrive: Effectively unmaintained for many years.

* mesa-xlib: No longer serves any purpose.

* galago: Replaced by telepathy.

* gail: Functionality was integrated into GTK+ 2.13.

* eggdbus: No longer needed.

* gcc-*-intermediate: The build has been restructured to avoid the need for this step.

* libgsmd: Unmaintained for many years. Functionality now provided by ofono instead.

contacts, dates, tasks, eds-tools: Largely unmaintained PIM application suite. It has been moved
to meta-gnome in meta-openembedded.

In addition to the previously listed changes, the meta-demoapps directory has also been removed
because the recipes in it were not being maintained and many had become obsolete or broken.
Additionally, these recipes were not parsed in the default configuration. Many of these recipes are
already provided in an updated and maintained form within the OpenEmbedded community layers
such as meta-oe and meta-gnome. For the remainder, you can now find them in the meta-extras
repository, which is in the Yocto Project Source Repositories [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#source-repositories].

5.2.3. Linux Kernel Naming

The naming scheme for kernel output binaries has been changed to now include PE as part of the
filename:

KERNEL IMAGE BASE NAME 7= "${KERNEL IMAGETYPE}-${PE}-${PV}-${PR}-${MACHINE}-${DATETIME}"

Because the PE variable is not set by default, these binary files could result with names that include
two dash characters. Here is an example:

bzImage--3.10.9+9it0+cd502a8814 7144bcc4b8-r0-gemux86-64-20130830085431.bin

5.3. Moving to the Yocto Project 1.4 Release

This section provides migration information for moving to the Yocto Project 1.4 Release from the prior
release.

5.3.1. BitBake

Differences include the following:

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-repositories
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-repositories
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-repositories

¢ Comment Continuation: If a comment ends with a line continuation (\) character, then the next line
must also be a comment. Any instance where this is not the case, now triggers a warning. You must
either remove the continuation character, or be sure the next line is a comment.

* Package Name Overrides: The runtime package specific variables RDEPENDS, RRECOMMENDS,
RSUGGESTS, RPROVIDES, RCONFLICTS, RREPLACES, FILES, ALLOW EMPTY, and the pre, post, install,
and uninstall script functions pkg preinst, pkg postinst, pkg prerm, and pkg postrm should
always have a package name override. For example, use RDEPENDS ${PN} for the main package
instead of RDEPENDS. BitBake uses more strict checks when it parses recipes.

5.3.2. Build Behavior

Differences include the following:

* Shared State Code: The shared state code has been optimized to avoid running unnecessary tasks.
For example, the following no longer populates the target sysroot since that is not necessary:

$ bitbake -c rootfs some-image

Instead, the system just needs to extract the output package contents, re-create the packages,
and construct the root filesystem. This change is unlikely to cause any problems unless you have
missing declared dependencies.

* Scanning Directory Names: When scanning for files in SRC_URI, the build system now uses
FILESOVERRIDES instead of OVERRIDES for the directory names. In general, the values previously in
OVERRIDES are now in FILESOVERRIDES as well. However, if you relied upon an additional value you
previously added to OVERRIDES, you might now need to add it to FILESOVERRIDES unless you are
already adding it through the MACHINEOVERRIDES or DISTROOVERRIDES variables, as appropriate.
For more related changes, see the "Variables" section.

5.3.3. Proxies and Fetching Source

A new oe-git-proxy script has been added to replace previous methods of handling proxies and
fetching source from Git. See the meta-yocto/conf/site.conf.sample file for information on how
to use this script.

5.3.4. Custom Interfaces File (netbase change)

If you have created your own custom etc/network/interfaces file by creating an append file for
the netbase recipe, you now need to create an append file for the init-ifupdown recipe instead,
which you can find in the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#source-directory] at meta/recipes-core/init-ifupdown. For information on how to
use append files, see the "Using .bbappend Files [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#using-bbappend-files]" in the Yocto Project Development Manual.

5.3.5. Remote Debugging

Support for remote debugging with the Eclipse IDE is now separated into an image feature (eclipse-
debug) that corresponds to the packagegroup-core-eclipse-debug package group. Previously, the
debugging feature was included through the tools-debug image feature, which corresponds to the
packagegroup-core-tools-debug package group.

5.3.6. Variables

The following variables have changed:

* SANITY TESTED DISTROS: This variable now uses a distribution ID, which is composed of the host
distributor ID followed by the release. Previously, SANITY TESTED DISTROS was composed of the
description field. For example, "Ubuntu 12.10" becomes "Ubuntu-12.10". You do not need to worry
about this change if you are not specifically setting this variable, or if you are specifically setting
it to "".

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-bbappend-files
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-bbappend-files
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-bbappend-files

* SRC_URI: The ${PN}, ${PF}, ${P}, and FILE DIRNAME directories have been dropped from the
default value of the FILESPATH variable, which is used as the search path for finding files referred
to in SRC_URI. If you have a recipe that relied upon these directories, which would be unusual, then
you will need to add the appropriate paths within the recipe or, alternatively, rearrange the files.
The most common locations are still covered by ${BP}, ${BPN}, and "files", which all remain in the
default value of FILESPATH.

5.3.7. Target Package Management with RPM

If runtime package management is enabled and the RPM backend is selected, Smart is now installed
for package download, dependency resolution, and upgrades instead of Zypper. For more information
on how to use Smart, run the following command on the target:

smart --help

5.3.8. Recipes Moved

The following recipes were moved from their previous locations because they are no longer used by
anything in the OpenEmbedded-Core:

* clutter-box2d: Now resides in the meta-oe layer.

* evolution-data-server: Now resides in the meta-gnome layer.
* gthumb: Now resides in the meta-gnome layer.

* gtkhtml2: Now resides in the meta-oe layer.

e gupnp: Now resides in the meta-multimedia layer.

* gypsy: Now resides in the meta-oe layer.

* libcanberra: Now resides in the meta-gnome layer.

e libgdata: Now resides in the meta-gnome layer.

e libmusicbrainz: Now resides in the meta-multimedia layer.
» metacity: Now resides in the meta-gnome layer.

* polkit: Now resides in the meta-oe layer.

* zeroconf: Now resides in the meta-networking layer.

5.3.9. Removals and Renames

The following list shows what has been removed or renamed:
* evieext: Removed because it has been removed from xserver since 2008.
* Gtk+ DirectFB: Removed support because upstream Gtk+ no longer supports it as of version 2.18.

* libxfontcache / xfontcacheproto: Removed because they were removed from the Xorg server
in 2008.

* libxp / libxprintapputil / libxprintutil / printproto: Removed because the XPrint server
was removed from Xorg in 2008.

libxtrap / xtrapproto: Removed because their functionality was broken upstream.

linux-yocto 3.0 kernel: Removed with linux-yocto 3.8 kernel being added. The linux-yocto 3.2 and
linux-yocto 3.4 kernels remain as part of the release.

* Ilsbsetup: Removed with functionality now provided by 1sbtest.

* matchbox-stroke: Removed because it was never more than a proof-of-concept.

* matchbox-wm-2 / matchbox-theme-sato-2: Removed because they are not maintained. However,
matchbox-wm and matchbox-theme-sato are still provided.

* mesa-dri: Renamed to mesa.

* mesa-xlib: Removed because it was no longer useful.

* mutter: Removed because nothing ever uses it and the recipe is very old.
* orinoco-conf: Removed because it has become obsolete.

* update-modules: Removed because it is no longer used. The kernel module postinstall and
postrm scripts can now do the same task without the use of this script.

* web: Removed because it is not maintained. Superseded by web-webkit.

» xf86bigfontproto: Removed because upstream it has been disabled by default since 2007.
Nothing uses xf86bigfontproto.

xf86rushproto: Removed because its dependency in xserver was spurious and it was removed
in 2005.

» zypper / libzypp / sat-solver: Removed and been functionally replaced with Smart (python-
smartpm) when RPM packaging is used and package management is enabled on the target.

5.4. Moving to the Yocto Project 1.5 Release

This section provides migration information for moving to the Yocto Project 1.5 Release from the prior
release.

5.4.1. Host Dependency Changes

The OpenEmbedded build system now has some additional requirements on the host system:
* Python 2.7.3+

* Tar 1.24+

* Git1.7.8+

* Patched version of Make if you are using 3.82. Most distributions that provide Make 3.82 use the
patched version.

If the Linux distribution you are using on your build host does not provide packages for these, you
can install and use the Buildtools tarball, which provides an SDK-like environment containing them.

For more information on this requirement, see the "Required Git, tar, and Python Versions" section.

5.4.2. atom-pc Board Support Package (BSP)

The atom-pc hardware reference BSP has been replaced by a genericx86 BSP. This BSP is not
necessarily guaranteed to work on all x86 hardware, but it will run on a wider range of systems than
the atom-pc did.

Note

Additionally, a genericx86-64 BSP has been added for 64-bit Atom systems.

5.4.3. BitBake

The following changes have been made that relate to BitBake:

» BitBake now supports a _remove operator. The addition of this operator means you will have to
rename any items in recipe space (functions, variables) whose names currently contain _remove_
or end with _remove to avoid unexpected behavior.

» BitBake's global method pool has been removed. This method is not particularly useful and led to
clashes between recipes containing functions that had the same name.

* The "none" server backend has been removed. The "process" server backend has been serving well
as the default for a long time now.

* The bitbake-runtask script has been removed.

* ${P} and ${PF} are no longer added to PROVIDES by default in bitbake.conf. These version-
specific PROVIDES items were seldom used. Attempting to use them could result in two versions
being built simultaneously rather than just one version due to the way BitBake resolves
dependencies.

5.4.4. QA Warnings

The following changes have been made to the package QA checks:

* If you have customized ERROR QA or WARN QA values in your configuration, check that they contain
all of the issues that you wish to be reported. Previous Yocto Project versions contained a bug
that meant that any item not mentioned in ERROR_QA or WARN QA would be treated as a warning.
Consequently, several important items were not already in the default value of WARN_QA. All of the
possible QA checks are now documented in the "insane.bbclass" section.

* An additional QA check has been added to check if /usr/share/info/dir is being installed. Your
recipe should delete this file within do_install if "make install" is installing it.

* If you are using the buildhistory class, the check for the package version going backwards is now
controlled using a standard QA check. Thus, if you have customized your ERROR QA or WARN QA
values and still wish to have this check performed, you should add "version-going-backwards" to
your value for one or the other variables depending on how you wish it to be handled. See the
documented QA checks in the "insane.bbclass" section.

5.4.5. Directory Layout Changes

The following directory changes exist:

e Qutput SDK installer files are now named to include the image name and tuning architecture
through the SDK_NAME variable.

* Images and related files are now installed into a directory that is specific to the machine, instead of
a parent directory containing output files for multiple machines. The DEPLOY DIR IMAGE variable
continues to point to the directory containing images for the current MACHINE and should be used
anywhere there is a need to refer to this directory. The rungemu script now uses this variable to find
images and kernel binaries and will use BitBake to determine the directory. Alternatively, you can
set the DEPLOY_DIR IMAGE variable in the external environment.

* When buildhistory is enabled, its output is now written under the Build Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory] rather than TMPDIR.
Doing so makes it easier to delete TMPDIR and preserve the build history. Additionally, data for
produced SDKs is now split by IMAGE _NAME.

* The pkgdata directory produced as part of the packaging process has been collapsed into a single
machine-specific directory. This directory is located under sysroots and uses a machine-specific
name (i.e. tmp/sysroots/machine/pkgdata).

5.4.6. Shortened GitSRCREV Values

BitBake will now shorten revisions from Git repositories from the normal 40 characters down to 10
characters within SRCPV for improved usability in path and file names. This change should be safe
within contexts where these revisions are used because the chances of spatially close collisions is
very low. Distant collisions are not a major issue in the way the values are used.

5.4.7. IMAGE_FEATURES

The following changes have been made that relate to IMAGE_FEATURES:

* The value of IMAGE FEATURES is now validated to ensure invalid feature items are not added.
Some users mistakenly add package names to this variable instead of using IMAGE INSTALL in

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

order to have the package added to the image, which does not work. This change is intended to
catch those kinds of situations. Valid IMAGE_FEATURES are drawn from PACKAGE_GROUP definitions,
COMPLEMENTARY_GLOB and a new "validitems" varflag on IMAGE_FEATURES. The "validitems" varflag
change allows additional features to be added if they are not provided using the previous two
mechanisms.

* The previously deprecated "apps-console-core" IMAGE FEATURES item is no longer supported. Add
"splash" to IMAGE FEATURES if you wish to have the splash screen enabled, since this is all that
apps-console-core was doing.

5.4.8. /run

The /run directory from the Filesystem Hierarchy Standard 3.0 has been introduced. You can find
some of the implications for this change here [http://cgit.openembedded.org/openembedded-core/
commit/?id=0e326280a15b0f2c4ef2ef4ec441f63f55b75873]. The change also means that recipes
that install files to /var/run must be changed. You can find a guide on how to make these changes
here [http://permalink.gmane.org/gmane.comp.handhelds.openembedded/58530].

5.4.9. Removal of Package Manager Database Within
Image Recipes

The image core-image-minimal no longer adds remove packaging data files to
ROOTFS POSTPROCESS COMMAND. This addition is now handled automatically when "package-
management" is not in IMAGE_FEATURES. If you have custom image recipes that make this addition,
you should remove the lines, as they are not needed and might interfere with correct operation of
postinstall scripts.

5.4.10. Images Now Rebuild Only on Changes Instead of
Every Time

The do_rootfs and other related image construction tasks are no longer marked as "nostamp".
Consequently, they will only be re-executed when their inputs have changed. Previous versions of
the OpenEmbedded build system always rebuilt the image when requested rather when necessary.

5.4.11. Task Recipes

The previously deprecated task.bbclass has now been dropped. For recipes that previously inherited
from this class, you should rename them from task-* to packagegroup-* and inherit packagegroup
instead.

For more information, see the "packagegroup.bbclass" section.

5.4.12. BusyBox

By default, we now split BusyBox into two binaries: one that is suid root for those components that
need it, and another for the rest of the components. Splitting BusyBox allows for optimization that
eliminates the tinylogin recipe as recommended by upstream. You can disable this split by setting
BUSYBOX SPLIT SUID to "0".

5.4.13. Automated Image Testing

A new automated image testing framework has been added through the testimage*.bbclass class.
This framework replaces the older imagetest-gemu framework.

You can learn more about performing automated image tests in the "Performing Automated
Runtime Testing [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-
automated-runtime-testing]" section.

5.4.14. Build History

Following are changes to Build History:

http://cgit.openembedded.org/openembedded-core/commit/?id=0e326280a15b0f2c4ef2ef4ec441f63f55b75873
http://cgit.openembedded.org/openembedded-core/commit/?id=0e326280a15b0f2c4ef2ef4ec441f63f55b75873
http://cgit.openembedded.org/openembedded-core/commit/?id=0e326280a15b0f2c4ef2ef4ec441f63f55b75873
http://permalink.gmane.org/gmane.comp.handhelds.openembedded/58530
http://permalink.gmane.org/gmane.comp.handhelds.openembedded/58530
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing

* Installed package sizes: installed-package-sizes.txt for an image now records the size of the
files installed by each package instead of the size of each compressed package archive file.

* The dependency graphs (depends*.dot) now use the actual package names instead of replacing
dashes, dots and plus signs with underscores.

e The buildhistory-diff and buildhistory-collect-srcrevs utilities have improved command-
line handling. Use the ##help option for each utility for more information on the new syntax.

For more information on Build History, see the "Maintaining Build Output Quality" section.

5.4.15. udev

Following are changes to udev:

* udev no longer brings in udev-extraconf automatically through RRECOMMENDS, since this was
originally intended to be optional. If you need the extra rules, then add udev-extraconf to your
image.

e udev no longer brings in pciutils-ids or usbutils-ids through RRECOMMENDS. These are not
needed by udev itself and removing them saves around 350KB.

5.4.16. Removed and Renamed Recipes

* The linux-yocto 3.2 kernel has been removed.
e libtool-nativesdk has been renamed to nativesdk-libtool.

* tinylogin has been removed. It has been replaced by a suid portion of Busybox. See the "BusyBox"
section for more information.

external-python-tarball has been renamed to buildtools-tarball.

* web-webkit has been removed. It has been functionally replaced by midori.

* imake has been removed. It is no longer needed by any other recipe.

* transfig-native has been removed. It is no longer needed by any other recipe.

* anjuta-remote-run has been removed. Anjuta IDE integration has not been officially supported
for several releases.

5.4.17. Other Changes

Following is a list of short entries describing other changes:

* run-postinsts: Make this generic.

* base-files: Remove the unnecessary media/xxx directories.

* alsa-state: Provide an empty asound. conf by default.

* classes/image: Ensure BAD RECOMMENDATIONS supports pre-renamed package names.

* classes/rootfs rpm: Implement BAD RECOMMENDATIONS for RPM.

* systemd: Remove systemd unitdir if systemd is not in DISTRO FEATURES.

* systemd: Remove init.d dir if systemd unit file is present and sysvinit is not a distro feature.
» libpam: Deny all services for the OTHER entries.

* image.bbclass: Move runtime mapping rename to avoid conflict with multilib. See YOCTO #4993
[https://bugzilla.yoctoproject.org/show_bug.cgi?id=4993] in Bugzilla for more information.

e linux-dtb: Use kernel build system to generate the dtb files.

* kern-tools: Switch from guilt to new kgit-s2q tool.

https://bugzilla.yoctoproject.org/show_bug.cgi?id=4993
https://bugzilla.yoctoproject.org/show_bug.cgi?id=4993

5.5. Moving to the Yocto Project 1.6 Release

This section provides migration information for moving to the Yocto Project 1.6 Release from the prior
release.

5.5.1. archiver Class

The archiver class has been rewritten and its configuration has been simplified.
For more details on the source archiver, see the "Maintaining Open Source License
Compliance During Your Product's Lifecycle [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle]" section
in the Yocto Project Development Manual.

5.5.2. Packaging Changes

The following packaging changes have been made:

* The binutils recipe no longer produces a binutils-symlinks package. update-alternatives is
now used to handle the preferred binutils variant on the target instead.

* The tc (traffic control) utilities have been split out of the main iproute2 package and put into the
iproute2-tc package.

* The gtk-engines schemas have been moved to a dedicated gtk-engines-schemas package.

* The armv7a with thumb package architecture suffix has changed. The suffix for these packages
with the thumb optimization enabled is "t2" as it should be. Use of this suffix was not the case in
the 1.5 release. Architecture names will change within package feeds as a result.

5.5.3. BitBake

The following changes have been made to BitBake [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#bitbake-term].

5.5.3.1. Matching Branch Requirement for Git Fetching

When fetching source from a Git repository using SRC_URI, BitBake will now validate the SRCREV value
against the branch. You can specify the branch using the following form:

SRC URI = "git://server.name/repository;branch=branchname"

If you do not specify a branch, BitBake looks in the default "master" branch.

Alternatively, if you need to bypass this check (e.g. if you are fetching a revision corresponding to a
tag that is not on any branch), you can add ";nobranch=1" to the end of the URL within SRC_URI.

5.5.3.2. Python Definition substitutions

BitBake had some previously deprecated Python definitions within its bb module removed. You should
use their sub-module counterparts instead:

* bb.MalformedUrl: Use bb.fetch.MalformedUrl.
* bb.fetch.encodeurl: Use bb. fetch.encodeurl.
* bb.decodeurl: Use bb. fetch.decodeurl

* bb.mkdirhier: Use bb.utils.mkdirhier.

* bb.movefile: Use bb.utils.movefile.

* bb.copyfile: Use bb.utils.copyfile.

* bb.which: Use bb.utils.which.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term

* bb.vercmp string: Use bb.utils.vercmp string.

* bb.vercmp: Use bb.utils.vercmp.

5.5.3.3. SVK Fetcher

The SVK fetcher has been removed from BitBake.

5.5.3.4. Console Output Error Redirection

The BitBake console Ul will now output errors to stderr instead of stdout. Consequently, if you are
piping or redirecting the output of bitbake to somewhere else, and you wish to retain the errors, you
will need to add 2>&1 (or something similar) to the end of your bitbake command line.

5.5.3.5. task-taskname Overrides

task-taskname overrides have been adjusted so that tasks whose names contain underscores have
the underscores replaced by hyphens for the override so that they now function properly. For example,
the task override for do_populate sdk is task-populate-sdk.

5.5.4. Changes to Variables

The following variables have changed. For information on the OpenEmbedded build system variables,
see the "Variables Glossary" Chapter.

5.5.4.1. TMPDIR

TMPDIR can no longer be on an NFS mount. NFS does not offer full POSIX locking and inode consistency
and can cause unexpected issues if used to store TMPDIR.

The check for this occurs on startup. If TMPDIR is detected on an NFS mount, an error occurs.

5.5.4.2. PRINC

The PRINC variable has been deprecated and triggers a warning if detected during a build.
For PR increments on changes, use the PR service instead. You can find out more about this
service in the "Working With a PR Service [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#working-with-a-pr-service]" section in the Yocto Project Development Manual.

5.5.4.3. IMAGE_TYPES

The "sum.jffs2" option for IMAGE_TYPES has been replaced by the "jffs2.sum" option, which fits the
processing order.

5.5.4.4. COPY_LIC_MANIFEST

The COPY_LIC MANIFEST variable must now be set to "1" rather than any value in order to enable it.

5.5.4.5. COPY_LIC_DIRS

The COPY_LIC DIRS variable must now be set to "1" rather than any value in order to enable it.

5.5.4.6. PACKAGE_GROUP

The PACKAGE_GROUP variable has been renamed to FEATURE_PACKAGES to more accurately reflect its
purpose. You can still use PACKAGE_GROUP but the OpenEmbedded build system produces a warning
message when it encounters the variable.

5.5.5. Directory Layout Changes

The meta-hob layer has been removed from the top-level of the Source Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory]. The contents of this
layer are no longer needed by the Hob user interface for building images and toolchains.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

5.5.6. Package Test (ptest)

Package Tests (ptest) are built but not installed by default. For information on using Package Tests, see
the "Setting up and running package test (ptest) [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#testing-packages-with-ptest]" section in the Yocto Project Development Manual.
For information on the ptest class, see the "ptest.bbclass" section.

5.5.7. Build Changes

Separate build and source directories have been enabled by default for selected recipes where it
is known to work (a whitelist) and for all recipes that inherit the cmake class. In future releases the
autotools class will enable a separate build directory by default as well. Recipes building Autotools-
based software that fails to build with a separate build directory should be changed to inherit from
the autotools-brokensep class instead of the autotools class.

5.5.8. gqemu-native

gemu-native now builds without SDL-based graphical output support by default. The following
additional lines are needed in your local. conf to enable it:

PACKAGECONFIG pn-gemu-native = "sdl"
ASSUME_PROVIDED += "libsdl-native"

Note

The default local.conf contains these statements. Consequently, if you are building a
headless system and using a default Local. conf file, you will need comment these two lines
out.

5.5.9. core-image-basic

core-image-basic has been renamed to core-image-full-cmdline.

In addition to core-image-basic being renamed, packagegroup-core-basic has been renamed to
packagegroup-core-full-cmdline to match.

5.5.10. Licensing

The top-level LICENSE file has been changed to better describe the license of the various components
of OE-Core. However, the licensing itself remains unchanged.

Normally, this change would not cause any side-effects. However, some recipes point to this file
within LIC_FILES CHKSUM (as ${COREBASE}/LICENSE) and thus the accompanying checksum must be
changed from 3f40d7994397109285ec7b81fdeb3b58 to 4d92cd373abda3937c2bc47fbc49d690. A
better alternative is to have LIC_FILES CHKSUM point to a file describing the license that is distributed
with the source that the recipe is building, if possible, rather than pointing to ${COREBASE}/LICENSE.

5.5.11. CFLAGS Options

The "-fpermissive" option has been removed from the default CFLAGS value. You need to take action
on individual recipes that fail when building with this option. You need to either patch the recipes to
fix the issues reported by the compiler, or you need to add "-fpermissive" to CFLAGS in the recipes.

5.5.12. Custom Image Output Types

Custom image output types, as selected using IMAGE_FSTYPES, must declare their dependencies on
other image types (if any) using a new IMAGE_TYPEDEP variable.

5.5.13. Tasks

The do_package write task has been removed. The task is no longer needed.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest

5.5.14. update-alternative Provider

The default update-alternatives provider has been changed from opkg to opkg-utils. This change
resolves some troublesome circular dependencies. The runtime package has also been renamed from
update-alternatives-cworth to update-alternatives-opkg.

5.5.15. virtclass Overrides

The virtclass overrides are now deprecated. Use the equivalent class overrides instead (e.g.
virtclass-native becomes class-native.)

5.5.16. Removed and Renamed Recipes

The following recipes have been removed:
» packagegroup-toolset-native - This recipe is largely unused.

e linux-yocto-3.8 - Support for the Linux yocto 3.8 kernel has been dropped. Support for the 3.10
and 3.14 kernels have been added with the linux-yocto-3.10 and linux-yocto-3.14 recipes.

* ocf-linux - This recipe has been functionally replaced using cryptodev-linux.

* genext2fs - genext2fs is no longer used by the build system and is unmaintained upstream.
* js - This provided an ancient version of Mozilla's javascript engine that is no longer needed.
* zaurusd - The recipe has been moved to the meta-handheld layer.

* eglibc 2.17 - Replaced by the eglibc 2.19 recipe.

* gcc 4.7.2 - Replaced by the now stable gcc 4.8.2.

» external-sourcery-toolchain - this recipe is now maintained in the meta-sourcery layer.

e linux-libc-headers-yocto 3.4+git - Now using version 3.10 of the linux-1libc-headers by
default.

* meta-toolchain-gmae - This recipe is obsolete.
* packagegroup-core-sdk-gmae - This recipe is obsolete.

* packagegroup-core-standalone-gmae-sdk-target - This recipe is obsolete.

5.5.17. Removed Classes

The following classes have become obsolete and have been removed:
* module strip

* pkg _metainfo

* pkg distribute

* image-empty

5.5.18. Reference Board Support Packages (BSPs)

The following reference BSPs changes occurred:

* The BeagleBoard (beagleboard) ARM reference hardware has been replaced by the BeagleBone
(beaglebone) hardware.

* The RouterStation Pro (routerstationpro) MIPS reference hardware has been replaced by the
EdgeRouter Lite (edgerouter) hardware.

The previous reference BSPs for the beagleboard and routerstationpro machines are still available
in a new meta-yocto-bsp-old layer in the Source Repositories [http://git.yoctoproject.org] at http://
git.yoctoproject.org/cgit/cgit.cgi/meta-yocto-bsp-old/.

http://git.yoctoproject.org
http://git.yoctoproject.org
http://git.yoctoproject.org/cgit/cgit.cgi/meta-yocto-bsp-old/
http://git.yoctoproject.org/cgit/cgit.cgi/meta-yocto-bsp-old/

5.6. Moving to the Yocto Project 1.7 Release

This section provides migration information for moving to the Yocto Project 1.7 Release from the prior
release.

5.6.1. Changes to Setting QEMUPACKAGECONFIG Options
in Local.conf

The QEMU recipe now uses a number of PACKAGECONFIG options to enable various optional features.
The method used to set defaults for these options means that existing Local. conf files will need to be
be modified to append to PACKAGECONFIG for gemu-native and nativesdk-qgemu instead of setting it.
In other words, to enable graphical output for QEMU, you should now have these lines in local. conf:

PACKAGECONFIG append pn-gemu-native = " sdl"
PACKAGECONFIG append pn-nativesdk-gqemu = " sdl"

5.6.2. Minimum Git version

The minimum Git [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#git] version
required on the build host is now 1.7.8 because the ##1list option is now required by BitBake's
Git fetcher. As always, if your host distribution does not provide a version of Git that meets this
requirement, you can use the buildtools-tarball that does. See the "Required Git, tar, and Python
Versions" section for more information.

5.6.3. Autotools Class Changes

The following autotools class changes occurred:

» A separate build directory is now used by default: The autotools class has been changed to use a
directory for building (B), which is separate from the source directory (S). This is commonly referred
toas B != S, or an out-of-tree build.

If the software being built is already capable of building in a directory separate from the source, you
do not need to do anything. However, if the software is not capable of being built in this manner,
you will need to either patch the software so that it can build separately, or you will need to change
the recipe to inherit the autotools-brokensep class instead of the autotools class.

* The ##foreign option is no longer passed to automake when running autoconf: This option tells
automake that a particular software package does not follow the GNU standards and therefore
should not be expected to distribute certain files such as ChangelLog, AUTHORS, and so forth.
Because the majority of upstream software packages already tell automake to enable foreign mode
themselves, the option is mostly superfluous. However, some recipes will need patches for this
change. You can easily make the change by patching configure.ac so that it passes "foreign"
to AM _INIT AUTOMAKE(). See this commit [http://cgit.openembedded.org/openembedded-core/
commit/?id=01943188f85ce6411717fb5bf702d609f55813f2] for an example showing how to make
the patch.

5.6.4. Binary Configuration Scripts Disabled

Some of the core recipes that package binary configuration scripts now disable the scripts due to the
scripts previously requiring error-prone path substitution. Software that links against these libraries
using these scripts should use the much more robust pkg-config instead. The list of recipes changed
in this version (and their configuration scripts) is as follows:

directfb (directfb-config)
freetype (freetype-config)
gpgme (gpgme-config)
libassuan (libassuan-config)
libcroco (croco-6.0-config)
libgcrypt (libgcrypt-config)

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#git
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#git
http://cgit.openembedded.org/openembedded-core/commit/?id=01943188f85ce6411717fb5bf702d609f55813f2
http://cgit.openembedded.org/openembedded-core/commit/?id=01943188f85ce6411717fb5bf702d609f55813f2
http://cgit.openembedded.org/openembedded-core/commit/?id=01943188f85ce6411717fb5bf702d609f55813f2

libgpg-error (gpg-error-config)
libksba (ksba-config)

libpcap (pcap-config)

libpcre (pcre-config)

libpng (libpng-config, libpngl6-config)
libsdl (sdl-config)
libusb-compat (libusb-config)
libxml2 (xml2-config)

libxslt (xslt-config)

ncurses (ncurses-config)

neon (neon-config)

npth (npth-config)

pth (pth-config)

taglib (taglib-config)

Additionally, support for pkg-config has been added to some recipes in the previous list in the rare
cases where the upstream software package does not already provide it.

5.6.5. eglibc 2.19 Replaced with glibc 2.20

Because eglibc and glibc were already fairly close, this replacement should not require any
significant changes to other software that links to eglibc. However, there were a number of minor
changes in glibc 2.20 upstream that could require patching some software (e.g. the removal of the
_BSD SOURCE feature test macro).

glibc 2.20 requires version 2.6.32 or greater of the Linux kernel. Thus, older kernels will no longer
be usable in conjunction with it.

For full details on the changes in glibc 2.20, see the upstream release notes here [https://
sourceware.org/ml/libc-alpha/2014-09/msg00088.html].

5.6.6. Kernel Module Autoloading

The module _autoload * variable is now deprecated and a new KERNEL_MODULE_AUTOLOAD variable
should be used instead. Also, module conf * must now be used in conjunction with a new
KERNEL_MODULE_PROBECONF variable. The new variables no longer require you to specify the module
name as part of the variable name. This change not only simplifies usage but also allows the values of
these variables to be appropriately incorporated into task signatures and thus trigger the appropriate
tasks to re-execute when changed. You should replace any references to module autoload *
with KERNEL_MODULE_AUTOLOAD, and add any modules for which module conf * is specified to
KERNEL MODULE PROBECONF.

For more information, see the KERNEL_MODULE_AUTOLOAD and KERNEL MODULE_ PROBECONF variables.

5.6.7. QA Check Changes

The following changes have occurred to the QA check process:

» Additional QA checks file-rdeps and build-deps have been added in order to verify that file
dependencies are satisfied (e.g. package contains a script requiring /bin/bash) and build-time
dependencies are declared, respectively. For more information, please see the "QA Error and
Warning Messages" chapter.

» Package QA checks are now performed during a new do_package_ qa task rather than being part
of the do_package task. This allows more parallel execution. This change is unlikely to be an issue
except for highly customized recipes that disable packaging tasks themselves by marking them as
noexec. For those packages, you will need to disable the do_package qa task as well.

Files being overwritten during the do_populate sysroot task now trigger an error instead of a
warning. Recipes should not be overwriting files written to the sysroot by other recipes. If you have
these types of recipes, you need to alter them so that they do not overwrite these files.

You might now receive this error after changes in configuration or metadata resulting in orphaned
files being left in the sysroot. If you do receive this error, the way to resolve the issue is to delete

https://sourceware.org/ml/libc-alpha/2014-09/msg00088.html
https://sourceware.org/ml/libc-alpha/2014-09/msg00088.html
https://sourceware.org/ml/libc-alpha/2014-09/msg00088.html

your TMPDIR or to move it out of the way and then re-start the build. Anything that has been fully
built up to that point and does not need rebuilding will be restored from the shared state cache and
the rest of the build will be able to proceed as normal.

5.6.8. Removed Recipes

The following recipes have been removed:

* x-load: This recipe has been superseded by U-boot SPL for all Cortex-based Tl SoCs. For legacy
boards, the meta-ti layer, which contains a maintained recipe, should be used instead.

» ubootchart: This recipe is obsolete. A bootchart2 recipe has been added to functionally replace it.

e linux-yocto 3.4: Support for the linux-yocto 3.4 kernel has been dropped. Support for the 3.10
and 3.14 kernels remains, while support for version 3.17 has been added.

* eglibc has been removed in favor of glibc. See the "eglibc 2.19 Replaced with glibc 2.20"
section for more information.

5.6.9. Miscellaneous Changes

The following miscellaneous change occurred:

* The build history feature now writes build-id.txt instead of build-id. Additionally, build-
id.txt now contains the full build header as printed by BitBake upon starting the build. You should
manually remove old "build-id" files from your existing build history repositories to avoid confusion.
For information on the build history feature, see the "Maintaining Build Output Quality" section.

Chapter 6. Source Directory
Structure

The Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-
directory] consists of several components. Understanding them and knowing where they are located
is key to using the Yocto Project well. This chapter describes the Source Directory and gives
information about the various files and directories.

For information on how to establish a local Source Directory on your development system, see
the "Getting Set Up [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#getting-
setup]" section in the Yocto Project Development Manual.

Note

The OpenEmbedded build system does not support file or directory names that contain
spaces. Be sure that the Source Directory you use does not contain these types of names.

6.1. Top-Level Core Components

This section describes the top-level components of the Source Directory [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#source-directoryl.

6.1.1. bitbake/

This directory includes a copy of BitBake for ease of use. The copy usually matches the current
stable BitBake release from the BitBake project. BitBake, a Metadata [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#metadata] interpreter, reads the Yocto Project Metadata and
runs the tasks defined by that data. Failures are usually from the Metadata and not from BitBake
itself. Consequently, most users do not need to worry about BitBake.

When you run the bitbake command, the main BitBake executable, which resides in the bitbake/
bin/ directory, starts. Sourcing an environment setup script (e.g. oe-init-build-env or oe-init-
build-env-memres) places the scripts and bitbake/bin directories (in that order) into the shell's
PATH environment variable.

For more information on BitBake, see the BitBake User Manual [http://www.yoctoproject.org/docs/1.8/
bitbake-user-manual/bitbake-user-manual.html].

6.1.2. build/

This directory contains user configuration files and the output generated by the OpenEmbedded
build system in its standard configuration where the source tree is combined with the output. The
Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory]
is created initially when you source the OpenEmbedded build environment setup script (i.e. oe-init-
build-env or oe-init-build-env-memres).

It is also possible to place output and configuration files in a directory separate from the Source
Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory] by
providing a directory name when you source the setup script. For information on separating output
from your local Source Directory files, see the "oe-init-build-env and "oe-init-build-env-
memres" sections.

6.1.3. documentation/

This directory holds the source for the Yocto Project documentation as well as templates and tools
that allow you to generate PDF and HTML versions of the manuals. Each manual is contained in a
sub-folder. For example, the files for this manual reside in the ref-manual/ directory.

6.1.4. meta/

This directory contains the OpenEmbedded Core metadata. The directory holds recipes, common
classes, and machine configuration for emulated targets (gemux86, gemuarm, and so forth.)

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#getting-setup
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#getting-setup
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#getting-setup
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

6.1.5. meta-yocto/

This directory contains the configuration for the Poky reference distribution.

6.1.6. meta-yocto-bsp/

This directory contains the Yocto Project reference hardware Board Support Packages (BSPs). For more
information on BSPs, see the Yocto Project Board Support Package (BSP) Developer's Guide [http://
www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html].

6.1.7. meta-selftest/

This directory adds additional recipes and append files used by the OpenEmbedded selftests to verify
the behavior of the build system.

You do not have to add this layer to your bblayers. conf file unless you want to run the selftests.

6.1.8. meta-skeleton/

This directory contains template recipes for BSP and kernel development.

6.1.9. scripts/

This directory contains various integration scripts that implement extra functionality in the Yocto
Project environment (e.g. QEMU scripts). The oe-init-build-env and oe-init-build-env-memres
scripts append this directory to the shell's PATH environment variable.

The scripts directory has useful scripts that assist in contributing back to the Yocto Project, such as
create-pull-request and send-pull-request.

6.1.10. oe-init-build-env

This script is one of two scripts that set up the OpenEmbedded build environment. For information
on the other script, see the "oe-init-build-env-memres" section.

Running this script with the source command in a shell makes changes to PATH and sets other core
BitBake variables based on the current working directory. You need to run an environment setup script
before running BitBake commands. The script uses other scripts within the scripts directory to do
the bulk of the work.

When you run this script, your Yocto Project environment is set up, a Build Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory] is created, your
working directory becomes the Build Directory, and you are presented with a list of common BitBake
targets. Here is an example:

$ source oe-init-build-env
Shell environment set up for builds.
You can now run 'bitbake <target>'
Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
adt-installer
meta-ide-support
You can also run generated gemu images with a command like 'rungemu gemux86'

The script gets its default list of common targets from the conf-notes.txt file, which is found
in the meta-yocto directory within the Source Directory [http://www.yoctoproject.org/docs/1.8/

http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

dev-manual/dev-manual.html#source-directory]. Should you have custom distributions, it is very
easy to modify this configuration file to include your targets for your distribution. See the
"Creating a Custom Template Configuration Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#creating-a-custom-template-configuration-directory]" section in the Yocto
Project Development Manual for more information.

By default, running this script without a Build Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#build-directory] argument creates the build directory in your current
working directory. If you provide a Build Directory argument when you source the script, you direct
the OpenEmbedded build system to create a Build Directory of your choice. For example, the following
command creates a Build Directory named mybuilds that is outside of the Source Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory]:

$ source oe-init-build-env ~/mybuilds

The OpenEmbedded build system uses the template configuration files, which are found by default
in the meta-yocto/conf directory in the Source Directory [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#source-directory]. See the "Creating a Custom Template Configuration
Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-
template-configuration-directory]" section in the Yocto Project Development Manual for more
information.

Note

The OpenEmbedded build system does not support file or directory names that contain
spaces. If you attempt to run the oe-init-build-env script from a Source Directory that
contains spaces in either the filenames or directory names, the script returns an error
indicating no such file or directory. Be sure to use a Source Directory free of names containing
spaces.

6.1.11. oe-init-build-env-memres

This script is one of two scripts that set up the OpenEmbedded build environment. Aside from setting
up the environment, this script starts a memory-resident BitBake server. For information on the other
setup script, see the "oe-init-build-env" section.

Memory-resident BitBake resides in memory until you specifically remove it using the following
BitBake command:

$ bitbake -m

Running this script with the source command in a shell makes changes to PATH and sets other core
BitBake variables based on the current working directory. One of these variables is the BBSERVER
variable, which allows the OpenEmbedded build system to locate the server that is running BitBake.

You need to run an environment setup script before using BitBake commands. Following is the script
syntax:

$ source oe-init-build-env-memres port_number build dir

The script uses other scripts within the scripts directory to do the bulk of the work.
If you do not provide a port number with the script, the BitBake server at port "12345" is started.

When you run this script, your Yocto Project environment is set up, a Build Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory] is created, your
working directory becomes the Build Directory, and you are presented with a list of common BitBake
targets. Here is an example:

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

$ source oe-init-build-env-memres
No port specified, using dynamically selected port

Shell environment set up for builds.
You can now run ‘'bitbake <target>'

Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
adt-installer
meta-ide-support

You can also run generated gemu images with a command like 'rungemu gemux86'
Bitbake server started on demand as needed, use bitbake -m to shut it down

The script gets its default list of common targets from the conf-notes.txt file, which is found
in the meta-yocto directory within the Source Directory [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#source-directory]. Should you have custom distributions, it is very
easy to modify this configuration file to include your targets for your distribution. See the
"Creating a Custom Template Configuration Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#creating-a-custom-template-configuration-directory]" section in the Yocto
Project Development Manual for more information.

By default, running this script without a Build Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#build-directory] argument creates a build directory named build. If you
provide a Build Directory argument when you source the script, the Build Directory is created using
that name. For example, the following command starts the BitBake server using the default port
"12345" and creates a Build Directory named mybuilds that is outside of the Source Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory]:

$ source oe-init-build-env-memres ~/mybuilds

The OpenEmbedded build system uses the template configuration files, which are found by default
in the meta-yocto/conf directory in the Source Directory [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#source-directory]. See the "Creating a Custom Template Configuration
Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-
template-configuration-directory]" section in the Yocto Project Development Manual for more
information.

Note
The OpenEmbedded build system does not support file or directory names that contain
spaces. If you attempt to run the oe-init-build-env-memres script from a Source Directory
that contains spaces in either the filenames or directory names, the script returns an error
indicating no such file or directory. Be sure to use a Source Directory free of names containing
spaces.

6.1.12. LICENSE, README, and README.hardware

These files are standard top-level files.

6.2. The Build Directory -build/

The OpenEmbedded build system creates the Build Directory [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#build-directory] when you run one of the build environment setup
scripts (i.e. oe-init-build-env or oe-init-build-env-memres).

If you do not give the Build Directory a specific name when you run a setup script, the name defaults
to build.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-custom-template-configuration-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

The TOPDIR variable points to the Build Directory.

6.2.1. build/buildhistory

The OpenEmbedded build system creates this directory when you enable the build history feature.
The directory tracks build information into image, packages, and SDK subdirectories. For information
on the build history feature, see the "Maintaining Build Output Quality" section.

6.2.2. build/conf/local.conf

This configuration file contains all the local user configurations for your build environment. The
local. conf file contains documentation on the various configuration options. Any variable set here
overrides any variable set elsewhere within the environment unless that variable is hard-coded within
a file (e.g. by using '="instead of '?="). Some variables are hard-coded for various reasons but these
variables are relatively rare.

Edit this file to set the MACHINE for which you want to build, which package types you wish to use
(PACKAGE_CLASSES), the location from which you want to access downloaded files (DL_DIR), and how
you want your host machine to use resources (BB_NUMBER THREADS and PARALLEL MAKE).

If Llocal.conf is not present when you start the build, the OpenEmbedded build system creates it
from local.conf.sample when you source the top-level build environment setup script (i.e. oe-
init-build-env or oe-init-build-env-memres).

The source local.conf.sample file used depends on the $TEMPLATECONF script variable, which
defaults to meta-yocto/conf when you are building from the Yocto Project development environment
and defaults to meta/conf when you are building from the OpenEmbedded Core environment.
Because the script variable points to the source of the local.conf.sample file, this implies that you
can configure your build environment from any layer by setting the variable in the top-level build
environment setup script as follows:

TEMPLATECONF=your_layer/conf

Once the build process gets the sample file, it uses sed to substitute final ${0ER00T} values for all
##0EROOT## values.

Note

You can see how the TEMPLATECONF variable is used by looking at the scripts/oe-
setup-builddir script in the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#source-directory]. You can find the Yocto Project version of the
local.conf.sample file in the meta-yocto/conf directory.

6.2.3. build/conf/bblayers.conf

This configuration file defines layers [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#understanding-and-creating-layers], which are directory trees, traversed (or walked)
by BitBake. The bblayers. conf file uses the BBLAYERS variable to list the layers BitBake tries to find,
and uses the BBLAYERS NON_ REMOVABLE variable to list layers that must not be removed.

If bblayers.conf is not present when you start the build, the OpenEmbedded build system creates
it from bblayers.conf.sample when you source the top-level build environment setup script (i.e.
oe-init-build-env or oe-init-build-env-memres).

The source bblayers.conf.sample file used depends on the $TEMPLATECONF script variable, which
defaults to meta-yocto/conf when you are building from the Yocto Project development environment
and defaults to meta/conf when you are building from the OpenEmbedded Core environment.
Because the script variable points to the source of the bblayers.conf.sample file, this implies that
you can base your build from any layer by setting the variable in the top-level build environment
setup script as follows:

TEMPLATECONF=your_layer/conf

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers

Once the build process gets the sample file, it uses sed to substitute final ${0ERO0T} values for all
##0EROOT## values.

Note

You can see how the TEMPLATECONF variable scripts/oe-setup-builddir
script in the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#source-directory]. You can find the Yocto Project version of the
bblayers.conf.sample file in the meta-yocto/conf directory.

6.2.4. build/conf/sanity_info

This file indicates the state of the sanity checks and is created during the build.

6.2.5. build/downloads/

This directory contains downloaded upstream source tarballs. You can reuse the directory for multiple
builds or move the directory to another location. You can control the location of this directory through
the DL_DIR variable.

6.2.6. build/sstate-cache/

This directory contains the shared state cache. You can reuse the directory for multiple builds or
move the directory to another location. You can control the location of this directory through the
SSTATE_DIR variable.

6.2.7. build/tmp/

The OpenEmbedded build system creates and uses this directory for all the build system's output.
The TMPDIR variable points to this directory.

BitBake creates this directory if it does not exist. As a last resort, to clean up a build and start it
from scratch (other than the downloads), you can remove everything in the tmp directory or get rid
of the directory completely. If you do, you should also completely remove the build/sstate-cache
directory.

6.2.8. build/tmp/buildstats/

This directory stores the build statistics.

6.2.9. build/tmp/cache/

When BitBake parses the metadata, it creates a cache file of the result that can be used when
subsequently running commands. BitBake stores these results here on a per-machine basis.

6.2.10. build/tmp/deploy/

This directory contains any "end result" output from the OpenEmbedded build process. The
DEPLOY DIR variable points to this directory. For more detail on the contents of the deploy directory,
see the "Images" and "Application Development SDK" sections.

6.2.11. build/tmp/deploy/deb/

This directory receives any .deb packages produced by the build process. The packages are sorted
into feeds for different architecture types.

6.2.12. build/tmp/deploy/rpm/

This directory receives any . rpm packages produced by the build process. The packages are sorted
into feeds for different architecture types.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

6.2.13. build/tmp/deploy/ipk/

This directory receives .ipk packages produced by the build process.

6.2.14. build/tmp/deploy/licenses/

This directory receives package licensing information. For example, the directory contains
sub-directories for bash, busybox, and eglibc (among others) that in turn contain
appropriate COPYING license files with other licensing information. For information on
licensing, see the "Maintaining Open Source License Compliance During Your Product's
Lifecycle [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-
source-license-compliance-during-your-products-lifecycle]" section.

6.2.15. build/tmp/deploy/images/

This directory receives complete filesystem images. If you want to flash the resulting image from a
build onto a device, look here for the image.

Be careful when deleting files in this directory. You can safely delete old images from this directory
(e.g. core-image-*, hob-image-*, etc.). However, the kernel (*zImage*, *uImage*, etc.), bootloader
and other supplementary files might be deployed here prior to building an image. Because these
files are not directly produced from the image, if you delete them they will not be automatically re-
created when you build the image again.

If you do accidentally delete files here, you will need to force them to be re-created. In order to do
that, you will need to know the target that produced them. For example, these commands rebuild
and re-create the kernel files:

$ bitbake -c clean virtual/kernel
$ bitbake virtual/kernel

6.2.16. build/tmp/deploy/sdk/

The OpenEmbedded build system creates this directory to hold toolchain installer scripts, which
when executed, install the sysroot that matches your target hardware. You can find out more about
these installers in the "Optionally Building a Toolchain Installer [http://www.yoctoproject.org/docs/1.8/
adt-manual/adt-manual.html#optionally-building-a-toolchain-installer]" section in the Yocto Project
Application Developer's Guide.

6.2.17. build/tmp/sstate-control/

The OpenEmbedded build system uses this directory for the shared state manifest files. The shared
state code uses these files to record the files installed by each sstate task so that the files can be
removed when cleaning the recipe or when a newer version is about to be installed. The build system
also uses the manifests to detect and produce a warning when files from one task are overwriting
those from another.

6.2.18. build/tmp/sysroots/

This directory contains shared header files and libraries as well as other shared data. Packages that
need to share output with other packages do so within this directory. The directory is subdivided by
architecture so multiple builds can run within the one Build Directory.

6.2.19. build/tmp/stamps/

This directory holds information that BitBake uses for accounting purposes to track what tasks have
run and when they have run. The directory is sub-divided by architecture, package name, and version.
Following is an example:

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer

stamps/all-poky-linux/distcc-config/1.0-r0.do build-2fdd....2do

Although the files in the directory are empty of data, BitBake uses the filenames and timestamps
for tracking purposes.

6.2.20. build/tmp/log/

This directory contains general logs that are not otherwise placed using the package's WORKDIR.
Examples of logs are the output from the do_check pkg or do distro check tasks. Running a build
does not necessarily mean this directory is created.

6.2.21. build/tmp/work/

This directory contains architecture-specific work sub-directories for packages built by BitBake. All
tasks execute from the appropriate work directory. For example, the source for a particular package
is unpacked, patched, configured and compiled all within its own work directory. Within the work
directory, organization is based on the package group and version for which the source is being
compiled as defined by the WORKDIR.

Itis worth considering the structure of a typical work directory. As an example, consider linux-yocto-
kernel-3.0 on the machine gemux86 built within the Yocto Project. For this package, a work directory
of tmp/work/gemux86-poky-linux/linux-yocto/3.0+gitl+<..... >, referred to as the WORKDIR, is
created. Within this directory, the source is unpacked to linux-qemux86-standard-build and then
patched by Quilt. (See the "Using a Quilt Flow [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#using-a-quilt-workflow]" section in the Yocto Project Development Manual for
more information.) Within the linux-gemux86-standard-build directory, standard Quilt directories
linux-3.0/patches and linux-3.0/.pc are created, and standard Quilt commands can be used.

There are other directories generated within WORKDIR. The most important directory is WORKDIR/
temp/, which has log files for each task (Log.do *.pid) and contains the scripts BitBake runs for
each task (run.do_*.pid). The WORKDIR/image/ directory is where "make install" places its output
that is then split into sub-packages within WORKDIR/packages-split/.

6.2.22. build/tmp/work-shared/

For efficiency, the OpenEmbedded build system creates and uses this directory to hold recipes that
share a work directory with other recipes. In practice, this is only used for gcc and its variants (e.qg.
gcc-cross, libgcc, gcc-runtime, and so forth).

6.3. The Metadata -meta/

As mentioned previously, Metadata [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#metadata] is the core of the Yocto Project. Metadata has several important subdivisions:

6.3.1. meta/classes/

This directory contains the *.bbclass files. Class files are used to abstract common code so it can
be reused by multiple packages. Every package inherits the base.bbclass file. Examples of other
important classes are autotools.bbclass, which in theory allows any Autotool-enabled package to
work with the Yocto Project with minimal effort. Another example is kernel.bbclass that contains
common code and functions for working with the Linux kernel. Functions like image generation
or packaging also have their specific class files such as image.bbclass, rootfs *.bbclass and
package*.bbclass.

For reference information on classes, see the "Classes" chapter.

6.3.2. meta/conf/

This directory contains the core set of configuration files that start from bitbake. conf and from which
all other configuration files are included. See the include statements at the end of the bitbake.conf
file and you will note that even local.conf is loaded from there. While bitbake.conf sets up the

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-a-quilt-workflow
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-a-quilt-workflow
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-a-quilt-workflow
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata

defaults, you can often override these by using the (local. conf) file, machine file or the distribution
configuration file.

6.3.3. meta/conf/machine/
This directory contains all the machine configuration files. If you set MACHINE = "gemux86", the
OpenEmbedded build system looks for a gemux86.conf file in this directory. The include directory

contains various data common to multiple machines. If you want to add support for a new machine
to the Yocto Project, look in this directory.

6.3.4. meta/conf/distro/

The contents of this directory controls any distribution-specific configurations. For the Yocto Project,
the defaultsetup.conf is the main file here. This directory includes the versions and the SRCDATE
definitions for applications that are configured here. An example of an alternative configuration might
be poky-bleeding.conf. Although this file mainly inherits its configuration from Poky.

6.3.5. meta/conf/machine-sdk/

The OpenEmbedded build system searches this directory for configuration files that correspond to the
value of SDKMACHINE. By default, 32-bit and 64-bit x86 files ship with the Yocto Project that support
some SDK hosts. However, it is possible to extend that support to other SDK hosts by adding additional
configuration files in this subdirectory within another layer.

6.3.6. meta/files/

This directory contains common license files and several text files used by the build system. The text
files contain minimal device information and lists of files and directories with known permissions.

6.3.7. meta/lib/

This directory contains OpenEmbedded Python library code used during the build process.

6.3.8. meta/recipes-bsp/

This directory contains anything linking to specific hardware or hardware configuration information
such as "u-boot" and "grub".

6.3.9. meta/recipes-connectivity/

This directory contains libraries and applications related to communication with other devices.

6.3.10. meta/recipes-core/

This directory contains what is needed to build a basic working Linux image including commonly used
dependencies.

6.3.11. meta/recipes-devtools/

This directory contains tools that are primarily used by the build system. The tools, however, can
also be used on targets.

6.3.12. meta/recipes-extended/
This directory contains non-essential applications that add features compared to the alternatives

in core. You might need this directory for full tool functionality or for Linux Standard Base (LSB)
compliance.

6.3.13. meta/recipes-gnome/

This directory contains all things related to the GTK+ application framework.

6.3.14. meta/recipes-graphics/

This directory contains X and other graphically related system libraries

6.3.15. meta/recipes-kernel/

This directory contains the kernel and generic applications and libraries that have strong kernel
dependencies.

6.3.16. meta/recipes-1sh4/

This directory contains recipes specifically added to support the Linux Standard Base (LSB) version
4.x.

6.3.17. meta/recipes-multimedia/

This directory contains codecs and support utilities for audio, images and video.

6.3.18. meta/recipes-qt/

This directory contains all things related to the Qt application framework.

6.3.19. meta/recipes-rt/

This directory contains package and image recipes for using and testing the PREEMPT_RT kernel.

6.3.20. meta/recipes-sato/

This directory contains the Sato demo/reference UI/UX and its associated applications and
configuration data.

6.3.21. meta/recipes-support/

This directory contains recipes used by other recipes, but that are not directly included in images
(i.e. dependencies of other recipes).

6.3.22. meta/site/

This directory contains a list of cached results for various architectures. Because certain "autoconf"
test results cannot be determined when cross-compiling due to the tests not able to run on a live
system, the information in this directory is passed to "autoconf" for the various architectures.

6.3.23. meta/recipes.txt

This file is a description of the contents of recipes-*.

Chapter 7. Classes

Class files are used to abstract common functionality and share it amongst multiple recipe (. bb) files.
To use a class file, you simply make sure the recipe inherits the class. In most cases, when a recipe
inherits a class it is enough to enable its features. There are cases, however, where in the recipe you
might need to set variables or override some default behavior.

Any Metadata [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadatal
usually found in a recipe can also be placed in a class file. Class files are identified by the extension
.bbclass and are usually placed in a classes/ directory beneath the meta*/ directory found
in the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-
directory]. Class files can also be pointed to by BUILDDIR (e.g. build/) in the same way as .conf
files in the conf directory. Class files are searched for in BBPATH using the same method by which
.conf files are searched.

This chapter discusses only the most useful and important classes. Other classes do exist within
the meta/classes directory in the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#source-directory]. You can reference the .bbclass files directly for more
information.

7.1. allarch.bbclass

The allarch class is inherited by recipes that do not produce architecture-specific output. The class
disables functionality that is normally needed for recipes that produce executable binaries (such as
building the cross-compiler and a C library as pre-requisites, and splitting out of debug symbols during
packaging).

By default, all recipes inherit the base and package classes, which enable functionality needed for
recipes that produce executable output. If your recipe, for example, only produces packages that
contain configuration files, media files, or scripts (e.g. Python and Perl), then it should inherit the
allarch class.

7.2. archiver.bbclass

The archiver class supports releasing source code and other materials with the binaries.

For more details on the source archiver, see the "Maintaining Open Source License
Compliance During Your Product's Lifecycle [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle]" section
in the Yocto Project Development Manual.

7.3. autotools.bbclass

The autotools class supports Autotooled packages.

The autoconf, automake, and libtool bring standardization. This class defines a set of
tasks (configure, compile etc.) that work for all Autotooled packages. It should usually be
enough to define a few standard variables and then simply inherit autotools. This
class can also work with software that emulates Autotools. For more information, see
the "Autotooled Package [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#new-
recipe-autotooled-package]" section in the Yocto Project Development Manual.

By default, the autotools class uses out-of-tree builds (B != S). If the software being built by a
recipe does not support using out-of-tree builds, you should have the recipe inherit the autotools-
brokensep class.

It's useful to have some idea of how the tasks defined by this class work and what they do behind
the scenes.

* do_configure # Regenerates the configure script (using autoreconf) and then launches it with a
standard set of arguments used during cross-compilation. You can pass additional parameters to
configure through the EXTRA OECONF variable.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#new-recipe-autotooled-package
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#new-recipe-autotooled-package
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#new-recipe-autotooled-package

* do_compile # Runs make with arguments that specify the compiler and linker. You can pass
additional arguments through the EXTRA OEMAKE variable.

* do_install # Runs make install and passesin ${D} as DESTDIR.

7.4. autotools-brokensep.bbclass

The autotools-brokensep class behaves the same as the autotools class but builds with B ==
This method is useful when out-of-tree build support is either not present or is broken.

Note

It is recommended that out-of-tree support be fixed and used if at all possible.

7.5. base.bbclass

The base class is special in that every .bb file implicitly inherits the class. This class contains
definitions for standard basic tasks such as fetching, unpacking, configuring (empty by default),
compiling (runs any Makefile present), installing (empty by default) and packaging (empty by
default). These classes are often overridden or extended by other classes such as the autotools class
or the package class. The class also contains some commonly used functions such as oe_runmake.

7.6. bin_package.bbclass

The bin package class is a helper class for recipes that extract the contents of a binary package (e.g.
an RPM) and install those contents rather than building the binary from source. The binary package
is extracted and new packages in the configured output package format are created. Extraction and
installation of proprietary binaries is a good example use for this class.

Note

For RPMs and other packages that do not contain a subdirectory, you should specify a "subdir"
parameter. Here is an example where ${BP} is used so that the files are extracted into the
subdirectory expected by the default value of S:

SRC_URI = "http://example.com/downloads/somepackage. rpm;subdir=${BP}"

7.7. binconfig.bbclass

The binconfig class helps to correct paths in shell scripts.

Before pkg-config had become widespread, libraries shipped shell scripts to give information about
the libraries and include paths needed to build software (usually named LIBNAME-config). This class
assists any recipe using such scripts.

During staging, the OpenEmbedded build system installs such scripts into the sysroots/ directory.
Inheriting this class results in all paths in these scripts being changed to point into the sysroots/
directory so that all builds that use the script use the correct directories for the cross compiling layout.
See the BINCONFIG_GLOB variable for more information.

7.8. binconfig-disabled.bbclass

An alternative version of the binconfig class, which disables binary configuration scripts by making
them return an error in favor of using pkg-config to query the information. The scripts to be disabled
should be specified using the BINCONFIG variable within the recipe inheriting the class.

7.9. blacklist.bbclass

The blacklist class prevents the OpenEmbedded build system from building specific recipes
(blacklists them). To use this class, inherit the class globally and set PNBLACKLIST for each recipe
you wish to blacklist. Specify the PN value as a variable flag (varflag) and provide a reason, which is

reported, if the package is requested to be built as the value. For example, if you want to blacklist a
recipe called "exoticware", you add the following to your local. conf or distribution configuration:

INHERIT += "blacklist"
PNBLACKLIST[exoticware] = "Not supported by our organization."

7.10. boot-directdisk.bbclass

The boot-directdisk class creates an image that can be placed directly onto a hard disk using dd
and then booted. The image uses SYSLINUX.

The end result is a 512 boot sector populated with a Master Boot Record (MBR) and partition table
followed by an MSDOS FAT16 partition containing SYSLINUX and a Linux kernel completed by the
ext2 and ext3 root filesystems.

7.11. bootimg.bbclass

The bootimg class creates a bootable image using SYSLINUX, your kernel, and an optional initial RAM
disk (initrd).

When you use this class, two things happen:

* A .hddimg file is created. This file is an MSDOS filesystem that contains SYSLINUX, a kernel, an
initrd, and a root filesystem image. All three of these can be written to hard drives directly and
also booted on a USB flash disks using dd.

* A CD .iso image is created. When this file is booted, the initrd boots and processes the label
selected in SYSLINUX. Actions based on the label are then performed (e.g. installing to a hard drive).

The bootimg class supports the INITRD, NOISO, NOHDD, and ROOTFS variables.

7.12. bugzilla.bbclass

The bugzilla class supports setting up an instance of Bugzilla in which you can automatically files
bug reports in response to build failures. For this class to work, you need to enable the XML-RPC
interface in the instance of Bugzilla.

7.13. buildhistory.bbclass

The buildhistory class records a history of build output metadata, which can be used to detect
possible regressions as well as used for analysis of the build output. For more information on using
Build History, see the "Maintaining Build Output Quality" section.

7.14. buildstats.bbclass

The buildstats class records performance statistics about each task executed during the build (e.g.
elapsed time, CPU usage, and /O usage).

When you use this class, the output goes into the BUILDSTATS BASE directory, which defaults
to ${TMPDIR}/buildstats/. You can analyze the elapsed time using scripts/pybootchartgui/
pybootchartgui.py, which produces a cascading chart of the entire build process and can be useful
for highlighting bottlenecks.

Collecting build statistics is enabled by default through the USER CLASSES variable from your
local. conf file. Consequently, you do not have to do anything to enable the class. However, if you
want to disable the class, simply remove "buildstats" from the USER CLASSES list.

7.15. buildstats-summary.bbclass

When inherited globally, prints statistics at the end of the build on sstate re-use. In order to function,
this class requires the buildstats class be enabled.

7.16. ccache.bbclass

The ccache class enables the C/C++ Compiler Cache [http://ccache.samba.org/] for the build. This
class is used to give a minor performance boost during the build. However, using the class can
lead to unexpected side-effects. Thus, it is recommended that you do not use this class. See http://
ccache.samba.org/ for information on the C/C++ Compiler Cache.

7.17. chrpath.bbclass

The chrpath class is a wrapper around the "chrpath" utility, which is used during the build process
for nativesdk, cross, and cross-canadian recipes to change RPATH records within binaries in order
to make them relocatable.

7.18. clutter.bbclass

The clutter class consolidates the major and minor version naming and other common items used
by Clutter and related recipes.

Note

Unlike some other classes related to specific libraries, recipes building other software that
uses Clutter do not need to inherit this class unless they use the same recipe versioning
scheme that the Clutter and related recipes do.

7.19. cmake.bbclass

The cmake class allows for recipes that need to build software using the CMake build system. You
can use the EXTRA OECMAKE variable to specify additional configuration options to be passed on the
cmake command line.

7.20. cml1l.bbclass

The cml1l class provides basic support for the Linux kernel style build configuration system.

7.21. compress_doc.bbclass

Enables compression for man pages and info pages. This class is intended to be inherited globally.
The default compression mechanism is gz (gzip) but you can select an alternative mechanism by
setting the DOC_COMPRESS variable.

7.22. copyleft _compliance.bbclass

The copyleft_compliance class preserves source code for the purposes of license compliance. This
class is an alternative to the archiver class and is still used by some users even though it has been
deprecated in favor of the archiver class.

7.23. copyleft _filter.bbclass

A class used by the archiver and copyleft compliance classes for filtering licenses. The
copyleft filter class is an internal class and is not intended to be used directly.

7.24. core-image.bbclass

The core-image class provides common definitions for the core-image-* image recipes, such as
support for additional IMAGE_FEATURES.

7.25. cpan.bbclass

The cpan class supports Perl modules.

http://ccache.samba.org/
http://ccache.samba.org/
http://ccache.samba.org/
http://ccache.samba.org/

Recipes for Perl modules are simple. These recipes usually only need to point to the source's archive
and then inherit the proper class file. Building is split into two methods depending on which method
the module authors used.

* Modules that use old Makefile.PL-based build system require cpan.bbclass in their recipes.

* Modules that use Build.PL-based build system require using cpan_build.bbclass in their recipes.

7.26. cross.bbclass

The cross class provides support for the recipes that build the cross-compilation tools.

7.27. cross-canadian.bbclass

The cross-canadian class provides support for the recipes that build the Canadian Cross-compilation
tools for SDKs. See the "Cross-Development Toolchain Generation" section for more discussion on
these cross-compilation tools.

7.28. crosssdk.bbclass

The crosssdk class provides support for the recipes that build the cross-compilation tools used for
building SDKs. See the "Cross-Development Toolchain Generation" section for more discussion on
these cross-compilation tools.

7.29. debian.bbclass

The debian class renames output packages so that they follow the Debian naming policy (i.e. eglibc
becomes 1ibc6 and eglibc-devel becomes libc6-dev.) Renaming includes the library name and
version as part of the package name.

If a recipe creates packages for multiple libraries (shared object files of .so type), use the
LEAD SONAME variable in the recipe to specify the library on which to apply the naming scheme.

7.30. deploy.bbclass

The deploy class handles deploying files to the DEPLOY DIR IMAGE directory. The main function of
this class is to allow the deploy step to be accelerated by shared state. Recipes that inherit this class
should define their own do_deploy function to copy the files to be deployed to DEPLOYDIR, and use
addtask to add the task at the appropriate place, which is usually after do_compile or do_install.
The class then takes care of staging the files from DEPLOYDIR to DEPLOY DIR IMAGE.

7.31. devshell.bbclass

The devshell class adds the do_devshell task. Distribution policy dictates whether to include this
class. See the "Using a Development Shell [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#platdev-appdev-devshell]" section in the Yocto Project Development Manual for more
information about using devshell.

7.32. distro_features_check.bbclass

The distro features check class allows individual recipes to check for required and conflicting
DISTRO FEATURES.

This class provides support for the REQUIRED DISTRO FEATURES and CONFLICT DISTRO FEATURES
variables. If any conditions specified in the recipe using the above variables are not met, the recipe
will be skipped.

7.33. distrodata.bbclass

The distrodata class provides for automatic checking for upstream recipe updates. The class
creates a comma-separated value (CSV) spreadsheet that contains information about the recipes. The

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-appdev-devshell
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-appdev-devshell
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-appdev-devshell

information provides the do_distrodata and do_distro_check tasks, which do upstream checking
and also verify if a package is used in multiple major distributions.

The class is not included by default. To use it, you must include the following files and set the INHERIT
variable:

include conf/distro/include/distro_alias.inc
include conf/distro/include/recipe color.inc
include conf/distro/include/maintainers.inc
include conf/distro/include/upstream tracking.inc
include conf/distro/include/package regex.inc
INHERIT+= "distrodata"

7.34. distutils.bbclass

The distutils class supports recipes for Python version 2.x extensions, which are simple. These
recipes usually only need to point to the source's archive and then inherit the proper class. Building
is split into two methods depending on which method the module authors used.

» Extensions that use an Autotools-based build system require Autotools and distutils-based
classes in their recipes.

» Extensions that use build systems based on distutils require the distutils class in their recipes.

* Extensions that use build systems based on setuptools require the setuptools class in their
recipes.

7.35. distutils3.bbclass

The distutils3 class supports recipes for Python version 3.x extensions, which are simple. These
recipes usually only need to point to the source's archive and then inherit the proper class. Building
is split into two methods depending on which method the module authors used.

» Extensions that use an Autotools-based build system require Autotools and distutils-based
classes in their recipes.

» Extensions that use distutils-based build systems require the distutils class in their recipes.

» Extensions that use build systems based on setuptools3 require the setuptools3 class in their
recipes.

7.36. externalsrc.bbclass

The externalsrc class supports building software from source code that is external to the
OpenEmbedded build system. Building software from an external source tree means that the build
system's normal fetch, unpack, and patch process is not used.

By default, the OpenEmbedded build system uses the S and B variables to locate unpacked recipe
source code and to build it, respectively. When your recipe inherits the externalsrc class, you use
the EXTERNALSRC and EXTERNALSRC BUILD variables to ultimately define S and B.

By default, this class expects the source code to support recipe builds that use the B variable to
point to the directory in which the OpenEmbedded build system places the generated objects built
from the recipes. By default, the B directory is set to the following, which is separate from the source
directory (S):

${WORKDIR}/${BPN}/{PV}/
See these variables for more information: WORKDIR, BPN, and PV,

For more information on the externalsrc class, see the comments in meta/classes/
externalsrc.bbclass in the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

dev-manual.html#source-directory]. For information on how to use the externalsrc class, see the
"Building Software from an External Source [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#building-software-from-an-external-source]" section in the Yocto Project Development
Manual.

7.37. extrausers.bbclass

The extrausers class allows additional user and group configuration to be applied at the image
level. Inheriting this class either globally or from an image recipe allows additional user and group
operations to be performed using the EXTRA_USERS_PARAMS variable.

Note

The user and group operations added using the extrausers class are not tied to a specific
recipe outside of the recipe for the image. Thus, the operations can be performed across the
image as a whole. Use the useradd class to add user and group configuration to a specific
recipe.

Here is an example that uses this class in an image recipe:

inherit extrausers

EXTRA_USERS PARAMS = "\
useradd -p '' tester; \
groupadd developers; \
userdel nobody; \
groupdel -g video; \
groupmod -g 1020 developers; \
usermod -s /bin/sh tester; \

Here is an example that adds two users named "tester-jim" and "tester-sue" and assigns passwords:

inherit extrausers

EXTRA_USERS PARAMS = "\
useradd -P tester0l tester-jim; \
useradd -P tester0l tester-sue; \

Finally, here is an example that sets the root password to "1876*18":

inherit extrausers
EXTRA_USERS PARAMS = "\
useradd -P 1876*18 root; \

7.38. fontcache.bbclass

The fontcache class generates the proper post-install and post-remove (postinst and postrm)
scriptlets for font packages. These scriptlets call fc-cache (part of Fontconfig) to add the fonts to
the font information cache. Since the cache files are architecture-specific, fc-cache runs using QEMU
if the postinst scriptlets need to be run on the build host during image creation.

If the fonts being installed are in packages other than the main package, set FONT PACKAGES to specify
the packages containing the fonts.

7.39. gconf.bbclass

The gconf class provides common functionality for recipes that need to install GConf schemas. The
schemas will be put into a separate package (${PN}-gconf) that is created automatically when this

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#building-software-from-an-external-source
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#building-software-from-an-external-source
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#building-software-from-an-external-source

class is inherited. This package uses the appropriate post-install and post-remove (postinst/postrm)
scriptlets to register and unregister the schemas in the target image.

7.40. gettext.bbclass

The gettext class provides support for building software that uses the GNU gettext
internationalization and localization system. All recipes building software that use gettext should
inherit this class.

7.41. gnome.bbclass

The gnome class supports recipes that build software from the GNOME stack. This class inherits the
gnomebase, gtk-icon-cache, gconf and mime classes. The class also disables GObject introspection
where applicable.

7.42. gnomebase.bbclass

The gnomebase class is the base class for recipes that build software from the GNOME stack. This
class sets SRC_URI to download the source from the GNOME mirrors as well as extending FILES with
the typical GNOME installation paths.

7.43. grub-efi.bbclass

The grub-efi class provides grub-efi-specific functions for building bootable images.
This class supports several variables:

» INITRD: Indicates list of filesystem images to concatenate and use as an initial RAM disk (initrd)
(optional).

* ROOTFS: Indicates a filesystem image to include as the root filesystem (optional).
* GRUB_GFXSERIAL: Set this to "1" to have graphics and serial in the boot menu.

* LABELS: A list of targets for the automatic configuration.

* APPEND: An override list of append strings for each LABEL.

* GRUB_OPTS: Additional options to add to the configuration (optional). Options are delimited using
semi-colon characters (;).

* GRUB_TIMEOUT: Timeout before executing the default LABEL (optional).

7.44. gsettings.bbclass

The gsettings class provides common functionality for recipes that need to install GSettings (glib)
schemas. The schemas are assumed to be part of the main package. Appropriate post-install and
post-remove (postinst/postrm) scriptlets are added to register and unregister the schemas in the
target image.

7.45. gtk-doc.bbclass

The gtk-doc class is a helper class to pull in the appropriate gtk-doc dependencies and disable gtk-
doc.

7.46. gtk-icon-cache.bbclass

The gtk-icon-cache class generates the proper post-install and post-remove (postinst/postrm)
scriptlets for packages that use GTK+ and install icons. These scriptlets call gtk-update-icon-cache
to add the fonts to GTK+'s icon cache. Since the cache files are architecture-specific, gtk-update-

icon-cacheis run using QEMU if the postinst scriptlets need to be run on the build host during image
creation.

7.47. gtk-immodules-cache.bbclass

The gtk-immodules-cache class generates the proper post-install and post-remove (postinst/postrm)
scriptlets for packages that install GTK+ input method modules for virtual keyboards. These scriptlets
call gtk-update-icon-cache to add the input method modules to the cache. Since the cache files
are architecture-specific, gtk-update-icon-cache is run using QEMU if the postinst scriptlets need
to be run on the build host during image creation.

If the input method modules being installed are in packages other than the main package, set
GTKIMMODULES PACKAGES to specify the packages containing the modules.

7.48. gummiboot.bbclass

The gummiboot class provides functions specific to the gummiboot bootloader for building bootable
images. This is an internal class and is not intended to be used directly. Set the EFI_PROVIDER variable
to "gummiboot" to use this class.

For information on more variables used and supported in this class, see the GUMMIBOOT CFG,
GUMMIBOOT ENTRIES, and GUMMIBOOT TIMEOUT variables.

You can also see the Gummiboot documentation [http://freedesktop.org/wiki/Software/gummiboot/]
for more information.

7.49. gzipnative.bbclass

The gzipnative class enables the use of native versions of gzip and pigz rather than the versions
of these tools from the build host.

7.50. icecc.bbclass

The icecc class supports Icecream [https://github.com/icecc/icecream], which facilitates taking
compile jobs and distributing them among remote machines.

The class stages directories with symlinks from gcc and g++ to icecc, for both native and cross
compilers. Depending on each configure or compile, the OpenEmbedded build system adds the
directories at the head of the PATH list and then sets the ICECC_CXX and ICEC CC variables, which
are the paths to the g++ and gcc compilers, respectively.

For the cross compiler, the class creates a tar. gz file that contains the Yocto Project toolchain and sets
ICECC_VERSION, which is the version of the cross-compiler used in the cross-development toolchain,
accordingly.

The class handles all three different compile stages (i.e native ,cross-kernel and target) and creates
the necessary environment tar.gz file to be used by the remote machines. The class also supports
SDK generation.

If ICECC_PATH is not set in your local. conf file, then the class tries to locate the icecc binary using
which. If ICECC_ENV_EXEC is set in your local.conf file, the variable should point to the icecc-
create-env script provided by the user. If you do not point to a user-provided script, the build system
uses the default script provided by the recipe icecc-create-env-native.bb.

Note

This script is a modified version and not the one that comes with icecc.

If you do not want the Icecream distributed compile support to apply to specific recipes or classes, you
can effectively "blacklist" them by listing the recipes and classes using the ICECC_USER PACKAGE_BL
and ICECC USER CLASS BL, variables, respectively, in your local.conf file. Doing so causes the
OpenEmbedded build system to handle these compilations locally.

Additionally, you can list recipes using the ICECC_USER PACKAGE_WL variable in your local. conf file
to force icecc to be enabled for recipes using an empty PARALLEL_MAKE variable.

http://freedesktop.org/wiki/Software/gummiboot/
http://freedesktop.org/wiki/Software/gummiboot/
https://github.com/icecc/icecream
https://github.com/icecc/icecream

Inheriting the icecc class changes all sstate signatures. Consequently, if a development team
has a dedicated build system that populates STATE_MIRRORS and they want to reuse sstate from
STATE MIRRORS, then all developers and the build system need to either inherit the icecc class or
nobody should.

At the distribution level, you can inherit the icecc class to be sure that all builders start with the

same sstate signatures. After inheriting the class, you can then disable the feature by setting the
ICECC DISABLED variable to "1" as follows:

INHERIT DISTRO += "icecc"
ICECC DISABLED ??= "1"

This practice makes sure everyone is using the same signatures but also requires individuals that do
want to use Icecream to enable the feature individually as follows in your local. conf file:

ICECC DISABLED = ""

7.51. image.bbclass

The image class helps support creating images in different formats. First, the root filesystem is created
from packages using one of the rootfs*.bbclass files (depending on the package format used) and
then one or more image files are created.

» The IMAGE_FSTYPES variable controls the types of images to generate.
* The IMAGE INSTALL variable controls the list of packages to install into the image.

For information on customizing images, see the "Customizing Images [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage]" section in the Yocto
Project Development Manual. For information on how images are created, see the "Images" section
elsewhere in this manual.

7.52. image_types.bbclass

The image_types class defines all of the standard image output types that you can enable through
the IMAGE_FSTYPES variable. You can use this class as a reference on how to add support for custom
image output types.

By default, this class is enabled through the IMAGE CLASSES variable in image.bbclass. If you define
your own image types using a custom BitBake class and then use IMAGE CLASSES to enable it, the
custom class must either inherit image_types or image types must also appear in IMAGE CLASSES.

7.53. image_types uboot.bbclass

The image types uboot class defines additional image types specifically for the U-Boot bootloader.

7.54. image-live.bbclass

The image-live class supports building "live" images.
Normally, you do not use this class directly. Instead, you add "live" to IMAGE_FSTYPES. For example,

if you were building an ISO image, you would add "live" to IMAGE_FSTYPES, set the NOISO variable to
"0" and the build system would use the image-1live class to build the ISO image.

7.55. 1mage-mklibs.bbclass

The image-mklibs class enables the use of the mklibs utility during the do_rootfs task, which
optimizes the size of libraries contained in the image.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage

By default, the class is enabled in the local.conf.template using the USER_CLASSES variable as
follows:

USER _CLASSES ?= "buildstats image-mklibs image-prelink"

7.56. image-prelink.bbclass

The image-prelink class enables the use of the prelink utility during the do_rootfs task, which
optimizes the dynamic linking of shared libraries to reduce executable startup time.

By default, the class is enabled in the local.conf.template using the USER_CLASSES variable as
follows:

USER CLASSES ?= "buildstats image-mklibs image-prelink"

7.57. image-swab.bbclass

The image-swab class enables the Swabber [http://www.yoctoproject.org/tools-resources/projects/
swabber] tool in order to detect and log accesses to the host system during the OpenEmbedded build
process.

Note

This class is currently unmaintained.

7.58. image-vmdk.bbclass

The image-vmdk class supports building VMware VMDK images. Normally, you do not use this class
directly. Instead, you add "vmdk" to IMAGE_FSTYPES.

7.59. insane.bbclass

The insane class adds a step to the package generation process so that output quality assurance
checks are generated by the OpenEmbedded build system. A range of checks are performed that
check the build's output for common problems that show up during runtime. Distribution policy usually
dictates whether to include this class.

You can configure the sanity checks so that specific test failures either raise a warning or an error
message. Typically, failures for new tests generate a warning. Subsequent failures for the same test
would then generate an error message once the metadata is in a known and good condition. See the
"QA Error and Warning Messages" Chapter for a list of all the warning and error messages you might
encounter using a default configuration.

Use the WARN QA and ERROR QA variables to control the behavior of these checks at the global level
(i.e. in your custom distro configuration). However, to skip one or more checks in recipes, you should
use INSANE SKIP. For example, to skip the check for symbolic link .so files in the main package of
a recipe, add the following to the recipe. You need to realize that the package name override, in this
example ${PN}, must be used:

INSANE SKIP ${PN} += "dev-so"
Please keep in mind that the QA checks exist in order to detect real or potential problems in the
packaged output. So exercise caution when disabling these checks.

The following list shows the tests you can list with the WARN_QA and ERROR_QA variables:

* already-stripped: Checks that produced binaries have not already been stripped prior to the
build system extracting debug symbols. It is common for upstream software projects to default to

http://www.yoctoproject.org/tools-resources/projects/swabber
http://www.yoctoproject.org/tools-resources/projects/swabber
http://www.yoctoproject.org/tools-resources/projects/swabber

stripping debug symbols for output binaries. In order for debugging to work on the target using -
dbg packages, this stripping must be disabled.

arch: Checks the Executable and Linkable Format (ELF) type, bit size, and endianness of any
binaries to ensure they match the target architecture. This test fails if any binaries do not match
the type since there would be an incompatibility. The test could indicate that the wrong compiler
or compiler options have been used. Sometimes software, like bootloaders, might need to bypass
this check.

buildpaths: Checks for paths to locations on the build host inside the output files. Currently, this
test triggers too many false positives and thus is not normally enabled.

build-deps: Determines if a build-time dependency that is specified through DEPENDS, explicit
RDEPENDS, or task-level dependencies exists to match any runtime dependency. This determination
is particularly useful to discover where runtime dependencies are detected and added during
packaging. If no explicit dependency has been specified within the metadata, at the packaging
stage it is too late to ensure that the dependency is built, and thus you can end up with an
error when the package is installed into the image during the do_rootfs task because the auto-
detected dependency was not satisfied. An example of this would be where the update-rc.d
class automatically adds a dependency on the initscripts-functions package to packages that
install an initscript that refers to /etc/init.d/functions. The recipe should really have an explicit
RDEPENDS for the package in question on initscripts-functions so that the OpenEmbedded build
system is able to ensure that the initscripts recipe is actually built and thus the initscripts-
functions package is made available.

compile-host-path: Checks the do compile log for indications that paths to locations on the build
host were used. Using such paths might result in host contamination of the build output.

debug-deps: Checks that all packages except -dbg packages do not depend on -dbg packages,
which would cause a packaging bug.

debug-files: Checks for .debug directories in anything but the -dbg package. The debug files
should all be in the -dbg package. Thus, anything packaged elsewhere is incorrect packaging.

dep-cmp: Checks for invalid version comparison statements in runtime dependency relationships
between packages (i.e. in RDEPENDS, RRECOMMENDS, RSUGGESTS, RPROVIDES, RREPLACES, and
RCONFLICTS variable values). Any invalid comparisons might trigger failures or undesirable behavior
when passed to the package manager.

desktop: Runs the desktop-file-validate program against any .desktop files to validate their
contents against the specification for .desktop files.

dev-deps: Checks that all packages except -dev or -staticdev packages do not depend on -dev
packages, which would be a packaging bug.

dev-so: Checks that the .so symbolic links are in the -dev package and not in any of the other
packages. In general, these symlinks are only useful for development purposes. Thus, the -dev
package is the correct location for them. Some very rare cases do exist for dynamically loaded
modules where these symlinks are needed instead in the main package.

file-rdeps: Checks that file-level dependencies identified by the OpenEmbedded build system
at packaging time are satisfied. For example, a shell script might start with the line #!/bin/bash.
This line would translate to a file dependency on /bin/bash. Of the three package managers
that the OpenEmbedded build system supports, only RPM directly handles file-level dependencies,
resolving them automatically to packages providing the files. However, the lack of that functionality
in the other two package managers does not mean the dependencies do not still need resolving.
This QA check attempts to ensure that explicitly declared RDEPENDS exist to handle any file-level
dependency detected in packaged files.

files-invalid: Checks for FILES variable values that contain "//", which is invalid.

incompatible-license: Report when packages are excluded from being created due to being
marked with a license that is in INCOMPATIBLE LICENSE.

install-host-path: Checksthedo_install log forindications that paths to locations on the build
host were used. Using such paths might result in host contamination of the build output.

installed-vs-shipped: Reports when files have been installed within do_install but have not
been included in any package by way of the FILES variable. Files that do not appear in any package
cannot be present in an image later on in the build process. Ideally, all installed files should be
packaged or not installed at all. These files can be deleted at the end of do_install if the files
are not needed in any package.

la: Checks .1la files for any TMPDIR paths. Any . 1la file containing these paths is incorrect since
libtool adds the correct sysroot prefix when using the files automatically itself.

ldflags: Ensures that the binaries were linked with the LDFLAGS options provided by the build
system. If this test fails, check that the LDFLAGS variable is being passed to the linker command.

libdir: Checks for libraries being installed into incorrect (possibly hardcoded) installation paths.
For example, this test will catch recipes that install /lib/bar.so when ${base_libdir} is "lib32".
Another example is when recipes install /usr/1ib64/foo.so when ${libdir} is "/usr/lib".

libexec: Checks if a package contains files in /usr/libexec. This check is not performed if the
libexecdir variable has been set explicitly to /usr/libexec.

packages-list: Checks for the same package being listed multiple times through the PACKAGES
variable value. Installing the package in this manner can cause errors during packaging.

perm-config: Reports lines in fs-perms.txt that have an invalid format.
perm-line: Reports lines in fs-perms.txt that have an invalid format.

perm-link: Reports lines in fs-perms.txt that specify 'link' where the specified target already
exists.

perms: Currently, this check is unused but reserved.

pkgconfig: Checks .pc files for any TMPDIR/WORKDIR paths. Any .pc file containing these paths is
incorrect since pkg-config itself adds the correct sysroot prefix when the files are accessed.

pkgname: Checks that all packages in PACKAGES have names that do not contain invalid characters
(i.e. characters other than 0-9, a-z, ., +, and -).

pkgv-undefined: Checks to see if the PKGV variable is undefined during do_package.

pkgvarcheck: Checks through the variables RDEPENDS, RRECOMMENDS, RSUGGESTS, RCONFLICTS,
RPROVIDES, RREPLACES, FILES, ALLOW EMPTY, pkg preinst, pkg postinst, pkg prerm and
pkg postrm, and reports if there are variable sets that are not package-specific. Using
these variables without a package suffix is bad practice, and might unnecessarily complicate
dependencies of other packages within the same recipe or have other unintended consequences.

pn-overrides: Checks that a recipe does not have a name (PN) value that appears in OVERRIDES. If
a recipe is named such that its PN value matches something already in OVERRIDES (e.g. PN happens
to be the same as MACHINE or DISTRO), it can have unexpected consequences. For example,
assignments such as FILES ${PN} = "xyz" effectively turn into FILES = "xyz".

rpaths: Checks for rpaths in the binaries that contain build system paths such as TMPDIR. If this
test fails, bad -rpath options are being passed to the linker commands and your binaries have
potential security issues.

split-strip: Reports that splitting or stripping debug symbols from binaries has failed.
staticdev: Checks for static library files (*.a) in non-staticdev packages.

symlink-to-sysroot: Checks for symlinks in packages that point into TMPDIR on the host. Such
symlinks will work on the host, but are clearly invalid when running on the target.

textrel: Checks for ELF binaries that contain relocations in their . text sections, which can result
in a performance impact at runtime.

unsafe-references-in-binaries: Reports when a binary installed in ${base libdir},
${base bindir}, or ${base sbindir}, depends on another binary installed under
${exec_prefix}. This dependency is a concern if you want the system to remain basically operable
if /usr is mounted separately and is not mounted.

Note

Defaults for binaries installed in ${base_libdir}, ${base bindir}, and ${base sbindir}
are /lib, /bin, and /sbin, respectively. The default for a binary installed under
${exec_prefix} is /usr.

* unsafe-references-in-scripts: Reports when a script file installed in ${base_libdir},
${base bindir}, or ${base _sbindir}, depends on files installed under ${exec_prefix}. This
dependency is a concern if you want the system to remain basically operable if /usr is mounted
separately and is not mounted.

Note

Defaults for binaries installed in ${base_libdir}, ${base bindir}, and ${base sbindir}
are /lib, /bin, and /sbin, respectively. The default for a binary installed under
${exec_prefix} is /usr.

» useless-rpaths: Checks for dynamic library load paths (rpaths) in the binaries that by default on
a standard system are searched by the linker (e.g. /1ib and /usr/1ib). While these paths will not
cause any breakage, they do waste space and are unnecessary.

* var-undefined: Reports when variables fundamental to packaging (i.e. WORKDIR, DEPLOY DIR, D,
PN, and PKGD) are undefined during do_package.

* version-going-backwards: If Build History is enabled, reports when a package being written out
has a lower version than the previously written package under the same name. If you are placing
output packages into a feed and upgrading packages on a target system using that feed, the version
of a package going backwards can result in the target system not correctly upgrading to the "new"
version of the package.

Note

If you are not using runtime package management on your target system, then you do not
need to worry about this situation.

* xorg-driver-abi: Checks that all packages containing Xorg drivers have ABI dependencies. The
xserver-xorg recipe provides driver ABI names. All drivers should depend on the ABI versions
that they have been built against. Driver recipes that include xorg-driver-input.inc or xorg-
driver-video.inc will automatically get these versions. Consequently, you should only need to
explicitly add dependencies to binary driver recipes.

7.60. insserv.bbclass

The insserv class uses the insserv utility to update the order of symbolic links in /etc/rc?.d/
within an image based on dependencies specified by LSB headers in the init.d scripts themselves.

7.61. kernel.bbclass

The kernel class handles building Linux kernels. The class contains code to build all kernel trees.
All needed headers are staged into the STAGING KERNEL DIR directory to allow out-of-tree module
builds using the module class.

This means that each built kernel module is packaged separately and inter-module dependencies
are created by parsing the modinfo output. If all modules are required, then installing the kernel-
modules package installs all packages with modules and various other kernel packages such as
kernel-vmlinux.

Various other classes are used by the kernel and module classes internally including the kernel-
arch, module-base, and linux-kernel-base classes.

7.62. kernel-arch.bbclass

The kernel-arch class sets the ARCH environment variable for Linux kernel compilation (including
modules).

7.63. kernel-module-split.bbclass

The kernel-module-split class provides common functionality for splitting Linux kernel modules
into separate packages.

7.64. kernel-yocto.bbclass

The kernel-yocto class provides common functionality for building from linux-yocto style kernel
source repositories.

7.65. 11ib_package.bbclass

The 1ib_package class supports recipes that build libraries and produce executable binaries, where
those binaries should not be installed by default along with the library. Instead, the binaries are added
to a separate ${PN}-bin package to make their installation optional.

7.66. License.bbclass

The license class provides license manifest creation and license exclusion. This class is enabled by
default using the default value for the INHERIT DISTRO variable.

7.67. Linux-kernel-base.bbclass

The linux-kernel-base class provides common functionality for recipes that build out of the Linux
kernel source tree. These builds goes beyond the kernel itself. For example, the Perf recipe also
inherits this class.

7.68. Logging.bbclass

The logging class provides the standard shell functions used to log messages for various BitBake
severity levels (i.e. bbplain, bbnote, bbwarn, bberror, bbfatal, and bbdebug).

This class is enabled by default since it is inherited by the base class.

7.69. meta.bbclass

The meta class is inherited by recipes that do not build any output packages themselves, but act as
a "meta" target for building other recipes.

7.70. metadata_scm.bbclass

The metadata_ scmclass provides functionality for querying the branch and revision of a Source Code
Manager (SCM) repository.

The base class uses this class to print the revisions of each layer before starting every build. The
metadata_scm class is enabled by default because it is inherited by the base class.

7.71. mime.bbclass

The mime class generates the proper post-install and post-remove (postinst/postrm) scriptlets for
packages that install MIME type files. These scriptlets call update-mime-database to add the MIME
types to the shared database.

7.72. mirrors.bbclass

The mirrors class sets up some standard MIRRORS entries for source code mirrors. These mirrors
provide a fall-back path in case the upstream source specified in SRC_URI within recipes is unavailable.

This class is enabled by default since it is inherited by the base class.

7.73. module.bbclass

The module class provides support for building out-of-tree Linux kernel modules. The class inherits the
module-base and kernel-module-split classes, and implements the do_compile and do_install
tasks. The class provides everything needed to build and package a kernel module.

For general information on out-of-tree Linux kernel modules, see the "Incorporating Out-of-Tree

Modules [http://www.yoctoproject.org/docs/1.8/kernel-manual/kernel-manual.html#incorporating-
out-of-tree-modules]" section in the Yocto Project Linux Kernel Development Manual.

7.74. module-base.bbclass

The module-base class provides the base functionality for building Linux kernel modules. Typically,
a recipe that builds software that includes one or more kernel modules and has its own means of
building the module inherits this class as opposed to inheriting the module class.

7.75. multilib*.bbclass

The multilib* classes provide support for building libraries with different target optimizations or
target architectures and installing them side-by-side in the same image.

For more information on wusing the Multilib feature, see the "Combining Multiple
Versions of Library Files into One Image [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#combining-multiple-versions-library-files-into-one-image]" section in the Yocto Project
Development Manual.

7.76. native.bbclass

The native class provides common functionality for recipes that wish to build tools to run on the
build host (i.e. tools that use the compiler or other tools from the build host).

You can create a recipe that builds tools that run natively on the host a couple different ways:

» Create a myrecipe-native.bb that inherits the native class. If you use this method, you must
order the inherit statement in the recipe after all other inherit statements so that the native class
is inherited last.

* Create or modify a target recipe that contains the following:
BBCLASSEXTEND = "native"

Inside the recipe, use class-native and class-target overrides to specify any functionality
specific to the respective native or target case.

Although applied differently, the native class is used with both methods. The advantage of the
second method is that you do not need to have two separate recipes (assuming you need both) for
native and target. All common parts of the recipe are automatically shared.

7.77. nativesdk.bbclass

The nativesdk class provides common functionality for recipes that wish to build tools to run as part
of an SDK (i.e. tools that run on SDKMACHINE).

You can create a recipe that builds tools that run on the SDK machine a couple different ways:
* Create amyrecipe-nativesdk.bb recipe that inherits the nativesdk class. If you use this method,

you must order the inherit statement in the recipe after all other inherit statements so that the
nativesdk class is inherited last.

http://www.yoctoproject.org/docs/1.8/kernel-manual/kernel-manual.html#incorporating-out-of-tree-modules
http://www.yoctoproject.org/docs/1.8/kernel-manual/kernel-manual.html#incorporating-out-of-tree-modules
http://www.yoctoproject.org/docs/1.8/kernel-manual/kernel-manual.html#incorporating-out-of-tree-modules
http://www.yoctoproject.org/docs/1.8/kernel-manual/kernel-manual.html#incorporating-out-of-tree-modules
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image

* Create a nativesdk variant of any recipe by adding the following:
BBCLASSEXTEND = "nativesdk"

Inside the recipe, use class-nativesdk and class-target overrides to specify any functionality
specific to the respective SDK machine or target case.

Although applied differently, the nativesdk class is used with both methods. The advantage of the
second method is that you do not need to have two separate recipes (assuming you need both) for
the SDK machine and the target. All common parts of the recipe are automatically shared.

7.78. oelint.bbclass

The oelint class is an obsolete lint checking tool that exists in meta/classes in the Source Directory
[http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory].

A number of classes exist that are could be generally useful in OE-Core but are never actually used
within OE-Core itself. The oelint class is one such example. However, being aware of this class can
reduce the proliferation of different versions of similar classes across multiple layers.

7.79. own-mirrors.bbclass

The own-mirrors class makes it easier to set up your own PREMIRRORS from which to first fetch source
before attempting to fetch it from the upstream specified in SRC_URI within each recipe.

To use this class, inherit it globally and specify SOURCE_MIRROR URL. Here is an example:

INHERIT += "own-mirrors"
SOURCE_MIRROR URL = "http://example.com/my-source-mirror"

You can specify only a single URL in SOURCE_MIRROR URL.

7.80. package.bbclass

The package class supports generating packages from a build's output. The core generic functionality
is in package.bbclass. The code specific to particular package types resides in these package-
specific classes: package deb, package rpm, package ipk, and package tar.

You can control the list of resulting package formats by using the PACKAGE CLASSES variable
defined in your conf/local.conf configuration file, which is located in the Build Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory]. When defining the
variable, you can specify one or more package types. Since images are generated from packages, a
packaging class is needed to enable image generation. The first class listed in this variable is used
for image generation.

If you take the optional step to set up a repository (package feed) on the development host that
can be used by Smart, you can install packages from the feed while you are running the image
on the target (i.e. runtime installation of packages). For more information, see the "Using Runtime
Package Management [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-
runtime-package-management]" section in the Yocto Project Development Manual.

The package-specific class you choose can affect build-time performance and has space ramifications.
In general, building a package with IPK takes about thirty percent less time as compared to using
RPM to build the same or similar package. This comparison takes into account a complete build of
the package with all dependencies previously built. The reason for this discrepancy is because the
RPM package manager creates and processes more Metadata [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#metadata] than the IPK package manager. Consequently, you might
consider setting PACKAGE_CLASSES to "package_ipk" if you are building smaller systems.

Before making your package manager decision, however, you should consider some further things
about using RPM:

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-runtime-package-management
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-runtime-package-management
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-runtime-package-management
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-runtime-package-management
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata

* RPM starts to provide more abilities than IPK due to the fact that it processes more Metadata. For
example, this information includes individual file types, file checksum generation and evaluation on
install, sparse file support, conflict detection and resolution for Multilib systems, ACID style upgrade,
and repackaging abilities for rollbacks.

* For smaller systems, the extra space used for the Berkeley Database and the amount of metadata
when using RPM can affect your ability to perform on-device upgrades.

You can find additional information on the effects of the package class at these two Yocto Project
mailing list links:

* https://lists.yoctoproject.org/pipermail/poky/2011-May/006362.htm| [http://lists.yoctoproject.org/
pipermail/poky/2011-May/006362.html]

* https://lists.yoctoproject.org/pipermail/poky/2011-May/006363.htm| [http://lists.yoctoproject.org/
pipermail/poky/2011-May/006363.html]

7.81. package deb.bbclass

The package_deb class provides support for creating packages that use the .deb file format. The
class ensures the packages are written out to the ${DEPLOY_DIR}/deb directory in a .deb file format.

This class inherits the package class and is enabled through the PACKAGE _CLASSES variable in the
local.conf file.

7.82. package_ipk.bbclass

The package ipk class provides support for creating packages that use the .1ipk file format. The
class ensures the packages are written out to the ${DEPLOY DIR}/ipk directory in a .ipk file format.

This class inherits the package class and is enabled through the PACKAGE CLASSES variable in the
local. conf file.

7.83. package rpm.bbclass

The package_deb class provides support for creating packages that use the . rpm file format. The
class ensures the packages are written out to the ${DEPLOY_DIR}/rpm directory in a . rpm file format.

This class inherits the package class and is enabled through the PACKAGE _CLASSES variable in the
local.conf file.

7.84. package tar.bbclass

The package tar class provides support for creating packages that use the .tar file format. The
class ensures the packages are written out to the ${DEPLOY DIR}/tar directory in a . tar file format.

This class inherits the package class and is enabled through the PACKAGE CLASSES variable in the
local. conf file.

Note

You cannot specify the package tar class first using the PACKAGE _CLASSES variable. You must
use .deb, .ipk, or . rpm file formats for your image or SDK.

7.85. packagedata.bbclass

The packagedata class provides common functionality for reading pkgdata files found in
PKGDATA DIR. These files contain information about each output package produced by the
OpenEmbedded build system.

This class is enabled by default because it is inherited by the package class.

http://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html
http://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html
http://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html
http://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html
http://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html
http://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html

7.86. packagegroup.bbclass

The packagegroup class sets default values appropriate for package group recipes (e.g. PACKAGES,
PACKAGE_ARCH, ALLOW_EMPTY, and so forth). It is highly recommended that all package group recipes
inherit this class.

For information on how to use this class, see the "Customizing Images Using Custom
Package Groups [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-
extend-customimage-customtasks]" section in the Yocto Project Development Manual.

Previously, this class was called the task class.

7.87. packageinfo.bbclass

The packageinfo class gives a BitBake user interface the ability to retrieve information about output
packages from the pkgdata files.

This class is enabled automatically when using the Hob [http://www.yoctoproject.org/tools-resources/
projects/hob] user interface.

7.88. patch.bbclass

The patch class provides all functionality for applying patches during the do_patch task.

This class is enabled by default because it is inherited by the base class.

7.89. perlnative.bbclass

When inherited by a recipe, the perlnative class supports using the native version of Perl built by
the build system rather than using the version provided by the build host.

7.90. pixbufcache.bbclass

The pixbufcache class generates the proper post-install and post-remove (postinst/postrm) scriptlets
for packages that install pixbuf loaders, which are used with gdk-pixbuf. These scriptlets call
update pixbuf cache to add the pixbuf loaders to the cache. Since the cache files are architecture-
specific, update pixbuf cache is run using QEMU if the postinst scriptlets need to be run on the
build host during image creation.

If the pixbuf loaders being installed are in packages other than the recipe's main package, set
PIXBUF PACKAGES to specify the packages containing the loaders.

7.91. pkgconfig.bbclass

The pkg-config class provides a standard way to get header and library information. This class aims
to smooth integration of pkg-config into libraries that use it.

During staging, BitBake installs pkg-config data into the sysroots/ directory. By making use of
sysroot functionality within pkg-config, this class no longer has to manipulate the files.

7.92. populate_sdk.bbclass

The populate_sdk class provides support for SDK-only recipes. For information on advantages
gained when building a cross-development toolchain using the do populate sdk task, see
the "Optionally Building a Toolchain Installer [http://www.yoctoproject.org/docs/1.8/adt-manual/
adt-manual.html#optionally-building-a-toolchain-installer]" section in the Yocto Project Application
Developer's Guide.

7.93. populate_sdk *.bbclass

The populate sdk_* classes support SDK creation and consist of the following classes:

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-customtasks
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-customtasks
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-customtasks
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-customtasks
http://www.yoctoproject.org/tools-resources/projects/hob
http://www.yoctoproject.org/tools-resources/projects/hob
http://www.yoctoproject.org/tools-resources/projects/hob
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer

* populate sdk base: The base class supporting SDK creation under all package managers (i.e. DEB,
RPM, and opkg).

* populate sdk_deb: Supports creation of the SDK given the Debian package manager.
* populate sdk_ rpm: Supports creation of the SDK given the RPM package manager.
» populate sdk_ipk: Supports creation of the SDK given the opkg (IPK format) package manager.

The populate_sdk_base class inherits the appropriate populate sdk * (i.e. deb, rpm, and ipk) based
on IMAGE_PKGTYPE.

The base class ensures all source and destination directories are established and then populates the
SDK. After populating the SDK, the populate sdk_ base class constructs two sysroots: ${SDK_ARCH} -
nativesdk, which contains the cross-compiler and associated tooling, and the target, which contains
a target root filesystem that is configured for the SDK usage. These two images reside in SDK_OUTPUT,
which consists of the following:

${SDK OUTPUT}/${SDK ARCH}-nativesdk-pkgs
${SDK OUTPUT}/${SDKTARGETSYSROOT}/target-pkgs

Finally, the base populate SDK class creates the toolchain environment setup script, the tarball of
the SDK, and the installer.

The respective populate_sdk deb, populate sdk rpm, and populate sdk ipk classes each support
the specific type of SDK. These classes are inherited by and used with the populate sdk base class.

For more information on the cross-development toolchain generation, see the "Cross-Development
Toolchain Generation" section. For information on advantages gained when building a cross-
development toolchain using the do populate sdk task, see the "Optionally Building a
Toolchain Installer [http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-
building-a-toolchain-installer]" section in the Yocto Project Application Developer's Guide.

7.94. prexport.bbclass

The prexport class provides functionality for exporting PR values.

Note

This class is not intended to be used directly. Rather, it is enabled when using "bitbake-
prserv-tool export".

7.95. primport.bbclass

The primport class provides functionality for importing PR values.

Note

This class is not intended to be used directly. Rather, it is enabled when using "bitbake-
prserv-tool import".

7.96. prserv.bbclass

The prserv class provides functionality for using a PR service [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#working-with-a-pr-service] in order to automatically manage the
incrementing of the PR variable for each recipe.

This class is enabled by default because it is inherited by the package class. However, the
OpenEmbedded build system will not enable the functionality of this class unless PRSERV_HOST has
been set.

7.97. ptest.bbclass

The ptest class provides functionality for packaging and installing runtime tests for recipes that build
software that provides these tests.

http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#optionally-building-a-toolchain-installer
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#working-with-a-pr-service

This class is intended to be inherited by individual recipes. However, the class' functionality is largely
disabled unless "ptest" appears in DISTRO_FEATURES. See the "Testing Packages With ptest [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest]" section
in the Yocto Project Development Manual for more information on ptest.

7.98. ptest-gnome.bbclass

Enables package tests (ptests) specifically for GNOME packages, which have tests intended to be
executed with gnome-desktop-testing.

For information on setting up and running ptests, see the "Testing Packages With ptest [http://

www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest]" section
in the Yocto Project Development Manual.

7.99. python-dir.bbclass

The python-dir class provides the base version, location, and site package location for Python.

7.100. pythonnative.bbclass

When inherited by a recipe, the pythonnative class supports using the native version of Python built
by the build system rather than using the version provided by the build host.

7.101. gemu.bbclass

The gemu class provides functionality for recipes that either need QEMU or test for the existence of
QEMU. Typically, this class is used to run programs for a target system on the build host using QEMU's
application emulation mode.

7.102. gmake*.bbhclass

The gmake* classes support recipes that need to build software that uses Qt's gmake build system
and are comprised of the following:

* gmake_base: Provides base functionality for all versions of gmake.

* gmake2: Extends base functionality for gmake 2.x as used by Qt 4.x.

If you need to set any configuration variables or pass any options to gmake, you can add these to the
EXTRA_QMAKEVARS PRE or EXTRA QMAKEVARS POST variables, depending on whether the arguments

need to be before or after the .pro file list on the command line, respectively.

By default, all .pro files are built. If you want to specify your own subset of .pro files to be built,
specify them in the QMAKE_PROFILES variable.

7.103. qt4*.bbclass

The qt4* classes support recipes that need to build software that uses the Qt development framework
version 4.x and consist of the following:

* qt4e: Supports building against Qt/Embedded, which uses the framebuffer for graphical output.
* qt4x11: Supports building against Qt/X11.

The classes inherit the qmake2 class.

7.104. relocatable.bbclass

The relocatable class enables relocation of binaries when they are installed into the sysroot.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest

This class makes use of the chrpath class and is used by both the cross and native classes.

7.105. report-error.bbclass

The report-error class supports enabling the error reporting tool [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#using-the-error-reporting-tool], which allows you to submit
build error information to a central database.

The class collects debug information for recipe, recipe version, task, machine, distro, build system,
target system, host distro, branch, commit, and log. From the information, report files using a JSON
format are created and stored in ${L0OG_DIR}/error-report.

7.106. rm_work.bbclass

The rm_work class supports deletion of temporary workspace, which can ease your hard drive
demands during builds.

The OpenEmbedded build system can use a substantial amount of disk space during the build process.
A portion of this space is the work files under the ${TMPDIR}/work directory for each recipe. Once the
build system generates the packages for a recipe, the work files for that recipe are no longer needed.
However, by default, the build system preserves these files for inspection and possible debugging
purposes. If you would rather have these files deleted to save disk space as the build progresses,
you can enable rm_work by adding the following to your local. conf file, which is found in the Build
Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory].

INHERIT += "rm work"

If you are modifying and building source code out of the work directory for a recipe, enabling rm_work
will potentially result in your changes to the source being lost. To exclude some recipes from having
their work directories deleted by rm_work, you can add the names of the recipe or recipes you are
working on to the RM_WORK EXCLUDE variable, which can also be set in your local. conf file. Here
is an example:

RM WORK EXCLUDE += "busybox eglibc"

7.107. rootfs*.bbclass

The rootfs* classes support creating the root filesystem for an image and consist of the following
classes:

* The rootfs_deb class, which supports creation of root filesystems for images built using .deb
packages.

* The rootfs rpm class, which supports creation of root filesystems for images built using . rpm
packages.

* The rootfs_ipk class, which supports creation of root filesystems for images built using .ipk
packages.

The root filesystem is created from packages using one of the rootfs*.bbclass files as determined
by the PACKAGE_CLASSES variable.

For information on how root filesystem images are created, see the "Image Generation" section.

7.108. sanity.bbclass

The sanity class checks to see if prerequisite software is present on the host system so that users
can be notified of potential problems that might affect their build. The class also performs basic user

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-the-error-reporting-tool
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-the-error-reporting-tool
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-the-error-reporting-tool
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

configuration checks from the local. conf configuration file to prevent common mistakes that cause
build failures. Distribution policy usually determines whether to include this class.

7.109. scons.bbclass

The scons class supports recipes that need to build software that uses the SCons build system. You
can use the EXTRA OESCONS variable to specify additional configuration options you want to pass
SCons command line.

7.110. sd1l.bbclass

The sdl class supports recipes that need to build software that uses the Simple DirectMedia Layer
(SDL) library.

7.111. setuptools.bbclass

The setuptools class supports Python version 2.x extensions that use build systems based on
setuptools. If your recipe uses these build systems, the recipe needs to inherit the setuptools class.

7.112. setuptools3.bbclass

The setuptools3 class supports Python version 3.x extensions that use build systems based on
setuptools3. If your recipe uses these build systems, the recipe needs to inherit the setuptools3
class.

7.113. sip.bbclass

The sip class supports recipes that build or package SIP-based Python bindings.

7.114. siteconfig.bbclass

The siteconfig class provides functionality for handling site configuration. The class is used by the
autotools class to accelerate the do_configure task.

7.115. siteinfo.bbclass

The siteinfo class provides information about the targets that might be needed by other classes
or recipes.

As an example, consider Autotools, which can require tests that must execute on the target hardware.
Since this is not possible in general when cross compiling, site information is used to provide cached
test results so these tests can be skipped over but still make the correct values available. The
meta/site directory contains test results sorted into different categories such as architecture,
endianness, and the libc used. Site information provides a list of files containing data relevant to
the current build in the CONFIG_SITE variable that Autotools automatically picks up.

The class also provides variables like SITEINFO ENDIANNESS and SITEINFO BITS that can be used
elsewhere in the metadata.

Because the base class includes the siteinfo class, it is always active.

7.116. spdx.bbclass

The spdx class integrates real-time license scanning, generation of SPDX standard output, and
verification of license information during the build.

Note

This class is currently at the prototype stage in the 1.6 release.

7.117. sstate.bbclass

The sstate class provides support for Shared State (sstate). By default, the class is enabled through
the INHERIT DISTRO variable's default value.

For more information on sstate, see the "Shared State Cache" section.

7.118. staging.bbclass

The staging class provides support for staging files into the sysroot during the do_populate sysroot
task. The class is enabled by default because it is inherited by the base class.

7.119. syslinux.bbclass

The syslinux class provides syslinux-specific functions for building bootable images.
The class supports the following variables:

* INITRD: Indicates list of filesystem images to concatenate and use as an initial RAM disk (initrd).
This variable is optional.

* ROOTFS: Indicates a filesystem image to include as the root filesystem. This variable is optional.
» AUTO_SYSLINUXMENU: Enables creating an automatic menu when set to "1".
» LABELS: Lists targets for automatic configuration.

* APPEND: Lists append string overrides for each label.

SYSLINUX OPTS: Lists additional options to add to the syslinux file. Semicolon characters separate
multiple options.

SYSLINUX SPLASH: Lists a background for the VGA boot menu when you are using the boot menu.
* SYSLINUX DEFAULT CONSOLE: Set to "console=ttyX" to change kernel boot default console.

SYSLINUX SERIAL: Sets an alternate serial port. Or, turns off serial when the variable is set with
an empty string.

* SYSLINUX SERIAL TTY: Sets an alternate "console=tty..." kernel boot argument.

7.120. systemd.bbclass

The systemd class provides support for recipes that install systemd unit files.
The functionality for this class is disabled unless you have "systemd" in DISTRO FEATURES.

Under this class, the recipe or Makefile (i.e. whatever the recipe is calling during the do_install
task) installs unit files into ${D}${systemd unitdir}/system. If the unit files being installed go into
packages other than the main package, you need to set SYSTEMD PACKAGES in your recipe to identify
the packages in which the files will be installed.

You should set SYSTEMD SERVICE to the name of the service file. You should also use a package name
override to indicate the package to which the value applies. If the value applies to the recipe's main
package, use ${PN}. Here is an example from the connman recipe:

SYSTEMD SERVICE ${PN} = "connman.service"

Services are set up to start on boot automatically unless you have set SYSTEMD AUTO ENABLE to
"disable".

For more information on systemd, see the "Selecting an Initialization Manager [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#selecting-an-initialization-manager]"
section in the Yocto Project Development Manual.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#selecting-an-initialization-manager
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#selecting-an-initialization-manager
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#selecting-an-initialization-manager

7.121. terminal.bbclass

The terminal class provides support for starting a terminal session. The OE TERMINAL variable
controls which terminal emulator is used for the session.

Other classes use the terminal class anywhere a separate terminal session needs to be started. For
example, the patch class assuming PATCHRESOLVE is set to "user", the cml1 class, and the devshell
class all use the terminal class.

7.122. testimage.bbclass

The testimage class supports running automated tests against images using QEMU and on actual
hardware. The class handles loading the tests and starting the image.

To use the class, you need to perform steps to set up the environment. The tests are commands that
run on the target system over ssh. they are written in Python and make use of the unittest module.

For information on how to enable, run, and create new tests, see the "Performing Automated
Runtime Testing [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-
automated-runtime-testing]" section.

7.123. texinfo.bbclass

This class should be inherited by recipes whose upstream packages invoke the texinfo utilities at
build-time. Native and cross recipes are made to use the dummy scripts provided by texinfo-dummy -
native, for improved performance. Target architecture recipes use the genuine Texinfo utilities. By
default, they use the Texinfo utilities on the host system.

Note

If you want to use the Texinfo recipe shipped with the build system, you can remove "texinfo-
native" from ASSUME PROVIDED and makeinfo from SANITY REQUIRED UTILITIES.

7.124. tinderclient.bbclass

The tinderclient class submits build results to an external Tinderbox instance.

Note

This class is currently unmaintained.

7.125. toaster.bbclass

The toaster class collects information about packages and images and sends them as events that
the BitBake user interface can receive. The class is enabled when the Toaster user interface is running.

This class is not intended to be used directly.

7.126. toolchain-scripts.bbclass

The toolchain-scripts class provides the scripts used for setting up the environment for installed
SDKs.

7.127. typecheck.bbclass

The typecheck class provides support for validating the values of variables set at the configuration
level against their defined types. The OpenEmbedded build system allows you to define the type of
a variable using the "type" varflag. Here is an example:

IMAGE FEATURES[type] = "list"

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing

7.128. uboot-config.bbclass

The uboot-config class provides support for U-Boot configuration for a machine. Specify the machine
in your recipe as follows:

UBOOT_CONFIG ??= <default>
UBOOT CONFIG[foo] = "config,images"

You can also specify the machine using this method:
UBOOT MACHINE = "config"

See the UBOOT CONFIG and UBOOT MACHINE variables for additional information.

7.129. uninative.bbclass

Provides a means of reusing native/cross over multiple distros.

Note

Currently, the method used by the uninative class is experimental.
For more information, see the commit message here [http://cgit.openembedded.org/openembedded-
core/commit/?id=e66c96ae9c7ba2lebd04a4807390f0031238a85al.

7.130. update-alternatives.bbclass

The update-alternatives class helps the alternatives system when multiple sources provide the
same command. This situation occurs when several programs that have the same or similar function
are installed with the same name. For example, the ar command is available from the busybox,
binutils and elfutils packages. The update-alternatives class handles renaming the binaries
so that multiple packages can be installed without conflicts. The ar command still works regardless
of which packages are installed or subsequently removed. The class renames the conflicting binary
in each package and symlinks the highest priority binary during installation or removal of packages.

To use this class, you need to define a number of variables:
* ALTERNATIVE

* ALTERNATIVE LINK NAME

* ALTERNATIVE TARGET

* ALTERNATIVE PRIORITY

These variables list alternative commands needed by a package, provide pathnames for links,
default links for targets, and so forth. For details on how to use this class, see the comments in
the update-alternatives.bbclass [http://git.yoctoproject.org/cgit/cqit.cgi/poky/tree/meta/classes/
update-alternatives.bbclass].

Note

You can use the update-alternatives command directly in your recipes. However, this class
simplifies things in most cases.

7.131. update-rc.d.bbclass

The update-rc.d class uses update-rc.d to safely install an initialization script on behalf of the
package. The OpenEmbedded build system takes care of details such as making sure the script is
stopped before a package is removed and started when the package is installed.

Three variables control this class: INITSCRIPT PACKAGES, INITSCRIPT NAME and
INITSCRIPT_ PARAMS. See the variable links for details.

http://cgit.openembedded.org/openembedded-core/commit/?id=e66c96ae9c7ba21ebd04a4807390f0031238a85a
http://cgit.openembedded.org/openembedded-core/commit/?id=e66c96ae9c7ba21ebd04a4807390f0031238a85a
http://cgit.openembedded.org/openembedded-core/commit/?id=e66c96ae9c7ba21ebd04a4807390f0031238a85a
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/classes/update-alternatives.bbclass
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/classes/update-alternatives.bbclass
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/classes/update-alternatives.bbclass

7.132. useradd.bbclass

The useradd class supports the addition of users or groups for usage by the package on the target.
For example, if you have packages that contain system services that should be run under their
own user or group, you can use this class to enable creation of the user or group. The meta-
skeleton/recipes-skeleton/useradd/useradd-example.bb recipe in the Source Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory] provides a simple
example that shows how to add three users and groups to two packages. See the useradd-
example.bb recipe for more information on how to use this class.

The useradd class supports the USERADD PACKAGES, USERADD PARAM, GROUPADD PARAM, and
GROUPMEMS_PARAM variables.

7.133. useradd-staticids.bbclass

The useradd-staticids class supports the addition of users or groups that have static user
identification (uid) and group identification (gid) values.

The default behavior of the OpenEmbedded build system for assigning uid and gid values when
packages add users and groups during package install time is to add them dynamically. This works
fine for programs that do not care what the values of the resulting users and groups become. In
these cases, the order of the installation determines the final uid and gid values. However, if non-
deterministic uid and gid values are a problem, you can override the default, dynamic application of
these values by setting static values. When you set static values, the OpenEmbedded build system
looks in BBPATH for files/passwd and files/group files for the values.

To use static uid and gid values, you need to set some variables. See the USERADDEXTENSION,
USERADD UID TABLES, USERADD GID TABLES, and USERADD ERROR DYNAMIC variables. You can also
see the useradd class for additional information.

Notes

You do not use this class directly. You either enable or disable the class by setting the
USERADDEXTENSION variable. If you enable or disable the class in a configured system, TMPDIR
might contain incorrect uid and gid values. Deleting the TMPDIR directory will correct this
condition.

7.134. utility-tasks.bbclass

The utility-tasks class provides support for various "utility" type tasks that are applicable to all
recipes, such as do_clean and do_listtasks.

This class is enabled by default because it is inherited by the base class.

7.135. utils.bbclass

The utils class provides some useful Python functions that are typically used in inline Python
expressions (e.g. ${@. . .}). One example use is for bb.utils.contains().

This class is enabled by default because it is inherited by the base class.

7.136. vala.bbclass

The vala class supports recipes that need to build software written using the Vala programming
language.

7.137. waf.bbclass

The waf class supports recipes that need to build software that uses the Waf build system. You can
use the EXTRA OECONF variable to specify additional configuration options to be passed on the Waf
command line.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

Chapter 8. Tasks

Tasks are units of execution for BitBake. Recipes (.bb files) use tasks to complete configuring,
compiling, and packaging software. This chapter provides a reference of the tasks defined in the
OpenEmbedded build system.

8.1. Normal Recipe Build Tasks

The following sections describe normal tasks associated with building a recipe.

8.1.1. do_build

The default task for all recipes. This task depends on all other normal tasks required to build a recipe.

8.1.2. do_compile

Compiles the source in the compilation directory, which is pointed to by the B variable.

8.1.3. do_compile_ptest base

Compiles the runtime test suite included in the software being built.

8.1.4. do_configure

Configures the source by enabling and disabling any build-time and configuration options for the
software being built.

8.1.5. do_configure ptest base

Configures the runtime test suite included in the software being built.

8.1.6. do_deploy

Writes output files that are to be deployed to the deploy directory, which is defined by the DEPLOYDIR
variable.

The do_deploy task is a shared state (sstate) task, which means that the task can be accelerated

through sstate use. Realize also that if the task is re-executed, any previous output is removed (i.e.
"cleaned").

8.1.7. do_fetch

Fetches the source code. This task uses the SRC_URI variable and the argument's prefix to determine
the correct fetcher module.

8.1.8. do_install

Copies files from the compilation directory, which is defined by the B variable, to a holding area
defined by the D variable.

8.1.9. do_install ptest base

Copies the runtime test suite files from the compilation directory to a holding area.

8.1.10. do_package

Analyzes the content of the holding area and splits it into subsets based on available packages and
files.

8.1.11. do_package qa

Runs QA checks on packaged files. For more information on these checks, see the insane class.

8.1.12. do_package write deb

Creates the actual DEB packages and places them in the Package Feeds area.

8.1.13. do_package write ipk

Creates the actual IPK packages and places them in the Package Feeds area.

8.1.14. do_package write_rpm

Creates the actual RPM packages and places them in the Package Feeds area.

8.1.15. do_package write tar

Creates tar archives for packages and places them in the Package Feeds area.

8.1.16. do_packagedata

Creates package metadata used by the build system to generate the final packages.

8.1.17. do_patch

Locates patch files and applies them to the source code. See the "Patching" section for more
information.

8.1.18. do_populate_lic

Writes license information for the recipe that is collected later when the image is constructed.

8.1.19. do_populate_sdk

Creates the file and directory structure for an installable SDK. See the "SDK Generation" section for
more information.

8.1.20. do_populate_sysroot

Copies a subset of files installed by the do_install task into the sysroot in order to make them
available to other recipes.

The do _populate sysroot task is a shared state (sstate) task, which means that the task can be
accelerated through sstate use. Realize also that if the task is re-executed, any previous output is
removed (i.e. "cleaned").

8.1.21. do_rm_work

Removes work files after the OpenEmbedded build system has finished with them. You can learn more
by looking at the "rm_work.bbclass" section.

8.1.22. do_rm _work_all

Top-level task for removing work files after the build system has finished with them.

8.1.23. do_unpack

Unpacks the source code into a working directory pointed to by ${WORKDIR}. The S variable also plays
a role in where unpacked source files ultimately reside. For more information on how source files are
unpacked, see the "Source Fetching" section and the WORKDIR and S variable descriptions.

8.2. Manually Called Tasks

These tasks are typically manually triggered (e.g. by using the bitbake -c¢ command-line option):

8.2.1. do_checkuri

Validates the SRC_URI value.

8.2.2. do_checkuriall

Validates the SRC_URI value for all recipes required to build a target.

8.2.3. do_clean

Removes all output files for a target from the do_unpack task forward (i.e. do_unpack, do_configure,
do compile, do install, and do package).

You can run this task using BitBake as follows:
$ bitbake -c clean recipe

Running this task does not remove the sstate) cache files. Consequently, if no changes have been
made and the recipe is rebuilt after cleaning, output files are simply restored from the sstate cache.
If you want to remove the sstate cache files for the recipe, you need to use the do_cleansstate task
instead (i.e. bitbake -c cleansstate recipe).

8.2.4. do_cleanall

Removes all output files, shared state (sstate) cache, and downloaded source files for a target (i.e.
the contents of DL_DIR). Essentially, the do cleanall task is identical to the do cleansstate task
with the added removal of downloaded source files.

You can run this task using BitBake as follows:
$ bitbake -c cleanall recipe

Typically, you would not normally use the cleanall task. Do so only if you want to start fresh with
the do_fetch task.

8.2.5. do_cleansstate

Removes all output files and shared state (sstate) cache for a target. Essentially, the do_cleansstate
task is identical to the do_clean task with the added removal of shared state (sstate) cache.

You can run this task using BitBake as follows:
$ bitbake -c cleansstate recipe

When you run the do_cleansstate task, the OpenEmbedded build system no longer uses any sstate.
Consequently, building the recipe from scratch is guaranteed.

Note

The do_cleansstate task cannot remove sstate from a remote sstate mirror. If you need to
build a target from scratch using remote mirrors, use the "-f" option as follows:

$ bitbake -f -c do_cleansstate target

8.2.6. do_devshell

Starts a shell whose environment is set up for development, debugging, or both. See the "Using
a Development Shell [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-
appdev-devshell]" section in the Yocto Project Development Manual for more information about using
devshell.

8.2.7. do_fetchall

Fetches all remote sources required to build a target.

8.2.8. do_listtasks

Lists all defined tasks for a target.

8.2.9. do_package_index

Creates or updates the index in the Package Feeds area.

Note

This task is not triggered with the bitbake -c command-line option as are the other tasks in
this section. Because this task is specifically for the package-index recipe, you run it using
bitbake package-index.

8.3. Image-Related Tasks

The following tasks are applicable to image recipes.

8.3.1. do_bootimg

Creates a bootable live image. See the IMAGE FSTYPES variable for additional information on live
image types.

8.3.2. do_bundle_initramfs

Combines an initial RAM disk (initramfs) image and kernel together to form a single image. The
CONFIG_INITRAMFS SOURCE variable has some more information about these types of images.

8.3.3. do_rootfs

Creates the root filesystem (file and directory structure) for an image. See the "Image Generation"
section for more information on how the root filesystem is created.

8.3.4. do_testimage

Boots an image and performs runtime tests within the image. For information on automatically testing
images, see the "Performing Automated Runtime Testing [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#performing-automated-runtime-testing]" section in the Yocto Project
Development Manual.

8.3.5. do_testimage_auto

Boots an image and performs runtime tests within the image immediately after it has been built. This
task is enabled when you set TEST IMAGE equal to "1".

For information on automatically testing images, see the "Performing Automated
Runtime Testing [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-
automated-runtime-testing]" section in the Yocto Project Development Manual.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-appdev-devshell
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-appdev-devshell
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-appdev-devshell
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-appdev-devshell
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing

8.3.6. do_vmdkimg

Creates a .vmdk image for use with VMware [http://www.vmware.com/] and compatible virtual
machine hosts.

8.4. Kernel-Related Tasks

The following tasks are applicable to kernel recipes. Some of these tasks (e.g. the do_menuconfig
task) are also applicable to recipes that use Linux kernel style configuration such as the BusyBox
recipe.

8.4.1. do_compile_kernelmodules

Compiles loadable modules for the Linux kernel.

8.4.2. do_diffconfig

Compares the old and new config files after running the do_menuconfig task for the kernel.

8.4.3. do_kernel_checkout

Checks out source/meta branches for a linux-yocto style kernel.

8.4.4. do_kernel configcheck

Validates the kernel configuration for a linux-yocto style kernel.

8.4.5. do_kernel configme

Assembles the kernel configuration for a linux-yocto style kernel.

8.4.6. do_kernel _link_vmlinux

Creates a symbolic link in arch/$arch/boot for vmlinux kernel images.

8.4.7. do_menuconfig

Runs make menuconfig for the kernel. For information on menuconfig, see the "Using menuconfig
[http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-menuconfig]" section in
the Yocto Project Development Manual.

8.4.8. do_savedefconfig

Creates a minimal Linux kernel configuration file.

8.4.9. do_sizecheck

Checks the size of the kernel image against KERNEL IMAGE MAXSIZE when set.

8.4.10. do_strip

Strips unneeded sections out of the Linux kernel image.

8.4.11. do_uboot_mkimage

Creates a ulmage file from the kernel for the U-Boot bootloader.

8.4.12. do_validate_branches

Ensures that the source, metadata (or both) branches are on the locations specified by their SRCREV
values for a linux-yocto style kernel.

http://www.vmware.com/
http://www.vmware.com/
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-menuconfig
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-menuconfig

8.5. Miscellaneous Tasks

The following sections describe miscellaneous tasks.

8.5.1. do_generate_qt_config file

Writes a qt.conf configuration file used for building a Qt-based application.

8.5.2. do_spdx

A build stage that takes the source code and scans it on a remote FOSSOLOGY server in order to
produce an SPDX document. This task applies only to the spdx class.

Chapter 9. QA Error and Warning
Messages
9.1. Introduction

When building a recipe, the OpenEmbedded build system performs various QA checks on the output
to ensure that common issues are detected and reported. Sometimes when you create a new recipe
to build new software, it will build with no problems. When this is not the case, or when you have QA
issues building any software, it could take a little time to resolve them.

While it is tempting to ignore a QA message or even to disable QA checks, it is best to try and resolve
any reported QA issues. This chapter provides a list of the QA messages and brief explanations of the
issues you could encounter so that you can properly resolve problems.

The next section provides a list of all QA error and warning messages based on a default configuration.
Each entry provides the message or error form along with an explanation.

Notes

* At the end of each message, the name of the associated QA test (as listed in the
"insane.bbclass" section) appears within square brackets.

* As mentioned, this list of error and warning messages is for QA checks only. The list does
not cover all possible build errors or warnings you could encounter.

* Because some QA checks are disabled by default, this list does not include all possible QA
check errors and warnings.

9.2. Errors and Warnings

* <packagename>: <path> is using libexec please relocate to <libexecdir> [libexec]

The specified package contains files in /usr/libexec. By default, libexecdir is set to "${libdir}/
${BPN}" rather than to "/usr/libexec". Thus, installing to /usr/libexec is likely not desirable.

* package <packagename> contains bad RPATH <rpath> in file <file> [rpaths]

The specified binary produced by the recipe contains dynamic library load paths (rpaths) that
contain build system paths such as TMPDIR, which are incorrect for the target and could potentially
be a security issue. Check for bad - rpath options being passed to the linker in your do_compile
log. Depending on the build system used by the software being built, there might be a configure
option to disable rpath usage completely within the build of the software.

<packagename>: <file> contains probably-redundant RPATH <rpath> [useless-rpaths]

The specified binary produced by the recipe contains dynamic library load paths (rpaths) that on a
standard system are searched by default by the linker (e.g. /1ib and /usr/1lib). While these paths
will not cause any breakage, they do waste space and are unnecessary. Depending on the build
system used by the software being built, there might be a configure option to disable rpath usage
completely within the build of the software.

<packagename> requires <files>, but no providers in its RDEPENDS [file-rdeps]

A file-level dependency has been identified from the specified package on the specified files, but
there is no explicit corresponding entry in RDEPENDS. If particular files are required at runtime then
RDEPENDS should be declared in the recipe to ensure the packages providing them are built.

* <packagenamel> rdepends on <packagename2>, but it isn't a build dependency? [build-
deps]

A runtime dependency exists between the two specified packages, but there is nothing explicit
within the recipe to enable the OpenEmbedded build system to ensure that dependency is satisfied.
This condition is usually triggered by an RDEPENDS value being added at the packaging stage rather
than up front, which is usually automatic based on the contents of the package. In most cases, you
should change the recipe to add an explicit RDEPENDS for the dependency.

* non -dev/-dbg/-nativesdk package contains symlink .so: <packagename> path
'<path>' [dev-so0]

Symlink .so files are for development only, and should therefore go into the -dev package. This
situation might occur if you add *.so* rather than *.so0.* to a non-dev package. Change FILES
(and possibly PACKAGES) such that the specified . so file goes into an appropriate -dev package.

* non -staticdev package <contains static .a library: <packagename> path
'<path>' [staticdev]

Static .a library files should go into a -staticdev package. Change FILES (and possibly PACKAGES)
such that the specified .a file goes into an appropriate -staticdev package.

* <packagename>: found library in wrong location [libdir]

The specified file may have been installed into an incorrect (possibly hardcoded) installation path.
For example, this test will catch recipes that install /1ib/bar.so when ${base libdir} is "lib32".
Another example is when recipes install /usr/1ib64/foo.so when ${libdir} is "/usr/lib". False
positives occasionally exist. For these cases add "libdir" to INSANE_SKIP for the package.

* non debug package contains .debug directory: <packagename> path <path> [debug-files]

The specified package contains a .debug directory, which should not appear in anything but the -
dbg package. This situation might occur if you add a path which contains a .debug directory and
do not explicitly add the .debug directory to the -dbg package. If this is the case, add the .debug
directory explicitly to FILES ${PN}-dbg. See FILES for additional information on FILES.

* Architecture did not match (<machine_arch> to <file arch>) on <file> [arch]

By default, the OpenEmbedded build system checks the Executable and Linkable Format (ELF) type,
bit size, and endianness of any binaries to ensure they match the target architecture. This test
fails if any binaries do not match the type since there would be an incompatibility. The test could
indicate that the wrong compiler or compiler options have been used. Sometimes software, like
bootloaders, might need to bypass this check. If the file you receive the error for is firmware that is
not intended to be executed within the target operating system or is intended to run on a separate
processor within the device, you can add "arch" to INSANE_SKIP for the package. Another option is
to check the do_compile log and verify that the compiler options being used are correct.

* Bit size did not match (<machine bits> to <file bits>) <recipe> on <file> [arch]

By default, the OpenEmbedded build system checks the Executable and Linkable Format (ELF) type,
bit size, and endianness of any binaries to ensure they match the target architecture. This test
fails if any binaries do not match the type since there would be an incompatibility. The test could
indicate that the wrong compiler or compiler options have been used. Sometimes software, like
bootloaders, might need to bypass this check. If the file you receive the error for is firmware that is
not intended to be executed within the target operating system or is intended to run on a separate

processor within the device, you can add "arch" to INSANE_SKIP for the package. Another option is
to check the do_compile log and verify that the compiler options being used are correct.

Endianness did not match (<machine endianness> to <file endianness>) on <file>
[arch]

By default, the OpenEmbedded build system checks the Executable and Linkable Format (ELF) type,
bit size, and endianness of any binaries to ensure they match the target architecture. This test
fails if any binaries do not match the type since there would be an incompatibility. The test could
indicate that the wrong compiler or compiler options have been used. Sometimes software, like
bootloaders, might need to bypass this check. If the file you receive the error for is firmware that is
not intended to be executed within the target operating system or is intended to run on a separate
processor within the device, you can add "arch" to INSANE_SKIP for the package. Another option is
to check the do_compile log and verify that the compiler options being used are correct.

ELF binary '<file>' has relocations in .text [textrel]

The specified ELF binary contains relocations in its .text sections. This situation can result in a
performance impact at runtime.

No GNU HASH in the elf binary: '<file>' [ldflags]

This indicates that binaries produced when building the recipe have not been linked with the
LDFLAGS options provided by the build system. Check to be sure that the LDFLAGS variable is being
passed to the linker command. A common workaround for this situation is to pass in LDFLAGS using
TARGET_CC_ARCH within the recipe as follows:

TARGET _CC_ARCH += "${LDFLAGS}"

Package <packagename> contains Xorg driver (<driver>) but no xorg-abi- dependencies
[xorg-driver-abi]

The specified package contains an Xorg driver, but does not have a corresponding ABI package
dependency. The xserver-xorg recipe provides driver ABI names. All drivers should depend on the
ABI versions that they have been built against. Driver recipes that include xorg-driver-input.inc
or xorg-driver-video.inc will automatically get these versions. Consequently, you should only
need to explicitly add dependencies to binary driver recipes.

The /usr/share/info/dir file is not meant to be shipped in a particular package.
[infodir]

The /usr/share/info/dir should not be packaged. Add the following line to your do_install task
or to your do _install append within the recipe as follows:

rm ${D}${infodir}/dir

Symlink <path> in <packagename> points to TMPDIR [symlink-to-sysroot]

The specified symlink points into TMPDIR on the host. Such symlinks will work on the host. However,
they are clearly invalid when running on the target. You should either correct the symlink to use
a relative path or remove the symlink.

e <file> failed sanity test (workdir) in path <path> [la]

The specified . 1a file contains TMPDIR paths. Any . la file containing these paths is incorrect since
libtool adds the correct sysroot prefix when using the files automatically itself.

* <file> failed sanity test (tmpdir) in path <path> [pkgconfig]

The specified .pc file contains TMPDIR/WORKDIR paths. Any .pc file containing these paths is
incorrect since pkg-config itself adds the correct sysroot prefix when the files are accessed.

* <packagename> rdepends on <debug packagename> [debug-deps]

A dependency exists between the specified non-dbg package (i.e. a package whose name does not
end in -dbg) and a package that is a dbg package. The dbg packages contain debug symbols and
are brought in using several different methods:

e Using the dbg-pkgs IMAGE FEATURES value.
* Using IMAGE_INSTALL.

* As a dependency of another dbg package that was brought in using one of the above methods.
The dependency might have been automatically added because the dbg package erroneously
contains files that it should not contain (e.g. a non-symlink .so file) or it might have been added
manually (e.g. by adding to RDEPENDS).

» <packagename> rdepends on <dev_packagename> [dev-deps]

A dependency exists between the specified non-dev package (a package whose name does not end
in -dev) and a package that is a dev package. The dev packages contain development headers and
are usually brought in using several different methods:

* Using the dev-pkgs IMAGE FEATURES value.
e Using IMAGE_INSTALL.

¢ As a dependency of another dev package that was brought in using one of the above methods.
The dependency might have been automatically added (because the dev package erroneously
contains files that it should not have (e.g. a non-symlink .so file) or it might have been added
manually (e.g. by adding to RDEPENDS).

* <var> <packagename> is invalid: <comparison> (<value>) only comparisons <, =, >,
<=, and >= are allowed [dep-cmp]

If you are adding a versioned dependency relationship to one of the dependency variables
(RDEPENDS, RRECOMMENDS, RSUGGESTS, RPROVIDES, RREPLACES, or RCONFLICTS), you must only use
the named comparison operators. Change the versioned dependency values you are adding to
match those listed in the message.

* <recipename>: The compile log indicates that host include and/or library paths were
used. Please check the log '<logfile>' for more information. [compile-host-path]

The log forthe do _compile task indicates that paths on the host were searched for files, which is not
appropriate when cross-compiling. Look for "is unsafe for cross-compilation" or "CROSS COMPILE
Badness" in the specified log file.

* <recipename>: The install log indicates that host include and/or library paths were
used. Please check the log '<logfile>' for more information. [install-host-path]

The log forthe do_install task indicates that paths on the host were searched for files, which is not
appropriate when cross-compiling. Look for "is unsafe for cross-compilation" or "CROSS COMPILE
Badness" in the specified log file.

This autoconf log indicates errors, it looked at host include and/or library paths
while determining system capabilities. Rerun configure task after fixing this. The
path was '<path>'

The log for the do_configure task indicates that paths on the host were searched for files, which
is not appropriate when cross-compiling. Look for "is unsafe for cross-compilation" or "CROSS
COMPILE Badness" in the specified log file.

<packagename> doesn't match the [a-z0-9.+-]+ regex [pkgname]

The convention within the OpenEmbedded build system (sometimes enforced by the package
manager itself) is to require that package names are all lower case and to allow a restricted set
of characters. If your recipe name does not match this, or you add packages to PACKAGES that do
not conform to the convention, then you will receive this error. Rename your recipe. Or, if you have
added a non-conforming package name to PACKAGES, change the package name appropriately.

<recipe>: configure was passed unrecognized options: <options> [unknown-configure-
option]

The configure script is reporting that the specified options are unrecognized. This situation could
be because the options were previously valid but have been removed from the configure script.
Or, there was a mistake when the options were added and there is another option that should
be used instead. If you are unsure, consult the upstream build documentation, the ./configure
##help output, and the upstream change log or release notes. Once you have worked out what
the appropriate change is, you can update EXTRA OECONF or the individual PACKAGECONFIG option
values accordingly.

Recipe <recipefile> has PN of "<recipename>" which is in OVERRIDES, this can result
in unexpected behavior. [pn-overrides]

The specified recipe has a name (PN) value that appears in OVERRIDES. If a recipe is named such that
its PN value matches something already in OVERRIDES (e.g. PN happens to be the same as MACHINE
or DISTRO), it can have unexpected consequences. For example, assignments such as FILES ${PN}
= "xyz" effectively turn into FILES = "xyz". Rename your recipe (or if PN is being set explicitly,
change the PN value) so that the conflict does not occur. See FILES for additional information.

<recipefile>: Variable <variable> is set as not being package specific, please fix
this. [pkgvarcheck]

Certain variables (RDEPENDS, RRECOMMENDS, RSUGGESTS, RCONFLICTS, RPROVIDES, RREPLACES,
FILES, pkg preinst, pkg postinst, pkg prerm, pkg postrm, and ALLOW EMPTY) should always
be set specific to a package (i.e. they should be set with a package name override such as
RDEPENDS ${PN} = "value" rather than RDEPENDS = "value"). If you receive this error, correct
any assignments to these variables within your recipe.

File '<file>' from <recipename> was already stripped, this will prevent future
debugging! [already-stripped]

Produced binaries have already been stripped prior to the build system extracting debug symbols. It
is common for upstream software projects to default to stripping debug symbols for output binaries.
In order for debugging to work on the target using -dbg packages, this stripping must be disabled.

Depending on the build system used by the software being built, disabling this stripping could be as
easy as specifying an additional configure option. If not, disabling stripping might involve patching
the build scripts. In the latter case, look for references to "strip" or "STRIP", or the "-s" or "-S"
command-line options being specified on the linker command line (possibly through the compiler
command line if preceded with "-WI,").

Note

Disabling stripping here does not mean that the final packaged binaries will be unstripped.
Once the OpenEmbedded build system splits out debug symbols to the -dbg package, it
will then strip the symbols from the binaries.

* <packagename> is listed in PACKAGES multiple times, this leads to packaging errors.
[packages-1list]

Package names must appear only once in the PACKAGES variable. You might receive this error if you
are attempting to add a package to PACKAGES that is already in the variable's value.

* FILES variable for package <packagename> contains '//' which is invalid. Attempting
to fix this but you should correct the metadata. [files-invalid]

The string "//" is invalid in a Unix path. Correct all occurrences where this string appears in a FILES
variable so that there is only a single "/".

* <recipename>: Files/directories were installed but not shipped [installed-vs-
shipped]

Files have been installed within the do_install task but have not been included in any package by
way of the FILES variable. Files that do not appear in any package cannot be present in an image
later on in the build process. You need to do one of the following:

* Add the files to FILES for the package you want them to appear in (e.g. FILES ${PN} for the
main package).

» Delete the files at the end of the do_install task if the files are not needed in any package.

* <oldpackage>-<oldpkgversion> was registered as shlib provider for <library>,
changing it to <newpackage>-<newpkgversion> because it was built later

This message means that both <oldpackage> and <newpackage> provide the specified shared
library. You can expect this message when a recipe has been renamed. However, if that is not the
case, the message might indicate that a private version of a library is being erroneously picked up
as the provider for a common library. If that is the case, you should add the library's . so file name
to PRIVATE_LIBS in the recipe that provides the private version of the library.

9.3. Configuring and Disabling QA Checks

You can configure the QA checks globally so that specific check failures either raise a warning or an
error message, using the WARN QA and ERROR_QA variables, respectively. You can also disable checks
within a particular recipe using INSANE_SKIP. For information on how to work with the QA checks,
see the "insane.bbclass" section.

Tip
Please keep in mind that the QA checks exist in order to detect real or potential problems in
the packaged output. So exercise caution when disabling these checks.

Chapter 10. Images

The OpenEmbedded build system provides several example images to satisfy different needs. When
you issue the bitbake command you provide a “top-level” recipe that essentially begins the build
for the type of image you want.

Note

Building an image without GNU General Public License Version 3 (GPLv3), GNU Lesser General
Public License Version 3 (LGPLv3), and the GNU Affero General Public License Version 3
(AGPL-3.0) components is only supported for minimal and base images. Furthermore, if you
are going to build an image using non-GPLv3 and similarly licensed components, you must
make the following changes in the local.conf file before using the BitBake command to
build the minimal or base image:

1. Comment out the EXTRA IMAGE FEATURES line
2. Set INCOMPATIBLE LICENSE = "GPL-3.0 LGPL-3.0 AGPL-3.0"

From within the poky Git repository, you can use the following command to display the list
of directories within the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#source-directory] that containe image recipe files:

$ 1s meta*/recipes*/images/*.bb

Following is a list of supported recipes:

* build-appliance-image: An example virtual machine that contains all the pieces required to
run builds using the build system as well as the build system itself. You can boot and run the
image using either the VMware Player [http://www.vmware.com/products/player/overview.html]
or VMware Workstation [http://www.vmware.com/products/workstation/overview.html]. For more
information on this image, see the Build Appliance [http://www.yoctoproject.org/documentation/
build-appliance] page on the Yocto Project website.

* core-image-base: A console-only image that fully supports the target device hardware.

e core-image-clutter: An image with support for the Open GL-based toolkit Clutter, which enables
development of rich and animated graphical user interfaces.

* core-image-directfb: An image that uses directfb instead of X11.

* core-image-full-cmdline: A console-only image with more full-featured Linux system
functionality installed.

* core-image-1lsh: An image that conforms to the Linux Standard Base (LSB) specification. This
image requires a distribution configuration that enables LSB compliance (e.g. poky-1sb). If you
build core-image-1sb without that configuration, the image will not be LSB-compliant.

* core-image-1lsb-dev: A core-image-1sb image that is suitable for development work using the
host. The image includes headers and libraries you can use in a host development environment.
This image requires a distribution configuration that enables LSB compliance (e.g. poky-1sb). If
you build core-image-1sb-dev without that configuration, the image will not be LSB-compliant.

* core-image-1lsb-sdk: A core-image-1lsb that includes everything in meta-toolchain but also
includes development headers and libraries to form a complete standalone SDK. This image
requires a distribution configuration that enables LSB compliance (e.g. poky-1lsb). If you build
core-image-lsb-sdk without that configuration, the image will not be LSB-compliant. This image
is suitable for development using the target.

* core-image-minimal: A small image just capable of allowing a device to boot.

* core-image-minimal-dev: A core-image-minimal image suitable for development work using the
host. The image includes headers and libraries you can use in a host development environment.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.vmware.com/products/player/overview.html
http://www.vmware.com/products/player/overview.html
http://www.vmware.com/products/workstation/overview.html
http://www.vmware.com/products/workstation/overview.html
http://www.yoctoproject.org/documentation/build-appliance
http://www.yoctoproject.org/documentation/build-appliance
http://www.yoctoproject.org/documentation/build-appliance

core-image-minimal-initramfs: A core-image-minimal image that has the Minimal RAM-based
Initial Root Filesystem (initramfs) as part of the kernel, which allows the system to find the first
“init” program more efficiently. See the PACKAGE_INSTALL variable for additional information helpful
when working with initramfs images.

core-image-minimal-mtdutils: A core-image-minimal image that has support for the Minimal
MTD Utilities, which let the user interact with the MTD subsystem in the kernel to perform operations
on flash devices.

core-image-rt: A core-image-minimal image plus a real-time test suite and tools appropriate for
real-time use.

core-image-rt-sdk: A core-image-rt image that includes everything in meta-toolchain. The
image also includes development headers and libraries to form a complete stand-alone SDK and
is suitable for development using the target.

core-image-sato: An image with Sato support, a mobile environment and visual style that works
well with mobile devices. The image supports X11 with a Sato theme and applications such as a
terminal, editor, file manager, media player, and so forth.

core-image-sato-dev: A core-image-sato image suitable for development using the host. The
image includes libraries needed to build applications on the device itself, testing and profiling tools,
and debug symbols. This image was formerly core-image-sdk.

core-image-sato-sdk: A core-image-sato image that includes everything in meta-toolchain. The
image also includes development headers and libraries to form a complete standalone SDK and is
suitable for development using the target.

core-image-testmaster: A "master" image designed to be used for automated runtime testing.
Provides a "known good" image that is deployed to a separate partition so that you can boot into
it and use it to deploy a second image to be tested. You can find more information about runtime
testing in the "Performing Automated Runtime Testing [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#performing-automated-runtime-testing]" section in the Yocto Project
Development Manual.

core-image-testmaster-initramfs: A RAM-based Initial Root Filesystem (initramfs) image
tailored for use with the core-image-testmaster image.

core-image-weston: A very basic Wayland image with a terminal. This image provides the Wayland
protocol libraries and the reference Weston compositor. For more information, see the "Wayland"
section.

core-image-x11: A very basic X11 image with a terminal.

gtde-demo-image: An image that launches into the demo application for the embedded (not based
on X11) version of Qt.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing

Chapter 11. Features

This chapter provides a reference of shipped machine and distro features you can include as part of
your image, a reference on image features you can select, and a reference on feature backfilling.

Features provide a mechanism for working out which packages should be included in the generated
images. Distributions can select which features they want to support through the DISTRO FEATURES
variable, which is set or appended to in a distribution's configuration file such as poky.conf, poky-
tiny.conf, poky-1lsb.conf and so forth. Machine features are set in the MACHINE _FEATURES variable,
which is set in the machine configuration file and specifies the hardware features for a given machine.

These two variables combine to work out which kernel modules, utilities, and other packages to
include. A given distribution can support a selected subset of features so some machine features
might not be included if the distribution itself does not support them.

One method you can use to determine which recipes are checking to see if a particular feature is
contained or not is to grep through the Metadata [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#metadata] for the feature. Here is an example that discovers the recipes whose
build is potentially changed based on a given feature:

$ cd poky
$ git grep 'contains.*MACHINE FEATURES.*feature'

11.1. Machine Features

The items below are features you can use with MACHINE FEATURES. Features do not have a one-to-
one correspondence to packages, and they can go beyond simply controlling the installation of a
package or packages. Sometimes a feature can influence how certain recipes are built. For example,
a feature might determine whether a particular configure option is specified within the do_configure
task for a particular recipe.

This feature list only represents features as shipped with the Yocto Project metadata:
* acpi: Hardware has ACPI (x86/x86_64 only)

* alsa: Hardware has ALSA audio drivers

e apm: Hardware uses APM (or APM emulation)

* bluetooth: Hardware has integrated BT

* efi: Support for booting through EFI

» ext2: Hardware HDD or Microdrive

* irda: Hardware has IrDA support

» keyboard: Hardware has a keyboard

* pcbios: Support for booting through BIOS

* pci: Hardware has a PCI bus

* pcmcia: Hardware has PCMCIA or CompactFlash sockets
* phone: Mobile phone (voice) support

* gvga: Machine has a QVGA (320x240) display

* rtc: Machine has a Real-Time Clock

* screen: Hardware has a screen

* serial: Hardware has serial support (usually RS232)

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata

touchscreen: Hardware has a touchscreen
usbgadget: Hardware is USB gadget device capable
usbhost: Hardware is USB Host capable

vfat: FAT file system support

wifi: Hardware has integrated WiFi

11.2. Distro Features

The items below are features you can use with DISTRO_FEATURES to enable features across your
distribution. Features do not have a one-to-one correspondence to packages, and they can go
beyond simply controlling the installation of a package or packages. In most cases, the presence or
absence of a feature translates to the appropriate option supplied to the configure script during the
do_configure task for the recipes that optionally support the feature.

Some distro features are also machine features. These select features make sense to be controlled
both at the machine and distribution configuration level. See the COMBINED FEATURES [http://
www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-COMBINED_FEATURES] variable for
more information.

This list only represents features as shipped with the Yocto Project metadata:

alsa: Include ALSA support (OSS compatibility kernel modules installed if available).
bluetooth: Include bluetooth support (integrated BT only).

cramfs: Include CramFS support.

directfb: Include DirectFB support.

ext2: Include tools for supporting for devices with internal HDD/Microdrive for storing files (instead
of Flash only devices).

ipsec: Include IPSec support.

ipv6: Include IPv6 support.

irda: Include IrDA support.

keyboard: Include keyboard support (e.g. keymaps will be loaded during boot).
nfs: Include NFS client support (for mounting NFS exports on device).

opengl: Include the Open Graphics Library, which is a cross-language, multi-platform application
programming interface used for rendering two and three-dimensional graphics.

pci: Include PCI bus support.
pcmcia: Include PCMCIA/CompactFlash support.
ppp: Include PPP dialup support.

smbfs: Include SMB networks client support (for mounting Samba/Microsoft Windows shares on
device).

systemd: Include support for this init manager, which is a full replacement of for init with parallel
starting of services, reduced shell overhead, and other features. This init manager is used by
many distributions.

usbgadget: Include USB Gadget Device support (for USB networking/serial/storage).

usbhost: Include USB Host support (allows to connect external keyboard, mouse, storage, network
etc).

wayland: Include the Wayland display server protocol and the library that supports it.

http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-COMBINED_FEATURES
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-COMBINED_FEATURES
http://www.yoctoproject.org/docs/1.8/ref-manual/ref-manual.html#var-COMBINED_FEATURES

» wifi: Include WiFi support (integrated only).

¢ x11: Include the X server and libraries.

11.3. Image Features

The contents of images generated by the OpenEmbedded build system can be controlled by the
IMAGE_FEATURES and EXTRA IMAGE_ FEATURES variables that you typically configure in your image
recipes. Through these variables, you can add several different predefined packages such as
development utilities or packages with debug information needed to investigate application problems
or profile applications.

The following image features are available for all images:
» dbg-pkgs: Installs debug symbol packages for all packages installed in a given image.

* debug-tweaks: Makes an image suitable for development (e.g. allows root logins without
passwords).

» dev-pkgs: Installs development packages (headers and extra library links) for all packages installed
in a given image.

» doc-pkgs: Installs documentation packages for all packages installed in a given image.

* package-management: Installs package management tools and preserves the package manager
database.

» ptest-pkgs: Installs ptest packages for all ptest-enabled recipes.

* read-only-rootfs: Creates an image whose root filesystem is read-only. See the
"Creating a Read-Only Root Filesystem [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#creating-a-read-only-root-filesystem]" section in the Yocto Project Development
Manual for more information.

* splash: Enables showing a splash screen during boot. By default, this screen is provided by psplash,
which does allow customization. If you prefer to use an alternative splash screen package, you can
do so by setting the SPLASH variable to a different package name (or names) within the image
recipe or at the distro configuration level.

» staticdev-pkgs: Installs static development packages, which are static libraries (i.e. *.a files), for
all packages installed in a given image.

Some image features are available only when you inherit the core-image class. The current list of
these valid features is as follows:

* eclipse-debug: Provides Eclipse remote debugging support.
e hwcodecs: Installs hardware acceleration codecs.
e nfs-server: Installs an NFS server.

* gt4-pkgs: Supports Qt4/X11 and demo applications.

ssh-server-dropbear: Installs the Dropbear minimal SSH server.

* ssh-server-openssh: Installs the OpenSSH SSH server, which is more full-featured than Dropbear.
Note that if both the OpenSSH SSH server and the Dropbear minimal SSH server are present in
IMAGE_FEATURES, then OpenSSH will take precedence and Dropbear will not be installed.

tools-debug: Installs debugging tools such as strace and gdb. For information on GDB, see
the "Debugging With the GNU Project Debugger (GDB) Remotely [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#platdev-gdb-remotedebug]” section in the Yocto Project
Development Manual. For information on tracing and profiling, see the Yocto Project Profiling and
Tracing Manual [http://www.yoctoproject.org/docs/1.8/profile-manual/profile-manual.html].

tools-profile: Installs profiling tools such as oprofile, exmap, and LTTng. For general information
on user-space tools, see the "User-Space Tools [http://www.yoctoproject.org/docs/1.8/adt-manual/
adt-manual.html#user-space-tools]" section in the Yocto Project Application Developer's Guide.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-read-only-root-filesystem
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-read-only-root-filesystem
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-read-only-root-filesystem
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-gdb-remotedebug
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-gdb-remotedebug
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-gdb-remotedebug
http://www.yoctoproject.org/docs/1.8/profile-manual/profile-manual.html
http://www.yoctoproject.org/docs/1.8/profile-manual/profile-manual.html
http://www.yoctoproject.org/docs/1.8/profile-manual/profile-manual.html
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#user-space-tools
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#user-space-tools
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#user-space-tools

* tools-sdk: Installs a full SDK that runs on the device.

* tools-testapps: Installs device testing tools (e.g. touchscreen debugging).
* x11: Installs the X server.

* x11-base: Installs the X server with a minimal environment.

* x11-sato: Installs the OpenedHand Sato environment.

11.4. Feature Backfilling

Sometimes it is necessary in the OpenEmbedded build system to extend MACHINE FEATURES or
DISTRO FEATURES to control functionality that was previously enabled and not able to be disabled.
For these cases, we need to add an additional feature item to appear in one of these variables, but we
do not want to force developers who have existing values of the variables in their configuration to add
the new feature in order to retain the same overall level of functionality. Thus, the OpenEmbedded
build system has a mechanism to automatically "backfill" these added features into existing distro
or machine configurations. You can see the list of features for which this is done by finding
the DISTRO FEATURES BACKFILL and MACHINE FEATURES BACKFILL variables in the meta/conf/
bitbake. conf file.

Because such features are backfilled by default into all configurations as described in the previous
paragraph, developers who wish to disable the new features need to be able to selectively prevent
the backfilling from occurring. They can do this by adding the undesired feature or features to the
DISTRO FEATURES BACKFILL CONSIDERED or MACHINE FEATURES BACKFILL CONSIDERED variables
for distro features and machine features respectively.

Here are two examples to help illustrate feature backfilling:

* The "pulseaudio" distro feature option: Previously, PulseAudio support was enabled within the
Qt and GStreamer frameworks. Because of this, the feature is backfilled and thus enabled for
all distros through the DISTRO FEATURES BACKFILL variable in the meta/conf/bitbake. conf file.
However, your distro needs to disable the feature. You can disable the feature without affecting
other existing distro configurations that need PulseAudio support by adding "pulseaudio" to
DISTRO FEATURES BACKFILL CONSIDERED in your distro's .conf file. Adding the feature to this
variable when it also exists in the DISTRO FEATURES BACKFILL variable prevents the build system
from adding the feature to your configuration's DISTRO_FEATURES, effectively disabling the feature
for that particular distro.

* The "rtc" machine feature option: Previously, real time clock (RTC) support was enabled for
all target devices. Because of this, the feature is backfilled and thus enabled for all machines
through the MACHINE FEATURES BACKFILL variable in the meta/conf/bitbake.conf file. However,
your target device does not have this capability. You can disable RTC support for your device
without affecting other machines that need RTC support by adding the feature to your machine's
MACHINE FEATURES BACKFILL CONSIDERED list in the machine's .conf file. Adding the feature to
this variable when it also exists in the MACHINE FEATURES BACKFILL variable prevents the build
system from adding the feature to your configuration's MACHINE FEATURES, effectively disabling
RTC support for that particular machine.

Chapter 12. Variables Glossary

This chapter lists common variables used in the OpenEmbedded build system and gives an overview

of their function and contents.

Glossary

ABCDEFGHIKLMOPQRSTUWX

A

:ETF;DEK'I]
ABIEXTENSION

:n:Tr;;m]
ALLOW_EMPTY

En:Tr;;m
ALTERNATIVE

Extension to the Application Binary Interface (ABI) field of the GNU
canonical architecture name (e.g. "eabi").

ABI extensions are set in the machine include files. For example,
the meta/conf/machine/include/arm/arch-arm.inc file sets the
following extension:

ABIEXTENSION = "eabi"

Specifies if an output package should still be produced if it is empty.
By default, BitBake does not produce empty packages. This default
behavior can cause issues when there is an RDEPENDS or some other
hard runtime requirement on the existence of the package.

Like all package-controlling variables, you must always use them in
conjunction with a package name override, as in:

ALLOW_EMPTY_ ${PN} = "1"
ALLOW_EMPTY_ ${PN}-dev = "1"
ALLOW_EMPTY_ ${PN}-staticdev = "1"

Lists commands in a package that need an alternative binary naming
scheme. Sometimes the same command is provided in multiple
packages. When this occurs, the OpenEmbedded build system needs
to use the alternatives system to create a different binary naming
scheme so the commands can co-exist.

To use the variable, list out the package's commands that also exist
as part of another package. For example, if the busybox package
has four commands that also exist as part of another package, you
identify them as follows:

ALTERNATIVE busybox = "sh sed test bracket"

For more information on the alternatives system, see the "update-
alternatives.bbclass" section.

Used by the alternatives system to map duplicated commands to
actual locations. For example, if the bracket command provided by
the busybox package is duplicated through another package, you
must use the ALTERNATIVE LINK NAME variable to specify the actual

En:Tr;;m ; .
3 ALTERNATIVE_LINKOREHRE"

ALTERNATIVE LINK NAME[bracket] = "/usr/bin/["

In this example, the binary for the bracket command (i.e. [) from
the busybox package resides in /usr/bin/.

Note

If ALTERNATIVE LINK NAME is not defined, it defaults to
${bindir}/name.

For more information on the alternatives system, see the "update-
alternatives.bbclass" section.

Used by the alternatives system to create default priorities for
duplicated commands. You can use the variable to create a single
default regardless of the command name or package, a default for
specific duplicated commands regardless of the package, or a default

i ALTERNATIVE prI¢¥jSPecific commands tied to particular packages. Here are the

En:Tr;;m
APPEND

available syntax forms:

ALTERNATIVE PRIORITY = "priority"
ALTERNATIVE PRIORITY[name] = "priority"
ALTERNATIVE PRIORITY pkg[name] = "priority"

For more information on the alternatives system, see the "update-
alternatives.bbclass" section.

Used by the alternatives system to create default link locations
for duplicated commands. You can use the variable to create a
single default location for all duplicated commands regardless of

:cTr;;m] the command name or package, a default for specific duplicated
ALTERNATIVE TAR mands regardless of the package, or a default for specific

ommands tied to particular packages. Here are the available syntax
forms:

ALTERNATIVE TARGET = "target"
ALTERNATIVE TARGET[name] = "target"
ALTERNATIVE TARGET pkg[name] = "target"

Note

If ALTERNATIVE TARGET is not defined, it inherits the value
from the ALTERNATIVE LINK NAME variable.

If ALTERNATIVE LINK NAME and ALTERNATIVE TARGET are
the same, the target for ALTERNATIVE TARGET has ".{BPN}"
appended to it.

Finally, if the file referenced has not been renamed, the
alternatives system will rename it to avoid the need to
rename alternative files in the do install task while
retaining support for the command if necessary.

For more information on the alternatives system, see the "update-
alternatives.bbclass" section.

An override list of append strings for each LABEL.

See the grub-efi class for more information on how this variable is
used.

Context

=
=
1=

ASSUME_PROVID

Context

=
=
1=

AUTHOR

Contemet

=
=
(=]

Context

=
=
(=]

AUTOREV

Context

=
=
(=]

AVAILTUNES

Contest
THOr
B

Lists recipe names (PN values) BitBake does not attempt to build.
Instead, BitBake assumes these recipes have already been built.

In OpenEmbedded Core, ASSUME_PROVIDED mostly specifies native
EBOlS that should not be built. An example is git-native, which when
specified, allows for the Git binary from the host to be used rather
than building git-native.

The email address used to contact the original author or authors in
order to send patches and forward bugs.

Enables creating an automatic menu for the syslinux bootloader. You
must set this variable in your recipe. The syslinux class checks this
variable.

AUTO_SYSLINUXMENU

When SRCREV is set to the value of this variable, it specifies to use
the latest source revision in the repository. Here is an example:

SRCREV = "${AUTOREV}"

The list of defined CPU and Application Binary Interface (ABI) tunings
(i.e. "tunes") available for use by the OpenEmbedded build system.

The list simply presents the tunes that are
available. Not all tunes may be compatible with a
particular machine configuration, or with each other in
a Multilib [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#combining-multiple-versions-library-files-into-one-
image] configuration.

To add a tune to the list, be sure to append it with
spaces using the "+=" BitBake operator. Do not simply
replace the list by using the "=" operator. See the "Basic
Syntax [http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/
bitbake-user-manual.html#basic-syntax]" section in the BitBake
User Manual for more information.

The directory within the Build Directory [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#build-directory] in which the
OpenEmbedded build system places generated objects during a
recipe's build process. By default, this directory is the same as the S
directory, which is defined as:

S = "${WORKDIR}/${BP}/"

You can separate the (S) directory and the directory pointed to by the
B variable. Most Autotools-based recipes support separating these
directories. The build system defaults to using separate directories
for gcc and some kernel recipes.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#basic-syntax
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#basic-syntax
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#basic-syntax
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#basic-syntax
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

Context
THO

Context
THOD

Contest
THO

Contest
THOr

Lists "recommended-only" packages to not install. Recommended-
only packages are packages installed only through the RRECOMMENDS
variable. You can prevent any of these "recommended" packages
from being installed by listing them with the BAD_ RECOMMENDATIONS

BAD_RECOMMENDAHBRE

BAD RECOMMENDATIONS = "package name package name package name ...

You can set this variable globally in your local. conf file or you can
attach it to a specific image recipe by using the recipe name override:

BAD RECOMMENDATIONS pn-target image = "package name"

It is important to realize that if you choose to not install packages
using this variable and some other packages are dependent on them
(i.e. listed in a recipe's RDEPENDS variable), the OpenEmbedded build
system ignores your request and will install the packages to avoid
dependency errors.

Support for this variable exists only when using the IPK and RPM
packaging backend. Support does not exist for DEB.

See the NO RECOMMENDATIONS and the PACKAGE EXCLUDE variables
for related information.

The library directory name for the CPU or Application Binary
Interface (ABI) tune. The BASE LIB applies only in the Multilib
context. See the "Combining Multiple Versions of Library Files into
One Image [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#combining-multiple-versions-library-files-into-one-
image]" section in the Yocto Project Development Manual for
information on Multilib.

BASE_LIB

The BASE_LIB variable is defined in the machine include files in the
Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#source-directory]. If Multilib is not being used, the
value defaults to "lib".

Defines how BitBake handles situations where an append file
(.bbappend) has no corresponding recipe file (.bb). This condition
often occurs when layers get out of sync (e.g. oe-core bumps a
recipe version and the old recipe no longer exists and the other layer

BB DANGLINGAPPE?\ﬁD%OQI\%ﬁQdWﬂth to the new version of the recipe yet).

The default fatal behavior is safest because it is the sane reaction
given something is out of sync. It is important to realize when your
changes are no longer being applied.

You can change the default behavior by setting this variable to "1",
"yes", or "true" in your local.conf file, which is located in the
Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#build-directory]: Here is an example:

BB_DANGLINGAPPENDS WARNONLY = "1"

Monitors disk space and available inodes during the build and allows
you to control the build based on these parameters.

Disk space monitoring is disabled by default. To enable monitoring,
add the BB DISKMON DIRS variable to your conf/local.conf file
BB_DISKMON_DIR%,ynd in the Build Directory [http://www.yoctoproject.org/docs/1.8/

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#combining-multiple-versions-library-files-into-one-image
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

dev-manual/dev-manual.html#build-directory]. Use the following
form:

BB DISKMON DIRS = "action,dir,threshold [...]"
where:

action is:

ABORT: Immediately abort the build when
a threshold is broken.

STOPTASKS: Stop the build after the currently
executing tasks have finished when
a threshold is broken.

WARN : Issue a warning but continue the
build when a threshold is broken.
Subsequent warnings are issued as
defined by the
BB _DISKMON WARNINTERVAL variable,
which must be defined in the
conf/local.conf file.

dir is:
Any directory you choose. You can specify one or
more directories to monitor by separating the
groupings with a space. If two directories are
on the same device, only the first directory
is monitored.

threshold is:
Either the minimum available disk space,
the minimum number of free inodes, or
both. You must specify at least one. To
omit one or the other, simply omit the value.
Specify the threshold using G, M, K for Gbytes,
Mbytes, and Kbytes, respectively. If you do
not specify G, M, or K, Kbytes is assumed by
default. Do not use GB, MB, or KB.

Here are some examples:

BB_DISKMON DIRS
BB_DISKMON DIRS
BB_DISKMON DIRS

"ABORT, ${TMPDIR}, 1G,100K WARN, ${SSTATE DIR}, 1G,
"STOPTASKS, ${TMPDIR}, 1G"
"ABORT, ${TMPDIR}, ,100K"

The first example works only if you also provide the
BB DISKMON WARNINTERVAL variable in the conf/local.conf. This
example causes the build system to immediately abort when either
the disk space in ${TMPDIR} drops below 1 Gbyte or the available
free inodes drops below 100 Kbytes. Because two directories are
provided with the variable, the build system also issue a warning
when the disk space in the ${SSTATE_DIR} directory drops below
1 Gbyte or the number of free inodes drops below 100 Kbytes.
Subsequent warnings are issued during intervals as defined by the
BB_DISKMON WARNINTERVAL variable.

The second example stops the build after all currently executing tasks
complete when the minimum disk space in the ${TMPDIR} directory
drops below 1 Gbyte. No disk monitoring occurs for the free inodes
in this case.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

The final example immediately aborts the build when the number of
free inodes in the ${TMPDIR} directory drops below 100 Kbytes. No
disk space monitoring for the directory itself occurs in this case.

Defines the disk space and free inode warning intervals. To set
these intervals, define the variable in your conf/local.conf file
in the Build Directory [http://www.yoctoproject.org/docs/1.8/dev-

e manual/dev-manual.html#build-directory].

BB_DISKMON_WARN|NI EfR¥Aoing to use the BB_DISKMON WARNINTERVAL variable, you
must also use the BB_ DISKMON_DIRS variable and define its action as
"WARN". During the build, subsequent warnings are issued each time
disk space or number of free inodes further reduces by the respective
interval.

If you do not provide a BB_DISKMON WARNINTERVAL variable and
you do use BB DISKMON DIRS with the "WARN" action, the disk
monitoring interval defaults to the following:

BB_DISKMON WARNINTERVAL = "50M, 5K"

When specifying the variable in your configuration file, use the
following form:

BB DISKMON WARNINTERVAL = "disk space interval,disk inode interva
where:

disk space interval is:
An interval of memory expressed in either
G, M, or K for Gbytes, Mbytes, or Kbytes,
respectively. You cannot use GB, MB, or KB.

disk inode interval is:
An interval of free inodes expressed in either
G, M, or K for Gbytes, Mbytes, or Kbytes,
respectively. You cannot use GB, MB, or KB.

Here is an example:

BB DISKMON DIRS = "WARN, ${SSTATE DIR},1G,100K"
BB_DISKMON WARNINTERVAL = "506M,5K"

These variables cause the OpenEmbedded build system to issue
subsequent warnings each time the available disk space further
reduces by 50 Mbytes or the number of free inodes further reduces
by 5 Kbytes in the ${SSTATE DIR} directory. Subsequent warnings
based on the interval occur each time a respective interval is reached
beyond the initial warning (i.e. 1 Gbytes and 100 Kbytes).

Causes tarballs of the Git repositories, including the Git metadata, to
be placed in the DL_DIR directory.

repositories is not the default action by the OpenEmbedded build

I:r:r.1r:v.1] For performance reasons, creating and placing tarballs of the Git
THO
BB_GENERATE_MIBRQRNJARBALLS

BB_GENERATE_MIRROR TARBALLS = "1"

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

Context
THO

Context
THO
3 BBCLASSEXTEND

Contoxt
THO

g

BBFILE_PATTERN

EETr;I;K'I
BBFILE_PRIORITY

BB_NUMBER_THREA

Set this wvariable in your local.conf file in the
Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#build-directory].

The maximum number of tasks BitBake should run in parallel at any
one time. If your host development system supports multiple cores,
a good rule of thumb is to have this variable be twice the number
of cores.

I:e)sdefault value for BB_NUMBER THREADS is equal to the number of
cores your build system has.

Allows you to extend a recipe so that it builds variants of the software.
Common variants for recipes exist such as "natives" like quilt-
native, which is a copy of Quilt built to run on the build system;
"crosses" such as gcc-cross, which is a compiler built to run on the
build machine but produces binaries that run on the target MACHINE;
"nativesdk", which targets the SDK machine instead of MACHINE; and
"mulitlibs" in the form "multilib:multilib name".

To build a different variant of the recipe with a minimal amount of
code, it usually is as simple as adding the following to your recipe:

BBCLASSEXTEND =+ "native nativesdk"
BBCLASSEXTEND =+ "multilib:multilib name"

Lists the names of configured layers. These names are used to find
the other BBFILE * variables. Typically, each layer will append its
name to this variable in its conf/layer. conf file.

Context
THO
3 BBFILE_COLLECTIONS

Variable that expands to match files from BBFILES in a particular
layer. This variable is used in the conf/layer.conf file and
must be suffixed with the name of the specific layer (e.g.
BBFILE PATTERN emenlow).

Assigns the priority for recipe files in each layer.

This variable is useful in situations where the same recipe appears
in more than one layer. Setting this variable allows you to prioritize a
layer against other layers that contain the same recipe - effectively
letting you control the precedence for the multiple layers. The
precedence established through this variable stands regardless of a
recipe's version (PV variable). For example, a layer that has a recipe
with a higher PV value but for which the BBFILE PRIORITY is set to
have a lower precedence still has a lower precedence.

A larger value for the BBFILE PRIORITY variable results in a higher
precedence. For example, the value 6 has a higher precedence than
the value 5. If not specified, the BBFILE PRIORITY variable is set
based on layer dependencies (see the LAYERDEPENDS variable for
more information. The default priority, if unspecified for a layer with
no dependencies, is the lowest defined priority + 1 (or 1 if no priorities
are defined).

Tip
You can use the command bitbake-layers show-layers to
list all configured layers along with their priorities.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

EETr;I;V.'I
BBFILES

Contoxt
THO

g

BBINCLUDELOGS

EETr;I;K'I
BBLAYERS

List of recipe files used by BitBake to build software.

Variable that controls how BitBake displays logs on build failure.

Lists the layers to enable during the build. This variable
is defined in the bblayers.conf configuration file in the
Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#build-directory]. Here is an example:

BBLAYERS = " \
/home/scottrif/poky/meta \
/home/scottrif/poky/meta-yocto \
/home/scottrif/poky/meta-yocto-bsp \
/home/scottrif/poky/meta-mykernel \

BBLAYERS NON_REMOVABLE 7= " \
/home/scottrif/poky/meta \
/home/scottrif/poky/meta-yocto \

This example enables four layers, one of which is a custom, user-
defined layer named meta-mykernel.

Lists core layers that cannot be removed from the bblayers.conf
file during a build using the Hob [https://www.yoctoproject.org/tools-
resources/projects/hob].

Context
THO
3 BBLAYERS_NON_REMAVAMI@

When building an image outside of Hob, this variable is
ignored.
In order for BitBake to build your image using Hob, your
bblayers.conf file must include the meta and meta-yocto core
layers. Here is an example that shows these two layers listed in the
BBLAYERS NON_REMOVABLE statement:

BBLAYERS = " \
/home/scottrif/poky/meta \
/home/scottrif/poky/meta-yocto \
/home/scottrif/poky/meta-yocto-bsp \
/home/scottrif/poky/meta-mykernel \

BBLAYERS NON_REMOVABLE 7= " \
/home/scottrif/poky/meta \
/home/scottrif/poky/meta-yocto \

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
https://www.yoctoproject.org/tools-resources/projects/hob
https://www.yoctoproject.org/tools-resources/projects/hob
https://www.yoctoproject.org/tools-resources/projects/hob

Prevents BitBake from processing recipes and recipe append files.
Use the BBMASK variable from within the conf/local.conf file
found in the Build Directory [http://www.yoctoproject.org/docs/1.8/

Contnyt] dev-manual/dev-manual.html#build-directory].
THO
BBMASK

You can use the BBMASK variable to "hide" these .bb and .bbappend
files. BitBake ignores any recipe or recipe append files that match the
expression. It is as if BitBake does not see them at all. Consequently,
matching files are not parsed or otherwise used by BitBake.

The value you provide is passed to Python's regular expression
compiler. The expression is compared against the full paths to the
files. For complete syntax information, see Python's documentation
at http://docs.python.org/release/2.3/lib/re-syntax.html.

The following example uses a complete regular expression to tell
BitBake to ignore all recipe and recipe append files in the meta-ti/
recipes-misc/ directory:

BBMASK = "meta-ti/recipes-misc/"

If you want to mask out multiple directories or recipes, use the
vertical bar to separate the regular expression fragments. This next
example masks out multiple directories and individual recipes:

BBMASK = "meta-ti/recipes-misc/|meta-ti/recipes-ti/packagegroup/"
BBMASK .= "|.*meta-oe/recipes-support/"

BBMASK .= "|.*openldap"

BBMASK .= "|.*opencv"

BBMASK .= "|.*lzma"

Notice how the vertical bar is used to append the fragments.

Note

When specifying a directory name, use the trailing slash
character to ensure you match just that directory name.

Used by BitBake to locate .bbclass and configuration files. This
variable is analogous to the PATH variable.

o] Note
BBPATH If you run BitBake from a directory outside of the

Build Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.htmlbuild-directory], you must be sure
to set BBPATH to point to the Build Directory. Set the variable
as you would any environment variable and then run BitBake:

$ BBPATH = "build directory"
$ export BBPATH
$ bitbake target

Points to the server that runs memory-resident BitBake. This variable
is set by the oe-init-build-env-memres setup script and should not
be hand-edited. The variable is only used when you employ memory-

I:r:r.1r:v.1] resident BitBake. The setup script exports the value as follows:
THO
BBSERVER

export BBSERVER=localhost:$port

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://docs.python.org/release/2.3/lib/re-syntax.html
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.htmlbuild-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.htmlbuild-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.htmlbuild-directory

For more information on how the BBSERVER is used, see
the oe-init-build-env-memres script, which is located in the
Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#source-directory].

When inheriting the binconfig-disabled class, this variable
specifies binary configuration scripts to disable in favor of using pkg-
config to query the information. The binconfig-disabled class will

E"{;;'“ l modify the specified scripts to return an error so that calls to them
BINCONFIG can be easily found and replaced.

To add multiple scripts, separate them by spaces. Here is an example
from the libpng recipe:

BINCONFIG = "${bindir}/libpng-config ${bindir}/libpngl6-config"

When inheriting the binconfig class, this variable specifies a

wildcard for configuration scripts that need editing. The scripts are

edited to correct any paths that have been set up during compilation

:nTr;;m] so that they are correct for use when installed into the sysroot and
BINCONFIG_GLOBca“ed by the build processes of other recipes.

For more information on how this variable works,
see meta/classes/binconfig.bbclass in the Source
Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#source-directory]. You can also find general
information on the class in the "binconfig.bbclass" section.

The base recipe name and version but without any special recipe
name suffix (i.e. -native, 1ib64-, and so forth). BP is comprised of
the following:

Context
THO

g

BP ${BPN}-${PV}

The bare name of the recipe. This variable is a version of the PN
variable but removes common suffixes such as "-native" and "-
cross" as well as removes common prefixes such as multilib's "lib64-"
Conext and "lib32-". The exact list of suffixes removed is specified by the
e BPN SPECIAL PKGSUFFIX variable. The exact list of prefixes removed
is specified by the MLPREFIX variable. Prefixes are removed for

multilib and nativesdk cases.

g

Specifies a URL for an upstream bug tracking website for a recipe.

The OpenEmbedded build system does not use this variable. Rather,

the variable is a useful pointer in case a bug in the software being
Cones built needs to be manually reported.

BUGTRACKER

=
=
1=

Specifies the flags to pass to the C compiler when building for the
build host. When building in the -native context, CFLAGS is set to
the value of this variable by default.

Context

=
=
(=]

BUILD_CFLAGS

Specifies the flags to pass to the C pre-processor (i.e. to both the

C and the C++ compilers) when building for the build host. When

building in the native context, CPPFLAGS is set to the value of this
Contoxt variable by default.

BUILD_CPPFLAGS

=
=
(=]

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

Specifies the flags to pass to the C++4 compiler when building for the
build host. When building in the native context, CXXFLAGS is set to
the value of this variable by default.

Context

=
=
1=

BUILD_CXXFLAGS

Specifies the flags to pass to the linker when building for the build
host. When building in the -native context, LDFLAGS is set to the
value of this variable by default.

Contemet

=
=
(=]

BUILD_LDFLAGS

Specifies the optimization flags passed to the C compiler when
building for the build host or the SDK. The flags are passed through
the BUILD CFLAGS and BUILDSDK CFLAGS default values.

The default value of the BUILD OPTIMIZATION variable is "-O2 -pipe".
BUILD_OPTIMIZATION

Context

=
=
(=]

Points to the location of the Build

Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-

manual.html#build-directory]. You can define this directory indirectly

Conext through the oe-init-build-env and oe-init-build-env-memres

o BUILDDIR scripts by passing in a Build Directory path when you run the scripts.

If you run the scripts and do not provide a Build Directory path, the
BUILDDIR defaults to build in the current directory.

g

When inheriting the buildhistory class, this variable specifies

whether or not to commit the build history output in a local Git

repository. If set to "1", this local repository will be maintained

:nTr;um automatically by the buildhistory class and a commit will be

d on every build for changes to each top-level subdirectory of

BUlLDHBTORY—CCf@ﬁ uild history output (images, packages, and sdk). If you want to

track changes to build history over time, you should set this value
to "1".

g

By default, the buildhistory class does not commit the build history
output in a local Git repository:

BUILDHISTORY_COMMIT ?= "0"

When inheriting the buildhistory «class, this variable

specifies the author to use for each Git commit. In order

for the BUILDHISTORY COMMIT AUTHOR variable to work, the
Context BUILDHISTORY_ COMMIT variable must be set to "1".

THO
BUILDHISTORY_CQMIT AHRER that the value you provide for the
BUILDHISTORY COMMIT AUTHOR variable takes the form of "name
<email@host>". Providing an email address or host that is not valid
does not produce an error.

g

By default, the buildhistory class sets the variable as follows:

BUILDHISTORY COMMIT AUTHOR ?= "buildhistory <buildhistory@${DISTR

When inheriting the buildhistory class, this variable specifies
the directory in which build history information is kept.
For more information on how the variable works, see the

EnTr;;m] buildhistory.class.

BUILDHISTORY_DIBy default, the buildhistory class sets the directory as follows:

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

Context
THO

Context
THD
3 BUILDHISTORY_IM

Context
THO

BUILDHISTORY DIR ?= "${TOPDIR}/buildhistory"

When inheriting the buildhistory class, this variable specifies
the build history features to be enabled. For more information on
how build history works, see the "Maintaining Build Output Quality"
section.

BU"‘DH'STORY—FE%_LSJBgé specify three features in the form of a space-separated list:

* image: Analysis of the contents of images, which includes the list
of installed packages among other things.

» package: Analysis of the contents of individual packages.
» sdk: Analysis of the contents of the software development kit (SDK).

By default, the buildhistory class enables all three features:
BUILDHISTORY_ FEATURES ?= "image package sdk"

When inheriting the buildhistory class, this variable specifies a
list of paths to files copied from the image contents into the build
history directory under an "image-files" directory in the directory for
the image, so that you can track the contents of each file. The default
?ég c’_quS/etc/passwd and /etc/group, which allows you to monitor
or changes in user and group entries. You can modify the list to
include any file. Specifying an invalid path does not produce an error.
Consequently, you can include files that might not always be present.

By default, the buildhistory class provides paths to the following
files:

BUILDHISTORY_IMAGE_FILES ?= "/etc/passwd /etc/group"

When inheriting the buildhistory class, this variable optionally
specifies a remote repository to which build history pushes
Git changes. In order for BUILDHISTORY PUSH REPO to work,
BUILDHISTORY COMMIT must be set to "1".

BUlLDHBTORY—PUﬁH-}B&?&itory should correspond to a remote address that specifies

a repository as understood by Git, or alternatively to a remote name
that you have set up manually using git remote within the local
repository.

By default, the buildhistory class sets the variable as follows:

BUILDHISTORY_PUSH REPO ?= "*"

Specifies the flags to pass to the C compiler when building for the
SDK. When building in the nativesdk context, CFLAGS is set to the
value of this variable by default.

Contest
THO
3 BUILDSDK_CFLAGS

Context
THO
3 BUILDSDK_CPPFLAGS

Specifies the flags to pass to the C pre-processor (i.e. to both the C
and the C++ compilers) when building for the SDK. When building in
the nativesdk context, CPPFLAGS is set to the value of this variable
by default.

Specifies the flags to pass to the C++4 compiler when building for the
SDK. When building in the nativesdk context, CXXFLAGS is set to the
value of this variable by default.

Context

=
=
1=

BUILDSDK_CXXFLAGS

Specifies the flags to pass to the linker when building for the SDK.
When building in the nativesdk- context, LDFLAGS is set to the value
of this variable by default.

Contemet

=
=
(=]

BUILDSDK_LDFLAGS

Points to the location of the directory that holds build statistics when
you use and enable the buildstats class. The BUILDSTATS BASE
directory defaults to ${TMPDIR}/buildstats/.

Context

=
=
(=]

BUILDSTATS_BASE

For the BusyBox recipe, specifies whether to split the output
executable file into two parts: one for features that require setuid
root, and one for the remaining features (i.e. those that do not

Cortest require setuid root).
THOD

g

BUSYBOX_SPLIT_SBH@ BUSYBOX SPLIT SUID variable defaults to "1", which results in
a single output executable file. Set the variable to "0" to split the
output file.

Specifies the flags to pass to the C compiler. This variable is exported
to an environment variable and thus made visible to the software
being built during the compilation step.

Condewt

TBD Default initialization for CFLAGS varies depending on what is being
CFLAGS built:

g

* TARGET _CFLAGS when building for the target
* BUILD CFLAGS when building for the build host (i.e. -native)
* BUILDSDK CFLAGS when building for an SDK (i.e. nativesdk-)

An internal variable specifying the special class override that should
currently apply (e.g. "class-target", "class-native", and so forth). The
classes that use this variable set it to appropriate values.

Contemwt
THD You do not normally directly interact with this variable. The value for
CLASSOVERRIDE the CLASSOVERRIDE variable goes into OVERRIDES and then can be

used as an override. Here is an example where "python-native" is
added to DEPENDS only when building for the native case:

DEPENDS append class-native = " python-native"

Provides a list of hardware features that are enabled in both
MACHINE FEATURES and DISTRO FEATURES. This select list of features
contains features that make sense to be controlled both at the
Context machine and distribution configuration level. For example, the
o COMBINED FEATUH)étgetOOth" feature requires hardware support but should also be
- optional at the distribution level, in case the hardware supports

Bluetooth but you do not ever intend to use it.

For more information, see the MACHINE FEATURES and
DISTRO_FEATURES variables.

Points to meta/files/common-licenses in the Source
Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#source-directory], which is where generic license files

I:r:Tr;I;m reside.
3 COMMON_LICENSE_DIR

A regular expression that resolves to one or more hosts (when the

recipe is native) or one or more targets (when the recipe is non-

native) with which a recipe is compatible. The regular expression is

:nTr;;m matched against HOST _SYS. You can use the variable to stop recipes
om being built for classes of systems with which the recipes are not
COIVII:’ATIBI‘E—HOSi-:rompatibIe. Stopping these builds is particularly useful with kernels.

The variable also helps to increase parsing speed since the build
system skips parsing recipes not compatible with the current system.

A regular expression that resolves to one or more target machines
with which a recipe is compatible. The regular expression is
matched against MACHINEOVERRIDES. You can use the variable to

:nTr;;m] stop recipes from being built for machines with which the recipes
COMPATIBLE_MAC

FR”I::]Ot compatible. Stopping these builds is particularly useful with
|) . ; ,

ernels. The variable also helps to increase parsing speed since the
build system skips parsing recipes not compatible with the current
machine.

Defines wildcards to match when installing a list of complementary
packages for all the packages explicitly (or implicitly) installed
in an image. The resulting list of complementary packages is
caniex] associated with an item that can be added to IMAGE_ FEATURES. An

le usage of this is the "dev-pkgs" item that when added to
COMPLEMENTARY—%Q@E) FEATURES will install -dev packages (containing headers and

other development files) for every package in the image.

To add a new feature item pointing to a wildcard, use a variable flag
to specify the feature item name and use the value to specify the
wildcard. Here is an example:

COMPLEMENTARY GLOB[dev-pkgs] = '*-dev'

Identifies editable or configurable files that are part of a package.
If the Package Management System (PMS) is being used to update
packages on the target system, it is possible that configuration files

Context] you have changed after the original installation and that you now
THO
CONFFILES

want to remain unchanged are overwritten. In other words, editable
files might exist in the package that you do not want reset as part
of the package update process. You can use the CONFFILES variable
to list the files in the package that you wish to prevent the PMS from
overwriting during this update process.

To use the CONFFILES variable, provide a package name override that
identifies the resulting package. Then, provide a space-separated list
of files. Here is an example:

CONFFILES ${PN} += "${sysconfdir}/filel \
${sysconfdir}/file2 ${sysconfdir}/file3"

A relationship exists between the CONFFILES and FILES variables.
The files listed within CONFFILES must be a subset of the files
listed within FILES. Because the configuration files you provide
with CONFFILES are simply being identified so that the PMS will
not overwrite them, it makes sense that the files must already be
included as part of the package through the FILES variable.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

Contoxt
THO

Context

=
=
1=

Context
THO

g

Context
THO

g

Context
THOD

g

Context

THO

g

Context

=
=
(=]

Note

When specifying paths as part of the CONFFILES variable,
it is good practice to use appropriate path variables. For
example, ${sysconfdir} rather than /etc or ${bindir}
rather than /usr/bin. You can find a list of these variables
at the top of the meta/conf/bitbake.conf file in the
Source Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#source-directory].

Identifies the initial RAM disk (initramfs) source files. The
OpenEmbedded build system receives and uses this kernel Kconfig
variable as an environment variable. By default, the variable is set
to null ("").

CONFlG—IN'TRAMF'?hé%ﬁﬁfG_INITRAMFS_SOURCE can be either a single cpio archive

CONFIG_SITE

with a .cpio suffix or a space-separated list of directories and files
for building the initramfs image. A cpio archive should contain a
filesystem archive to be used as an initramfs image. Directories
should contain a filesystem layout to be included in the initramfs
image. Files should contain entries according to the format described
by the usr/gen_init cpio program in the kernel tree.

If you specify multiple directories and files, the initramfs image will
be the aggregate of all of them.

A list of files that contains autoconf test results relevant to the
current build. This variable is used by the Autotools utilities when
running configure.

When inheriting the distro features check class, this variable
identifies distribution features that would be in conflict should the
recipe be built. In other words, if the CONFLICT DISTRO FEATURES
variable lists a feature that also appears in DISTRO_FEATURES within

CONFLICT DISTROH]?E&LILUﬁEgconﬁguration' an error occurs and the build stops.

COPY_LIC_DIRS

If set to "1" along with the COPY LIC MANIFEST variable, the
OpenEmbedded build system copies into the image the license
files, which are located in /usr/share/common-1licenses, for each
package. The license files are placed in directories within the image
itself.

If set to "1", the OpenEmbedded build system copies the
license manifest for the image to /usr/share/common-licenses/
license.manifest within the image itself.

COPY_LIC_MANIFEST

Specifies the list of packages to be added to the image. You
should only set this variable in the local.conf configuration file
found in the Build Directory [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#build-directory].

CORE_IMAGE_EXTH£idNGIALb e replaces POKY EXTRA INSTALL, which is no longer

COREBASE

supported.

Specifies the parent directory of the OpenEmbedded Core Metadata
layer (i.e. meta).

It is an important distinction that COREBASE points to the parent of
this layer and not the layer itself. Consider an example where you
have cloned the Poky Git repository and retained the poky name for

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

EETF;DEK'I]
CPPFLAGS

Context

THO

£

CXXFLAGS

Context

THO

g

Contoxt
THO

4

DATETIME

Context

=
=
(=]

Contemet

=
=
(=]

Context

=
=
(=]

DEBUG_BUILD

your local copy of the repository. In this case, COREBASE points to the
poky folder because it is the parent directory of the poky/meta layer.

Specifies the flags to pass to the C pre-processor (i.e. to both the C
and the C++ compilers). This variable is exported to an environment
variable and thus made visible to the software being built during the
compilation step.

Default initialization for CPPFLAGS varies depending on what is being
built:

* TARGET CPPFLAGS when building for the target
* BUILD CPPFLAGS when building for the build host (i.e. -native)
* BUILDSDK CPPFLAGS when building for an SDK (i.e. nativesdk-)

Specifies the flags to pass to the C++ compiler. This variable is
exported to an environment variable and thus made visible to the
software being built during the compilation step.

Default initialization for CXXFLAGS varies depending on what is being
built:

* TARGET CXXFLAGS when building for the target
* BUILD CXXFLAGS when building for the build host (i.e. -native)
* BUILDSDK CXXFLAGS when building for an SDK (i.e. nativesdk)

The destination directory. The location in the Build
Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#build-directory] where components are installed by the
do _install task. This location defaults to:

${WORKDIR}/image

The date and time on which the current build started. The format is
suitable for timestamps.

Specifies to build packages with debugging information. This
influences the value of the SELECTED OPTIMIZATION variable.

The options to pass in TARGET CFLAGS and CFLAGS when compiling a
system for debugging. This variable defaults to "-O -fno-omit-frame-
pointer ${DEBUG_FLAGS} -pipe".

DEBUG_OPTIMIZATION

Specifies a weak bias for recipe selection priority.

The most common usage of this is variable is to set it to "-1" within
a recipe for a development version of a piece of software. Using the
variable in this way causes the stable version of the recipe to build

DEFAULT_PREFERENCdefault in the absence of PREFERRED VERSION being used to build

the development version.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

EETr;I;V.'I
DEFAULTTUNE

EETF;I;V.'I
DEPENDS

EETr;I;K'I
DEPLOY_DIR

I:r:Tr;I;m]
DEPLOYDIR

Note

The bias provided by DEFAULT PREFERENCE is weak and is
overridden by BBFILE PRIORITY if that variable is different
between two layers that contain different versions of the
same recipe.

The default CPU and Application Binary Interface (ABI) tunings
(i.e. the "tune") used by the OpenEmbedded build system. The
DEFAULTTUNE helps define TUNE_FEATURES.

The default tune is either implicitly or explicitly set by the machine
(MACHINE). However, you can override the setting using available
tunes as defined with AVAILTUNES.

Lists a recipe's build-time dependencies (i.e. other recipe files). The
system ensures that all the dependencies listed have been built and
have their contents in the appropriate sysroots before the recipe's
configure task is executed.

Consider this simple example for two recipes named "a" and "b"
that produce similarly named packages. In this example, the DEPENDS
statement appears in the "a" recipe:

DEPENDS = "b"

Here, the dependency is such that the do_configure task for recipe
"a" depends on the do_populate sysroot task of recipe "b". This
means anything that recipe "b" puts into sysroot is available when
recipe "a" is configuring itself.

For information on runtime dependencies, see the RDEPENDS variable.

Points to the general area that the OpenEmbedded build
system uses to place images, packages, SDKs and other
output files that are ready to be used outside of the
build system. By default, this directory resides within the
Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#build-directory] as ${TMPDIR}/deploy.

For more information on the structure of the Build Directory, see
"The Build Directory - build/" section. For more detail on the
contents of the deploy directory, see the "Images" and "Application
Development SDK" sections.

Points to the area that the OpenEmbedded build system uses to
place images and other associated output files that are ready to be
deployed onto the target machine. The directory is machine-specific
as it contains the ${MACHINE} name. By default, this directory resides

Contemwt
THD e . X i i
DEPLOY DIR_IMAG ithin the Build Directory [http://www.yoctoproject.org/docs/1.8/

ev-manual/dev-manual.html#build-directory] as ${DEPLOY_DIR}/
images/${MACHINE}/.

For more information on the structure of the Build Directory, see
"The Build Directory - build/" section. For more detail on the
contents of the deploy directory, see the "Images" and "Application
Development SDK" sections.

When inheriting the deploy class, the DEPLOYDIR points to a
temporary work area for deployed files that is set in the deploy class
as follows:

DEPLOYDIR = "${WORKDIR}/deploy-${PN}"

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

Context
THO

g

DESCRIPTION

Context
THD
3 DISK_SIGNATURE

EETF;I;K'I
DISTRO

Recipes inheriting the deploy class should copy files to be deployed
into DEPLOYDIR, and the class will take care of copying them into
DEPLOY DIR IMAGE afterwards.

The package description used by package managers. If not set,
DESCRIPTION takes the value of the SUMMARY variable.

A 32-bit MBR disk signature used by directdisk images.

By default, the signature is set to an automatically generated random
value that allows the OpenEmbedded build system to create a boot
loader. You can override the signature in the image recipe by setting
DISK SIGNATURE to an 8-digit hex string. You might want to override
DISK SIGNATURE if you want the disk signature to remain constant
between image builds.

When using Linux 3.8 or later, you can use DISK SIGNATURE to
specify the root by UUID to allow the kernel to locate the root device
even if the device name changes due to differences in hardware
configuration. By default, SYSLINUX ROOT is set as follows:

SYSLINUX ROOT = "root=/dev/sda2"

However, you can change this to locate the root device using the disk
signature instead:

SYSLINUX ROOT = "root=PARTUUID=${DISK SIGNATURE}-02"

As previously mentioned, it is possible to set the DISK SIGNATURE
variable in your local. conf file to a fixed value if you do not want
syslinux.cfg changing for each build. You might find this useful
when you want to upgrade the root filesystem on a device without
having to recreate or modify the master boot record.

The short name of the distribution. This variable corresponds to a
distribution configuration file whose root name is the same as the
variable's argument and whose filename extension is .conf. For
example, the distribution configuration file for the Poky distribution
is named poky.conf and resides in the meta-yocto/conf/distro
directory of the Source Directory [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#source-directory].

Within that poky. conf file, the DISTRO variable is set as follows:
DISTRO = "poky"

Distribution configuration files are located in a conf/distro directory
within the Metadata [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#metadata] that contains the distribution
configuration. The value for DISTRO must not contain spaces, and is
typically all lower-case.

Note

If the DISTRO variable is blank, a set of default configurations
are used, which are specified within meta/conf/distro/
defaultsetup.conf also in the Source Directory.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata

Specifies a list of distro-specific packages to add to all images. This
variable takes affect through packagegroup-base so the variable
only really applies to the more full-featured images that include

cortes] packagegroup-base. You can use this variable to keep distro policy
neric images. As with all other distro variables, you set this
DISTRO—EXTRA—R@%]Ei%)@Eegm the distro . conf file.

Specifies a list of distro-specific packages to add to all images if the
packages exist. The packages might not exist or be empty (e.g. kernel
modules). The list of packages are automatically installed but you

Context] can remove them.
THO
DISTRO_EXTRA_RRECOMMENDS

The software support you want in your distribution for various
features. You define your distribution features in the distribution
configuration file.

Contemwt
o n most cases, the presence or absence of a feature in
DISTRO_FEATURE ISTRO_FEATURES is translated to the appropriate option supplied
to the configure script during the do_configure task for recipes
that optionally support the feature. For example, specifying "x11" in
DISTRO_FEATURES, causes every piece of software built for the target
that can optionally support X11 to have its X11 support enabled.

Two more examples are Bluetooth and NFS support. For a more
complete list of features that ships with the Yocto Project and that
you can provide with this variable, see the "Distro Features" section.

Features to be added to DISTRO FEATURES if not also present in
DISTRO FEATURES BACKFILL CONSIDERED.

:nTr;;m This variable is set in the meta/conf/bitbake.conf file. It is not

in o be user-configurable. It is best to just reference the

DISTRO—FEATURE%arla e lfFG see which distro features are being backfilled for all

distro configurations. See the Feature backfilling section for more
information.

g

Features from DISTRO FEATURES BACKFILL that should not be
backfilled (i.e. added to DISTRO_FEATURES) during the build. See the
"Feature Backfilling" section for more information.

Contemet

=
=
(=]

DISTRO_FEATURES_BACKFILL_CONSIDERED

The long name of the distribution.

Context

=
=
(=]

DISTRO_NAME
Alias names used for the recipe in various Linux distributions.

See the "Handling a Package Name Alias [http://
Contest www.yoctoproject.org/docs/1.8/dev-manual/dev-
o manual.html#usingpoky-configuring-DISTRO_PN_ALIAS]" section in
DISTRO_PN_ALIAS . - = .
- - the Yocto Project Development Manual for more information.

g

The version of the distribution.

Context
THOD

g

DISTRO_VERSION

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-configuring-DISTRO_PN_ALIAS
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-configuring-DISTRO_PN_ALIAS
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-configuring-DISTRO_PN_ALIAS
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-configuring-DISTRO_PN_ALIAS

Contoxt
THO

Context
THOD

Context
THOD

DL_DIR

Contoxt
THO
3 DOC_COMPRESS

EFI_PROVIDER

This variable lists overrides specific to the current distribution. By
default, the variable list includes the value of the DISTRO variable.
You can extend the variable to apply any variable overrides you want

I:r:r.1r:v.1] as part of the distribution and are not already in OVERRIDES through
THO
DISTROOVERRIDE

gome other means.

The central download directory used by the build process to store
downloads. By default, DL_DIR gets files suitable for mirroring
for everything except Git repositories. If you want tarballs of Git
repositories, use the BB. GENERATE_MIRROR TARBALLS variable.

You can set this directory by defining the DL _DIR variable in the
conf/local.conf file. This directory is self-maintaining and you
should not have to touch it. By default, the directory is downloads
in the Build Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#build-directory].

#DL DIR ?= "${TOPDIR}/downloads"

To specify a different download directory, simply remove the
comment from the line and provide your directory.

During a first build, the system downloads many different source
code tarballs from various upstream projects. Downloading can take
a while, particularly if your network connection is slow. Tarballs are
all stored in the directory defined by DL DIR and the build system
looks there first to find source tarballs.

Note

When wiping and rebuilding, you can preserve this directory
to speed up this part of subsequent builds.

You can safely share this directory between multiple builds on the
same development machine. For additional information on how the
build process gets source files when working behind a firewall or
proxy server, see this specific question in the "FAQ [221]" chapter.

When inheriting the compress doc class, this variable sets the
compression policy used when the OpenEmbedded build system
compresses man pages and info pages. By default, the compression
method used is gz (gzip). Other policies available are xz and bz2.

For information on policies and on how to use this variable, see the
comments in the meta/classes/compress doc.bbclass file.

When building bootable images (i.e. where hddimg or vmdk is
in IMAGE_FSTYPES), the EFI PROVIDER variable specifies the EFI
bootloader to use. The default is "grub-efi", but "gummiboot" can be
used instead.

See the gummiboot class for more information.

Variable that controls which locales for eglibc are generated during
the build (useful if the target device has 64Mbytes of RAM or less).

ENABLE_BINARY_LOCALE_GENERATION

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

When used with the report-error class, specifies the path

used for storing the debug files created by the error

reporting tool [http://www.yoctoproject.org/docs/1.8/dev-manual/

Conext dev-manual.html#using-the-error-reporting-tool], which allows you

i ERR REPORT DIR [0 submit build errors you encounter to a central database. By
- - default, the value of this variable is ${LOG_DIR}/error-report.

You can set ERR_REPORT DIR to the path you want the error reporting
tool to store the debug files as follows in your local. conf file:

ERR REPORT DIR = "path"

Specifies the quality assurance checks whose failures are reported

as errors by the OpenEmbedded build system. You set this variable

in your distribution configuration file. For a list of the checks you can
Coniext] control with this variable, see the "insane.bbclass" section.

THO
ERROR_QA

Directs BitBake to exclude a recipe from world builds (i.e. bitbake
world). During world builds, BitBake locates, parses and builds
all recipes found in every layer exposed in the bblayers.conf

EnTr;I;m] configuration file.
EXCLUDE_FROM_V%)%

I>‘<|8Iude a recipe from a world build using this variable, set the
variable to "1" in the recipe.

Note

Recipes added to EXCLUDE _FROM _WORLD may still be built
during a world build in order to satisfy dependencies of
other recipes. Adding a recipe to EXCLUDE_FROM _WORLD only
ensures that the recipe is not explicitly added to the list of
build targets in a world build.

Used with file and pathnames to create a prefix for a recipe's version

based on the recipe's PE value. If PE is set and greater than zero for

a recipe, EXTENDPE becomes that value (e.qg if PE is equal to "1" then

I:nTr;;m] EXTENDPE becomes "1_"). If a recipe's PE is not set (the default) or is
EXTENDPE equal to zero, EXTENDPE becomes "".

See the STAMP variable for an example.
The full package version specification as it appears on the final

packages produced by a recipe. The variable's value is normally used
to fix a runtime dependency to the exact same version of another

:nTr;;m] package in the same recipe:
EXTENDPKGV

RDEPENDS ${PN}-additional-module = "${PN} (= ${EXTENDPKGV})"

The dependency relationships are intended to force the package
manager to upgrade these types of packages in lock-step.

When inheriting the externalsrc class, this variable points to the
source tree, which is outside of the OpenEmbedded build system.
When set, this variable sets the S variable, which is what the

:nTr;;m] OpenEmbedded build system uses to locate unpacked recipe source
EXTERNALSRC ~ €09

For more information on externalsrc.bbclass, see the
"externalsrc.bbclass" section. You can also find information on
how to use this variable in the "Building Software from an External
Source [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-the-error-reporting-tool
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-the-error-reporting-tool
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-the-error-reporting-tool
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#using-the-error-reporting-tool
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#building-software-from-an-external-source
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#building-software-from-an-external-source
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#building-software-from-an-external-source

manual.html#building-software-from-an-external-source]" section in
the Yocto Project Development Manual.

When inheriting the externalsrc class, this variable points to the
directory in which the recipe's source code is built, which is outside
of the OpenEmbedded build system. When set, this variable sets the
:-:Tr;;m] B variable, which is what the OpenEmbedded build system uses to

EXTERNALSRC_BUII?_Bate the Build Directory.

For more information on externalsrc.bbclass, see the
"externalsrc.bbclass" section. You can also find information on
how to use this variable in the "Building Software from an External
Source [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#building-software-from-an-external-source]" section in
the Yocto Project Development Manual.

The list of additional features to include in an image. Typically,

you configure this variable in your local.conf file, which is found

in the Build Directory [http://www.yoctoproject.org/docs/1.8/dev-

Coniext manual/dev-manual.html#build-directory]. Although you can use
THO : . PN . . .

EXTRA_IMAGE_FEA?BL'E’RY%”able from within a recipe, best practices dictate that you do

Note

To enable primary features from within the image recipe, use
the IMAGE_FEATURES variable.

Here are some examples of features you can add:

"dbg-pkgs" - Adds -dbg packages for all installed packages
including symbol information for debugging and
profiling.

"debug-tweaks" - Makes an image suitable for development.
For example, ssh root access has a blank
password. You should remove this feature
before you produce a production image.

"dev-pkgs" - Adds -dev packages for all installed packages.
This is useful if you want to develop against
the libraries in the image.

"read-only-rootfs" - Creates an image whose root
filesystem is read-only. See the
"Creating a Read-Only Root Filesystem [http://www
section in the Yocto Project
Development Manual for more
information

"tools-debug" - Adds debugging tools such as gdb and
strace.

"tools-profile" - Adds profiling tools such as oprofile,
exmap, lttng and valgrind (x86 only).

"tools-sdk" - Adds development tools such as gcc, make,
pkgconfig and so forth.

"tools-testapps" - Adds useful testing tools such as
ts print, aplay, arecord and so
forth.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#building-software-from-an-external-source
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#building-software-from-an-external-source
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#building-software-from-an-external-source
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#building-software-from-an-external-source
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#building-software-from-an-external-source
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-read-only-root-filesystem
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#creating-a-read-only-root-filesystem

For a complete list of image features that ships with the Yocto Project,
see the "Image Features" section.

For an example that shows how to customize
your image by using this variable, see the
"Customizing Images Using Custom IMAGE FEATURES and
EXTRA_IMAGE FEATURES [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#usingpoky-extend-customimage-
imagefeatures]" section in the Yocto Project Development Manual.

Specifies additional options for the image creation command that has
been specified in IMAGE_CMD. When setting this variable, you should
use an override for the associated type. Here is an example:

Context
THO

g

EXTRAIMAGECMD ExTRA IMAGECMD ext3 7= "-i 4096"

A list of recipes to build that do not provide packages for installing
into the root filesystem.

caniex Sometimes a recipe is required to build the final image but is not
d in the root filesystem. You can use the EXTRA IMAGEDEPENDS

EXTRA—lMAGEDEP\Elgg)a le to list these recipes and thus specify the dependencies. A
typical example is a required bootloader in a machine configuration.

Note

To add packages to the root filesystem, see the various
*RDEPENDS and *RRECOMMENDS variables.

g

Additional cmake options.

Context

=
=
1=

EXTRA_OECMAKE

Additional configure script options.

Contoxt
THO

£

EXTRA_OECONF

Additional GNU make options.

Context

=
=
(=]

EXTRA_OEMAKE

When inheriting the scons class, this variable specifies additional
configuration options you want to pass to the scons command line.

Context

=
=
(=]

EXTRA_OESCONS

Configuration variables or options you want to pass to gmake. Use
this variable when the arguments need to be after the .pro file list
on the command line.
Context
THCH
Thi able is used with recipes that inherit the gqmake base class
EXTRA—QMAKEVA%éri()E’cqgfclasses that inherit qmake_base.

g

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-imagefeatures
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-imagefeatures
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-imagefeatures
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-imagefeatures
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-imagefeatures

Context
THO

Context
THO

g

Contoxt
THO

Context
THO

Configuration variables or options you want to pass to gmake. Use
this variable when the arguments need to be before the .pro file list
on the command line.

This variable is used with recipes that inherit the gmake_base class

EXTRA_QMAKEVARR BRr classes that inherit gmake_base.

When inheriting the extrausers class, this variable provides image
level user and group operations. This is a more global method of
providing user and group configuration as compared to using the
useradd class, which ties user and group configurations to a specific

EXTRA_USERS_PARAMS®

The set list of commands you can configure using the
EXTRA USERS PARAMS is shown in the extrausers class. These
commands map to the normal Unix commands of the same names:

EXTRA USERS PARAMS = "\
useradd -p '' tester; \
groupadd developers; \

userdel nobody; \

groupdel -g video; \

groupmod -g 1020 developers; \
usermod -s /bin/sh tester; \

HHHHHHHH

Defines one or more packages to include in an image when a
specific item is included in IMAGE FEATURES. When setting the value,
FEATURE_PACKAGES should have the name of the feature item as an
override. Here is an example:

FEATURE_PACKAGES

FEATURE_PACKAGES widget = "packagel package2"

In this example, if "widget" were added to IMAGE FEATURES,
packagel and package2 would be included in the image.

Note

Packages installed by features defined through
FEATURE_PACKAGES are often package groups. While similarly
named, you should not confuse the FEATURE PACKAGES
variable with package groups, which are discussed elsewhere
in the documentation.

Points to the base URL of the server and location within the
document-root that provides the metadata and packages required by
OPKG to support runtime package management of IPK packages. You
set this variable in your local. conf file.

FEED_DEPLOYDIR BhipfgbRine following example:

FEED DEPLOYDIR BASE URI = "http://192.168.7.1/BOARD-dir"

This example assumes you are serving your packages over HTTP and
your databases are located in a directory named BOARD-dir, which
is underneath your HTTP server's document-root. In this case, the
OpenEmbedded build system generates a set of configuration files
for you in your target that work with the feed.

The list of directories or files that are placed in packages.

To use the FILES variable, provide a package name override that
Coniext] identifies the resulting package. Then, provide a space-separated list
THO
FILES

of files or paths that identify the files you want included as part of
the resulting package. Here is an example:

FILES ${PN} += "${bindir}/mydirl/ ${bindir}/mydir2/myfile"

Note

When specifying paths as part of the FILES variable, it is
good practice to use appropriate path variables. For example,
use ${sysconfdir} rather than /etc, or ${bindir} rather
than /usr/bin. You can find a list of these variables
at the top of the meta/conf/bitbake.conf file in the
Source Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#source-directory].

If some of the files you provide with the FILES variable are editable
and you know they should not be overwritten during the package
update process by the Package Management System (PMS), you can
identify these files so that the PMS will not overwrite them. See the
CONFFILES variable for information on how to identify these files to
the PMS.

Extends the search path the OpenEmbedded build system uses when
looking for files and patches as it processes recipes and append
files. The default directories BitBake uses when it processes recipes

Conext are initially defined by the FILESPATH variable. You can extend
THO . .
FILESEXTRAPATHSFILESPATH variable by using FILESEXTRAPATHS.
Best practices dictate that you accomplish this by using

FILESEXTRAPATHS from within a . bbappend file and that you prepend
paths as follows:

FILESEXTRAPATHS prepend := "${THISDIR}/${PN}:"

In the above example, the build system first looks for files in a
directory that has the same name as the corresponding append file.

Note

When extending FILESEXTRAPATHS, be sure to use the
immediate expansion (:=) operator. Immediate expansion
makes sure that BitBake evaluates THISDIR at the time the
directive is encountered rather than at some later time when
expansion might result in a directory that does not contain
the files you need.

Also, include the trailing separating colon character if you
are prepending. The trailing colon character is necessary
because you are directing BitBake to extend the path by
prepending directories to the search path.

Here is another common use:

FILESEXTRAPATHS prepend := "${THISDIR}/files:"

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

In this example, the build system extends the FILESPATH variable to
include a directory named files that is in the same directory as the
corresponding append file.

Here is a final example that specifically adds three paths:
FILESEXTRAPATHS prepend := "path 1l:path 2:path 3:"

By prepending paths in .bbappend files, you allow multiple append
files that reside in different layers but are used for the same recipe
to correctly extend the path.

A subset of OVERRIDES used by the OpenEmbedded build system for
creating FILESPATH. You can find more information on how overrides
are handled in the BitBake Manual [http://www.yoctoproject.org/

:nTr;;m] docs/1.8/bitbake-user-manual/bitbake-user-manual.html].
FILESOVERRIDES By default, the FILESOVERRIDES variable is defined as:

FILESOVERRIDES = "${TRANSLATED TARGET ARCH}:${MACHINEOVERRIDES}:$

Note

Do not hand-edit the FILESOVERRIDES variable. The values
match up with expected overrides and are used in an
expected manner by the build system.

The default set of directories the OpenEmbedded build system uses
when searching for patches and files. During the build process,
BitBake searches each directory in FILESPATH in the specified order

:-:Tr;;m] when looking for files and patches specified by each file:// URIlin
FILESPATH

a recipe.

The default value for the FILESPATH variable is defined
in the base.bbclass class found in meta/classes in the
Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#source-directory]:

FILESPATH = "${@base set filespath(["${FILE DIRNAME}/${BP}", \
"${FILE DIRNAME}/${BPN}", "${FILE DIRNAME}/files"], d)}"

Note

Do not hand-edit the FILESPATH variable. If you want
the build system to look in directories other than the
defaults, extend the FILESPATH variable by using the
FILESEXTRAPATHS variable.
Be aware that the default FILESPATH directories do not map to
directories in custom layers where append files (.bbappend) are
used. If you want the build system to find patches or files that reside
with your append files, you need to extend the FILESPATH variable
by using the FILESEXTRAPATHS variable.

Allows you to define your own file permissions settings table as
part of your configuration for the packaging process. For example,
suppose you need a consistent set of custom permissions for a set of
:nTr;;m] groups and users across an entire work project. It is best to do this in

FILESYSTEM PERI\A:EEIR%(I-_IE%QeS themselves but this is not always possible.

By default, the OpenEmbedded build system uses the fs-
perms.txt, which is located in the meta/files folder in the

http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

Contest
THOr

Context

THO

g

Context
THO

Contest
THO

Context
THOD

FONT_PACKAGES

Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#source-directory]. If you create your own file
permissions setting table, you should place it in your layer or the
distro's layer.

You define the FILESYSTEM PERMS TABLES variable in
the conf/local.conf file, which is found in the
Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#build-directory], to point to your custom fs-
perms.txt. You can specify more than a single file permissions
setting table. The paths you specify to these files must be defined
within the BBPATH variable.

For guidance on how to create your own file permissions settings
table file, examine the existing fs-perms.txt.

When inheriting the fontcache class, this variable identifies
packages containing font files that need to be cached by Fontconfig.
By default, the fontcache class assumes that fonts are in the recipe's
main package (i.e. ${PN}). Use this variable if fonts you need are in
a package other than that main package.

The options to pass in TARGET CFLAGS and CFLAGS when compiling
an optimized system. This variable defaults to "-02 -pipe
${DEBUG_FLAGS}".

FULL_OPTIMIZATION

Specifies the list of GLIBC locales to generate should you not wish
generate all LIBC locals, which can be time consuming.

Note

GLIBC_GENERATE_LOGQAYBS specifically remove the locale en_US.UTF-8, you must

set IMAGE_LINGUAS appropriately.
You can set GLIBC GENERATE_ LOCALES in your local.conf file. By
default, all locales are generated.

GLIBC_GENERATE LOCALES = "en GB.UTF-8 en US.UTF-8"

When inheriting the useradd class, this variable specifies for a
package what parameters should be passed to the groupadd
command if you wish to add a group to the system when the package
is installed.

GROUPADD_PARAM¢re is an example from the dbus recipe:

GROUPADD PARAM ${PN} = "-r netdev"

For information on the standard Linux shell command groupadd, see
http://linux.die.net/man/8/groupadd.

When inheriting the useradd class, this variable specifies for a
package what parameters should be passed to the groupmems
command if you wish to modify the members of a group when the
package is installed.

GROUPMEMS_PARAM information on the standard Linux shell command groupmems, see

http://linux.die.net/man/8/groupmems.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://linux.die.net/man/8/groupadd
http://linux.die.net/man/8/groupmems

Configures the GNU GRand Unified Bootloader (GRUB) to have

graphics and serial in the boot menu. Set this variable to "1" in your

local. conf or distribution configuration file to enable graphics and
Context serial in the menu.

GRUB_GFXSERIAL

=
=
1=

See the grub-efi class for more information on how this variable is
used.

Additional options to add to the GNU GRand Unified Bootloader
(GRUB) configuration. Use a semi-colon character (;) to separate
multiple options.

Context

=
=
1=

The GRUB_OPTS variable is optional. See the grub-efi class for more
information on how this variable is used.

GRUB_OPTS

Specifies the timeout before executing the default LABEL in the GNU
GRand Unified Bootloader (GRUB).

Contmn The GRUB_TIMEOUT variable is optional. See the grub-efi class for

GRUB_TIMEOUT more information on how this variable is used.

=
=
1=

When inheriting the gtk-immodules-cache class, this variable

specifies the packages that contain the GTK+ input method modules

being installed when the modules are in packages other than the
Contest main package.

GTKIMMODULES_PACKAGES

=
=
(=]

When EFI_PROVIDER is set to "gummiboot", the GUMMIBOOT CFG
variable specifies the configuration file that should be used. By
default, the gummiboot class sets the GUMMIBOOT CFG as follows:

Context

=
=
(=]

GUMMIBOOT_CFG GUMMIBOOT CFG 7= "${S}/loader.conf"

For information on Gummiboot, see the Gummiboot documentation
[http://freedesktop.org/wiki/Software/gummiboot/].

When EFI_PROVIDER is set to "gummiboot", the GUMMIBOOT ENTRIES

variable specifies a list of entry files (*.conf) to be installed

containing one boot entry per file. By default, the gummiboot class
Contest sets the GUMMIBOOT ENTRIES as follows:

THDH
GUMMIBOOT_ENTRIES

g

GUMMIBOOT ENTRIES ?= ""

For information on Gummiboot, see the Gummiboot documentation
[http://freedesktop.org/wiki/Software/gummiboot/].

When EFI_PROVIDER is set to "gummiboot", the GUMMIBOOT TIMEOUT
variable specifies the boot menu timeout in seconds. By default, the
gummiboot class sets the GUMMIBOOT TIMEOUT as follows:

Context
THDH
3 GUMMIBOOT_TIMEOUT

For information on Gummiboot, see the Gummiboot documentation
[http://freedesktop.org/wiki/Software/gummiboot/].

GUMMIBOOT TIMEOUT ?= "10"

http://freedesktop.org/wiki/Software/gummiboot/
http://freedesktop.org/wiki/Software/gummiboot/
http://freedesktop.org/wiki/Software/gummiboot/
http://freedesktop.org/wiki/Software/gummiboot/
http://freedesktop.org/wiki/Software/gummiboot/
http://freedesktop.org/wiki/Software/gummiboot/

EETF;I;K'I
HOMEPAGE

EETF;;V.'I
3 HOST CC_ARCH

EETF;;V.'I
3 HOST_SYS

I:r:Tr;I;m]
ICECC_DISABLED

EETr;I;V.'I
ICECC_ENV_EXEC

Contoxi
THO
ICECC PARALLEL -

Website where more information about the software the recipe is
building can be found.

Specifies architecture-specific compiler flags that are passed to the
C compiler.

Default initialization for HOST_CC_ARCH varies depending on what is
being built:

* TARGET CC_ARCH when building for the target
* BUILD CC_ARCH when building for the build host (i.e. native)
* BUILDSDK CC_ARCH when building for an SDK (i.e. nativesdk)

Specifies the system, including the architecture and the operating
system, for with the build is occurring in the context of the current
recipe. The OpenEmbedded build system automatically sets this
variable. You do not need to set the variable yourself.

Here are two examples:

* Given a native recipe on a 32-bit x86 machine running Linux, the
value is "i686-linux".

* Given a recipe being built for a little-endian MIPS target running
Linux, the value might be "mipsel-linux".

Disables or enables the icecc (lcecream) function. For more
information on this function and best practices for using this variable,
see the "icecc.bbclass" section.

Setting this variable to "1" in your local. conf disables the function:

ICECC DISABLED ??= "1"

To enable the function, set the variable as follows:

ICECC DISABLED = ""

Points to the icecc-create-env script that you provide. This variable
is used by the icecc class. You set this variable in your local.conf
file.

If you do not point to a script that you provide, the OpenEmbedded
build system uses the default script provided by the icecc-create-
env.bb recipe, which is a modified version and not the one that
comes with icecc.

Extra options passed to the make command during the do_compile
task that specify parallel compilation. This variable usually takes the
form of -j 4, where the number represents the maximum number
of parallel threads make can run.

MAKE

Note

The options passed affect builds on all enabled machines
on the network, which are machines running the iceccd
daemon.

If your enabled machines support multiple cores, coming up with
the maximum number of parallel threads that gives you the best
performance could take some experimentation since machine speed,
network lag, available memory, and existing machine loads can all
affect build time. Consequently, unlike the PARALLEL MAKE variable,
there is no rule-of-thumb for setting ICECC PARALLEL MAKE to
achieve optimal performance.

If you do not set ICECC_PARALLEL_ MAKE, the build system does not
use it (i.e. the system does not detect and assign the number of cores
as is done with PARALLEL MAKE).

The location of the icecc binary. You can set this variable in your
local.conf file. If your Local. conf file does not define this variable,
the icecc class attempts to define it by locating icecc using which.

Context

=
=
1=

ICECC_PATH

Identifies user classes that you do not want the Icecream distributed
compile support to consider. This variable is used by the icecc class.
You set this variable in your local. conf file.

Contoxt
THO

g

ICECC USER CLAS¥¥ fn you list classes using this variable, you are "blacklisting" them
- - rem distributed compilation across remote hosts. Any classes you
list will be distributed and compiled locally.

Identifies user recipes that you do not want the Icecream distributed
compile support to consider. This variable is used by the icecc class.
You set this variable in your local. conf file.

Contoxt
THO

g

nyou list packages using this variable, you are "blacklisting"
ICECC—USER—PAC%@EWB rom distributed compilation across remote hosts. Any
packages you list will be distributed and compiled locally.

Identifies user recipes that use an empty PARALLEL MAKE variable

that you want to force remote distributed compilation on using the

Icecream distributed compile support. This variable is used by the
Contest icecc class. You set this variable in your local. conf file.

THOD
ICECC_USER_PACKAGE_WL

g

The base name of image output files. This variable defaults to the
recipe name (${PN3}).

Context

=
=
(=]

IMAGE_BASENAME

A space-separated list of files installed into the boot partition when
preparing an image using the wic tool with the bootimg-partition
source plugin. By default, the files are installed under the same name
Conext as the source files. To change the installed name, separate it from the
riginal name with a semi-colon (;). Source files need to be located
lMAGE—BOOT—FlLE% DEPLOY DIR IMAGE. Here are two examples:

=
=
(=]

IMAGE_BOOT_FILES
IMAGE _BOOT_FILES

"u-boot.img uImage;kernel"

"u-boot.${UBOOT SUFFIX} ${KERNEL IMAGETYPE}"

Alternatively, source files can be picked up using a glob pattern. In
this case, the destination file will have the same name as the base
name of the source file path. To install files into a directory within
the target location, pass its name after a semi-colon (;). Here are two
examples:

"bcm2835-bootfiles/*"
"bcm2835-bootfiles/*;boot/"

IMAGE BOOT FILES
IMAGE BOOT FILES

The first example installs all files from ${DEPLOY DIR IMAGE}/
bcm2835-bootfiles into the root of the target partition. The second
example installs the same files into a boot directory within the target
partition.

A list of classes that all images should inherit. You typically use this
variable to specify the list of classes that register the different types
of images the OpenEmbedded build system creates.

Context
THO FP H
The default value for IMAGE_CLASSES is image_types. You can set this
IMAGE_CLASSES variable in your local.conf or in a distribution configuration file.

For more information, see meta/classes/image types.bbclass
in the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#source-directory].

Specifies the command to create the image file for a specific image
type, which corresponds to the value set set in IMAGE_FSTYPES, (e.qg.
ext3, btrfs, and so forth). When setting this variable, you should

Conest] use an override for the associated type. Here is an example:
THO
IMAGE_CMD

IMAGE CMD jffs2 = "mkfs.jffs2 --root=${IMAGE ROOTFS} \
--faketime --output=${DEPLOY DIR IMAGE}/${IMAGE NAME}.rootfs.j
${EXTRA_ IMAGECMD}"

You typically do not need to set this variable unless you are adding
support for a new image type. For more examples on how to set
this variable, see the image_types class file, which ismeta/classes/
image types.bbclass.

Specifies one or more files that contain custom device tables that

are passed to the makedevs command as part of creating an image.

These files list basic device nodes that should be created under /

caniers] dev within the image. If IMAGE DEVICE TABLES is not set, files/

ice table-minimal.txt is used, which is located by BBPATH. For

IMAGE—DEVICE—TA%Z‘tal s on how you should write device table files, see meta/files/
device table-minimal.txt as an example.

The primary list of features to include in an image. Typically, you
configure this variable in an image recipe. Although you can use
this variable from your local.conf file, which is found in the

I:r:r.u:m] Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
THO
IMAGE_FEATURES

dev-manual.html#build-directory], best practices dictate that you do
not.

Note
To enable extra features from outside the image recipe, use
the EXTRA IMAGE FEATURES variable.
For a list of image features that ships with the Yocto Project, see the
"Image Features" section.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

EETr;I;V.'I
IMAGE_FSTYPES

EETr;I;V.'I
IMAGE_INSTALL

For an example that shows how to customize
your image by using this variable, see the
"Customizing Images Using Custom IMAGE FEATURES and
EXTRA_ IMAGE FEATURES [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#usingpoky-extend-customimage-
imagefeatures]" section in the Yocto Project Development Manual.

Specifies the formats the OpenEmbedded build system uses during
the build when creating the root filesystem. For example, setting
IMAGE_FSTYPES as follows causes the build system to create root
filesystems using two formats: .ext3 and .tar.bz2:

IMAGE_FSTYPES = "ext3 tar.bz2"

For the complete list of supported image formats from which you can
choose, see IMAGE_TYPES.

Note

If you add "live" to IMAGE_FSTYPES inside an image recipe,
be sure that you do so prior to the "inherit image" line of the
recipe or the live image will not build.

Note

Due to the way this variable is processed, it is not possible to
update its contents using append or prepend. To add one
or more additional options to this variable the += operator
must be used.

Specifies the packages to install into an image. The IMAGE_INSTALL
variable is a mechanism for an image recipe and you should use it
with care to avoid ordering issues.

Note

When working with an core-image-minimal-
initramfs [119] image, do not use the IMAGE INSTALL
variable to specify packages for installation. Instead, use the
PACKAGE_INSTALL variable, which allows the initial RAM disk
(initramfs) recipe to use a fixed set of packages and not be
affected by IMAGE INSTALL.

Image recipes set IMAGE_INSTALL to specify the packages to install
into an image through image.bbclass. Additionally, "helper" classes
exist, such as core-image.bbclass, that can take IMAGE FEATURES
lists and turn these into auto-generated entries in IMAGE_INSTALL in
addition to its default contents.

Using IMAGE INSTALL with the += operator from the /conf/
local.conf file or from within an image recipe is not recommended
as it can cause ordering issues. Since core-image.bbclass sets
IMAGE_INSTALL to a default value using the ?= operator, using a +=
operation against IMAGE_INSTALL will result in unexpected behavior
when used in conf/local.conf. Furthermore, the same operation
from within an image recipe may or may not succeed depending on
the specific situation. In both these cases, the behavior is contrary
to how most users expect the += operator to work.

When you use this variable, it is best to use it as follows:

IMAGE _INSTALL append = " package-name"

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-imagefeatures
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-imagefeatures
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-imagefeatures
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-imagefeatures
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#usingpoky-extend-customimage-imagefeatures

Be sure to include the space between the quotation character and
the start of the package name or names.

Specifies the list of locales to install into the image during the root

filesystem construction process. The OpenEmbedded build system

automatically splits locale files, which are used for localization, into

Coniext] separate packages. Setting the IMAGE_LINGUAS variable ensures that
THO

any locale packages that correspond to packages already selected

IMAGE_LINGUAS for installation into the image are also installed. Here is an example:

IMAGE _LINGUAS = "pt-br de-de"

In this example, the build system ensures any Brazilian Portuguese
and German locale files that correspond to packages in the image
are installed (i.e. *-locale-pt-br and *-locale-de-de as well
as *-locale-pt and *-locale-de, since some software packages
only provide locale files by language and not by country-specific
language).

See the GLIBC GENERATE LOCALES variable for information on
generating GLIBC locales.

The manifest file for the image. This file lists all the installed packages
that make up the image. The file contains package information on a
line-per-package basis as follows:

EETr;I;V.'I
IMAGE_MANIFEST

packagename packagearch version
The image class defines the manifest file as follows:
IMAGE _MANIFEST = "${DEPLOY DIR IMAGE}/${IMAGE NAME}.rootfs.manife

The location is derived using the DEPLOY DIR IMAGE and IMAGE NAME
variables. You can find information on how the image is created in
the "Image Generation" section.

The name of the output image files minus the extension. This variable
is derived using the IMAGE BASENAME, MACHINE, and DATETIME
variables:

EETr;I;V.'I
IMAGE_NAME

IMAGE NAME = "${IMAGE BASENAME} - ${MACHINE}-${DATETIME}"

Defines a multiplier that the build system applies to the initial image
size for cases when the multiplier times the returned disk usage
value for the image is greater than the sum of IMAGE_ROOTFS_SIZE
caniex] and IMAGE ROOTFS_EXTRA SPACE. The result of the multiplier applied
initial image size creates free disk space in the image as
IMAGE_OVERHEA&&F&#\%@ . By default, the build process uses a multiplier of 1.3 for this
variable. This default value results in 30% free disk space added to
the image when this method is used to determine the final generated
image size. You should be aware that post install scripts and the
package management system uses disk space inside this overhead
area. Consequently, the multiplier does not produce an image with
all the theoretical free disk space. See IMAGE ROOTFS SIZE for
information on how the build system determines the overall image

size.

Context
THO
3 IMAGE_PKGTYPE

Context
THO

EETF;I;K'I
IMAGE_ROOTFS

Context
THO

The default 30% free disk space typically gives the image enough
room to boot and allows for basic post installs while still leaving a
small amount of free disk space. If 30% free space is inadequate,
you can increase the default value. For example, the following setting
gives you 50% free space added to the image:

IMAGE_OVERHEAD FACTOR = "1.5"

Alternatively, you can ensure a specific amount of free disk space
is added to the image by using the IMAGE ROOTFS EXTRA SPACE
variable.

Defines the package type (DEB, RPM, IPK, or TAR) used by the
OpenEmbedded build system. The variable is defined appropriately
by the package deb, package rpm, package ipk, or package tar
class.

The package sdk base and image classes use the IMAGE PKGTYPE
for packaging up images and SDKs.

You should not set the IMAGE PKGTYPE manually. Rather, the variable
is set indirectly through the appropriate package_ * class using the
PACKAGE_CLASSES variable. The OpenEmbedded build system uses
the first package type (e.g. DEB, RPM, or IPK) that appears with the
variable

Note

Files using the .tar format are never used as a substitute
packaging format for DEB, RPM, and IPK formatted files for
your image or SDK.

Added by classes to run post processing commands once the
OpenEmbedded build system has created the image. You can specify
shell commands separated by semicolons:

IMAGE_POSTPROCESS_CMEANBSTPROCESS COMMAND += "shell command; ... "

If you need to pass the path to the root filesystem within the
command, you can use ${IMAGE_ROOTFS}, which points to the root
filesystem image.

The location of the root filesystem while it is under construction (i.e.
during the do_rootfs task). This variable is not configurable. Do not
change it.

Specifies the alignment for the output image file in Kbytes. If the size
of the image is not a multiple of this value, then the size is rounded
up to the nearest multiple of the value. The default value is "1". See
IMAGE ROOTFS_SIZE for additional information.

Context
THD
3 IMAGE_ROOTFS_ALIGNMENT

Defines additional free disk space created in the image in Kbytes. By
default, this variable is set to "0". This free disk space is added to the
image after the build system determines the image size as described
in IMAGE_ROOTFS_SIZE.

'MAGE—ROOTFS—E)FEEA\,‘;%SE is particularly useful when you want to ensure that a

specific amount of free disk space is available on a device after an

Condewt
THO
3 IMAGE_ROOTFS_S

EETr;I;V.'I
IMAGE_TYPEDEP

I:r:Tr;I;m]
IMAGE_TYPES

image is installed and running. For example, to be sure 5 Gbytes of
free disk space is available, set the variable as follows:

IMAGE_ROOTFS_EXTRA_SPACE = "5242880"

For example, the Yocto Project Build Appliance specifically requests
40 Gbytes of extra space with the line:

IMAGE ROOTFS EXTRA SPACE = "41943040"

Defines the size in Kbytes for the generated image. The
OpenEmbedded build system determines the final size for the
generated image using an algorithm that takes into account the initial
disk space used for the generated image, a requested size for the
ig}:age, and requested additional free disk space to be added to the
imMage. Programatically, the build system determines the final size of
the generated image as follows:

if (image-du * overhead) < rootfs-size:
internal-rootfs-size = rootfs-size + xspace

else:
internal-rootfs-size = (image-du * overhead) + xspace

where:
image-du = Returned value of the du command on
the image.
overhead = IMAGE OVERHEAD FACTOR

rootfs-size = IMAGE_ROOTFS SIZE

internal-rootfs-size = Initial root filesystem
size before any modifications.

xspace = IMAGE_ROOTFS_EXTRA SPACE

See the IMAGE_OVERHEAD FACTOR and IMAGE ROOTFS EXTRA_SPACE
variables for related information.

Specifies a dependency from one image type on another. Here is an
example from the image-1live class:

IMAGE TYPEDEP_ live = "ext3"

In the previous example, the variable ensures that when "live" is
listed with the IMAGE FSTYPES variable, the OpenEmbedded build
system produces an ext3 image first since one of the components
of the live image is an ext3 formatted partition containing the root
filesystem.

Specifies the complete list of supported image types by default:

jffs2
jffs2.sum
cramfs
ext2

ext2.9z
ext2.bz2
ext3
ext3.9z
ext2.1lzma
btrfs
live
squashfs
squashfs-xz
ubi

ubifs

tar
tar.gz
tar.bz2
tar.xz
cpio
cpio.gz
cpio.xz
cpio.lzma
vmdk

elf

For more information about these types of images,
see meta/classes/image types*.bbclass in the Source
Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#source-directory].

Helps define the recipe revision for recipes that share a common
include file. You can think of this variable as part of the recipe
revision as set from within an include file.

Context

i INC PR Suppose, for example, you have a set of recipes that are used across
- several projects. And, within each of those recipes the revision (its
PR value) is set accordingly. In this case, when the revision of those
recipes changes, the burden is on you to find all those recipes and
be sure that they get changed to reflect the updated version of the
recipe. In this scenario, it can get complicated when recipes that are
used in many places and provide common functionality are upgraded

to a new revision.

A more efficient way of dealing with this situation is to set the INC_PR
variable inside the include files that the recipes share and then
expand the INC PR variable within the recipes to help define the
recipe revision.

The following provides an example that shows how to use the INC_PR
variable given a common include file that defines the variable. Once
the variable is defined in the include file, you can use the variable to
set the PR values in each recipe. You will notice that when you set a
recipe's PR you can provide more granular revisioning by appending
values to the INC PR variable:

recipes-graphics/xorg-font/xorg-font-common.inc:INC PR = "r2"

recipes-graphics/xorg-font/encodings 1.0.4.bb:PR = "${INC PR}.1"
recipes-graphics/xorg-font/font-util 1.3.0.bb:PR = "${INC PR}.0O"
recipes-graphics/xorg-font/font-alias 1.0.3.bb:PR = "${INC PR}.3"

The first line of the example establishes the baseline revision to be
used for all recipes that use the include file. The remaining lines in
the example are from individual recipes and show how the PR value
is set.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

Specifies a space-separated list of license names (as they would
appear in LICENSE) that should be excluded from the build. Recipes
that provide no alternatives to listed incompatible licenses are not

Conext] built. Packages that are individually licensed with the specified
THO
INCOMPATIBLE_LICE?\%Epat'ble licenses will be deleted.
Note
This functionality is only regularly tested using the following
setting:

INCOMPATIBLE LICENSE = "GPL-3.0 LGPL-3.0 AGPL-3.0"

Although you can use other settings, you might be required
to remove dependencies on or provide alternatives to
components that are required to produce a functional system
image.

Prevents the default dependencies, namely the C compiler and
standard C library (libc), from being added to DEPENDS. This variable
is usually used within recipes that do not require any compilation

Context 1 using the C compiler.
THO

INHIBIT—DEFAULT—Q&P%he variable to "1" to prevent the default dependencies from
being added.

Prevents the OpenEmbedded build system from splitting out
debug information during packaging. By default, the build system
splits out debugging information during the do_package task. For
:-:Tr;;m] more information on how debug information is split out, see the

|Np”BH;RACKAGEfgggﬁgiéyﬁwaSPLITfsTYLEvaﬁabm.

To prevent the build system from splitting out debug information
during packaging, set the INHIBIT PACKAGE DEBUG SPLIT variable
as follows:

INHIBIT PACKAGE DEBUG SPLIT = "1"

If set to "1", causes the build to not strip binaries in resulting
packages.

Context
THD
J INHIBIT_PACKAGE_STRIP

Causes the named class to be inherited at this point during parsing.
The variable is only valid in configuration files.

EETF;DEK'I]
INHERIT

Lists classes that will be inherited at the distribution level. It is
unlikely that you want to edit this variable.

:nTr;;m The default value of the variable is set as follows in the meta/conf/
INHERIT DISTRO distro/defaultsetup.conf file:

INHERIT DISTRO ?= "debian devshell sstate license"

Defines the format for the output image of an initial RAM disk
(initramfs), which is used during boot. Supported formats are the
same as those supported by the IMAGE_FSTYPES variable.

Context
THO
3 INITRAMFS_FSTYPES

Causes the OpenEmbedded build system to build an additional recipe

as a dependency to your root filesystem recipe (e.g. core-image-

sato). The additional recipe is used to create an initial RAM disk

Conext (initramfs) that might be needed during the initial boot of the target

1o INITRAMES IMAGESYStem to accomplish such things as loading kernel modules prior to
- mounting the root file system.

When you set the variable, specify the name of the initramfs you
want created. The following example, which is set in the local. conf
configuration file, causes a separate recipe to be created that results
in an initramfs image named core-image-sato-initramfs.bb to be
Created:

INITRAMFS IMAGE = "core-image-minimal-initramfs"

By default, the kernel class sets this variable to a null string as
follows:

INITRAMFS IMAGE = ""

See the local.conf.sample.extended [http://git.yoctoproject.org/
cgit/cgit.cgi/poky/tree/meta-yocto/conf/local.conf.sample.extended]
file for additional information. You can also reference the
kernel.bbclass [http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/
meta/classes/kernel.bbclass] file to see how the variable is used.

Controls whether or not the image recipe specified by

INITRAMFS IMAGE is run through an extra pass during kernel

compilation in order to build a single binary that contains both the

:nTr;;m kernel image and the initial RAM disk (initramfs). Using an extra

on pass ensures that when a kernel attempts to use an

INITRAMFS—IMAGE p] T‘E it does not encounter circular dependencies should the
initramfs include kernel modules.

The combined binary is deposited into the tmp/deploy directory,
which is part of the Build Directory [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#build-directory].

Setting the variable to "1" in a configuration file causes the
OpenEmbedded build system to make the extra pass during kernel
compilation:

INITRAMFS IMAGE_BUNDLE = "1"

By default, the kernel class sets this variable to a null string as
follows:

INITRAMFS IMAGE BUNDLE = "*"

Note

You must set the INITRAMFS IMAGE BUNDLE variable in a
configuration file. You cannot set the variable in a recipe file.

http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta-yocto/conf/local.conf.sample.extended
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta-yocto/conf/local.conf.sample.extended
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta-yocto/conf/local.conf.sample.extended
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/classes/kernel.bbclass
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/classes/kernel.bbclass
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/classes/kernel.bbclass
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

See the local.conf.sample.extended [http://git.yoctoproject.org/
cgit/cqgit.cgi/poky/tree/meta-yocto/conf/local.conf.sample.extended]
file for additional information.

Indicates list of filesystem images to concatenate and use as an initial
RAM disk (initrd).

Corioy The INITRD variable is an optional variable used with the bootimg
INITRD class.

=
=
1=

When building a "live" bootable image (i.e. when IMAGE FSTYPES

contains "live"), INITRD IMAGE specifies the image recipe that should

be built to provide the initial RAM disk image. The default value is
Conoxt "core-image-minimal-initramfs".

INITRD_IMAGE

=
=
(=]

See the image-live class for more information.

The filename of the initialization script as installed to
${sysconfdir}/init.d.

Contoxt This variable is used in recipes when using update-rc.d.bbclass.
INITSCRIPT_NAMEThe variable is mandatory.

=
=
(=]

A list of the packages that contain initscripts. If multiple packages
are specified, you need to append the package name to the other
INITSCRIPT_* as an override.
Context
TR
variable is used in recipes when using update-rc.d.bbclass.
INITSCRIPT—P'A‘CK%EegvariabIe is optional and defaults to the PN variable.

4

Specifies the options to pass to update-rc.d. Here is an example:

Context INITSCRIPT PARAMS = "start 99 52 . stop 20016 ."
INITSCRIPT_PARAMS

In this example, the script has a runlevel of 99, starts the script in
initlevels 2 and 5, and stops the scriptin levels 0, 1 and 6.

=
=
(=]

The variable's default value is "defaults", which is set in the update-
rc.d class.

The value in INITSCRIPT PARAMS is passed through to the
update-rc.d command. For more information on valid parameters,
please see the update-rc.d manual page at http://www.tin.org/bin/
man.cgi?section=8&topic=update-rc.d.

Specifies the QA checks to skip for a specific package within a recipe.

For example, to skip the check for symbolic link . so files in the main

package of a recipe, add the following to the recipe. The package
Context] name override must be used, which in this example is ${PN}:

THDH
INSANE_SKIP

INSANE SKIP ${PN} += "dev-so"

See the "insane.bbclass" section for a list of the valid QA checks
you can specify using this variable.

When the IPK backend is in use and package management is enabled
on the target, you can use this variable to set up opkg in the target
image to point to package feeds on a nominated server. Once the

:nTr;;m] feed is established, you can perform installations or upgrades using
IPK_FEED_URIS

the package manager at runtime.

http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta-yocto/conf/local.conf.sample.extended
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta-yocto/conf/local.conf.sample.extended
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta-yocto/conf/local.conf.sample.extended
http://www.tin.org/bin/man.cgi?section=8&topic=update-rc.d
http://www.tin.org/bin/man.cgi?section=8&topic=update-rc.d

Defines the kernel architecture used when assembling the
configuration. Architectures supported for this release are:

Contoxi
THOH
3 KARCH powerpc

i386
x86_ 64
arm
gemu
mips

You define the KARCH variable in the
BSP Descriptions [http://www.yoctoproject.org/docs/1.8/kernel-dev/
kernel-dev.html#bsp-descriptions].

A regular expression used by the build process to explicitly identify
the kernel branch that is validated, patched and configured during
a build. The KBRANCH variable is optional. You can use it to trigger

R l checks to ensure the exact kernel branch you want is being used by
KBRANCH the build process.

Values for this variable are set in the kernel's recipe file and the
kernel's append file. For example, if you are using the Yocto Project
kernel that is based on the Linux 3.10 kernel, the kernel recipe
file is the meta/recipes-kernel/linux/linux-yocto 3.10.bb file.
Following is the default value for KBRANCH and the default override
for the architectures the Yocto Project supports:

KBRANCH DEFAULT = "standard/base"
KBRANCH = "${KBRANCH DEFAULT}"

This branch exists in the linux-yocto-3.10 kernel Git repository
http://git.yoctoproject.org/cgit.cgi/linux-yocto-3.10/refs/heads.

This variable is also used from the kernel's append file to identify the
kernel branch specific to a particular machine or target hardware. The
kernel's append file is located in the BSP layer for a given machine.
For example, the kernel append file for the Crown Bay BSP is in the
meta-intel Git repository and is named meta-crownbay/recipes-
kernel/linux/linux-yocto 3.10.bbappend. Here are the related
statements from the append file:

COMPATIBLE_MACHINE crownbay = "crownbay"

KMACHINE crownbay = "crownbay"

KBRANCH crownbay = "standard/crownbay"

KERNEL FEATURES append crownbay = " features/drm-emgd/drm-emgd-1.

COMPATIBLE_MACHINE crownbay-noemgd = "crownbay-noemgd"
KMACHINE crownbay-noemgd = "crownbay"

KBRANCH crownbay-noemgd = "standard/crownbay"

KERNEL FEATURES append crownbay-noemgd = " cfg/vesafb"

The KBRANCH_* statements identify the kernel branch to use when
building for the Crown Bay BSP. In this case there are two identical
statements: one for each type of Crown Bay machine.

http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#bsp-descriptions
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#bsp-descriptions
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#bsp-descriptions
http://git.yoctoproject.org/cgit.cgi/linux-yocto-3.10/refs/heads

Defines the Linux kernel source repository's default branch used to

build the Linux kernel. The KBRANCH DEFAULT value is the default

value for KBRANCH. Unless you specify otherwise, KBRANCH DEFAULT
Context initializes to "master".

THD
KBRANCH_DEFAULT

g

Specifies additional make command-line arguments the
OpenEmbedded build system passes on when compiling the kernel.

Context
THO

4

KERNEL_EXTRA_ARGS

Includes additional metadata from the Yocto Project kernel Git
repository. In the OpenEmbedded build system, the default Board
Support Packages (BSPs) Metadata [http://www.yoctoproject.org/

Context docs/1.8/dev-manual/dev-manual.html#metadatal is provided
1o hrough the KMACHINE and KBRANCH variables. You can use the

KERNEL_FEATURE ERNEL FEATURES variable to further add metadata for all BSPs.

The metadata you add through this variable includes config
fragments and features descriptions, which wusually includes
patches as well as config fragments. You typically override the
KERNEL FEATURES variable for a specific machine. In this way, you
can provide validated, but optional, sets of kernel configurations and
features.

For example, the following adds netfilter to all the Yocto Project
kernels and adds sound support to the gemux86 machine:

Add netfilter to all linux-yocto kernels
KERNEL FEATURES="features/netfilter"

Add sound support to the gemux86 machine
KERNEL FEATURES append_qgemux86=" cfg/sound"”

The base name of the kernel image. This variable is set in the kernel
class as follows:

Context
TD KERNEL IMAGE BASE NAME 7= "${KERNEL_ IMAGETYPE}-${PKGE}-${PKGV}-${
KERNEL IMAGE_BASE_NAME - -

See the KERNEL IMAGETYPE, PKGE, PKGV, PKGR, MACHINE, and
DATETIME variables for additional information.

The type of kernel to build for a device, usually set by the machine
configuration files and defaults to "zlmage". This variable is used
when building the kernel and is passed to make as the target to build.

Context
THDH
J KERNEL_IMAGETYPE

Lists kernel modules that need to be auto-loaded during boot.

Note
e This variable replaces the deprecated module_autoload
KERNEL_MODULE_AUTQIORI®.

You can use the KERNEL _MODULE_AUTOLOAD variable anywhere that
it can be recognized by the kernel recipe or by an out-of-tree
kernel module recipe (e.g. a machine configuration file, a distribution
configuration file, an append file for the recipe, or the recipe itself).

Specify it as follows:

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata

KERNEL MODULE AUTOLOAD += "module namel module name2 module name3

Including KERNEL MODULE_AUTOLOAD causes the OpenEmbedded
build system to populate the /etc/modules-load.d/modname.conf
file with the list of modules to be auto-loaded on boot. The modules
appear one-per-line in the file. Here is an example of the most
common use case:

KERNEL MODULE AUTOLOAD += "module name"

For information on how to populate the modname.conf file
with modprobe.d syntax lines, see the KERNEL_MODULE PROBECONF
variable.

Provides a list of modules for which the OpenEmbedded build
system expects to find module _conf _modname values that specify
configuration for each of the modules. For information on how
Contest] to provide those module configurations, see the module conf *

THOx .
KERNEL_MODULE ¥HBBE onF

The location of the kernel sources. This variable is set to the
value of the STAGING KERNEL DIR within the module class. For
information on how this variable is used, see the "Incorporating Out-

Coriox of-Tree Modules [http://www.yoctoproject.org/docs/1.8/kernel-dev/
EE KERNEL paTH Kernel-dev.htmli#incorporating-out-of-tree-modules]" section.

To help maximize compatibility with out-of-tree drivers used to build
modules, the OpenEmbedded build system also recognizes and uses
the KERNEL SRC variable, which is identical to the KERNEL PATH
variable. Both variables are common variables used by external
Makefiles to point to the kernel source directory.

The location of the kernel sources. This variable is set to the
value of the STAGING KERNEL DIR within the module class. For
information on how this variable is used, see the "Incorporating Out-

Coriox of-Tree Modules [http://www.yoctoproject.org/docs/1.8/kernel-dev/
EE KERNEL SRC kernel-dev.html#incorporating-out-of-tree-modules]" section.

To help maximize compatibility with out-of-tree drivers used to build
modules, the OpenEmbedded build system also recognizes and uses
the KERNEL PATH variable, which is identical to the KERNEL SRC
variable. Both variables are common variables used by external
Makefiles to point to the kernel source directory.

Provides a short description of a configuration fragment. You use this
variable in the .scc file that describes a configuration fragment file.
Here is the variable used in a file named smp.scc to describe SMP

B] being enabled:
KFEATURE_DESCRIPTION

define KFEATURE DESCRIPTION "Enable SMP"

The machine as known by the kernel. Sometimes the machine
name used by the kernel does not match the machine name used
by the OpenEmbedded build system. For example, the machine

Conext name that the OpenEmbedded build system understands as gemuarm

o KMACHINE goes by a different name in the Linux Yocto kernel. The kernel
understands that machine as arm_versatile926ejs. For cases like
these, the KMACHINE variable maps the kernel machine name to the
OpenEmbedded build system machine name.

http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#incorporating-out-of-tree-modules
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#incorporating-out-of-tree-modules
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#incorporating-out-of-tree-modules
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#incorporating-out-of-tree-modules
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#incorporating-out-of-tree-modules
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#incorporating-out-of-tree-modules
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#incorporating-out-of-tree-modules
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#incorporating-out-of-tree-modules

Kernel machine names are initially defined in the Yocto
Linux Kernel's meta branch. From the meta branch, look
in the meta/cfg/kernel-cache/bsp/<bsp name>/<bsp-name>-
<kernel-type>.scc file. For example, from the meta branch in
the linux-yocto-3.0 kernel, the meta/cfg/kernel-cache/bsp/
cedartrail/cedartrail-standard.scc file has the following:

define KMACHINE cedartrail
define KTYPE standard
define KARCH i386

include ktypes/standard
branch cedartrail

include cedartrail.scc

You can see that the kernel understands the machine name for the
Cedar Trail Board Support Package (BSP) as cedartrail.

If you look in the Cedar Trail BSP layer in the meta-intel Source
Repositories [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#source-repositories] at meta-cedartrail/recipes-
kernel/linux/linux-yocto 3.0.bbappend, you will find the
following statements among others:

COMPATIBLE MACHINE cedartrail = "cedartrail"

KMACHINE cedartrail = "cedartrail"

KBRANCH cedartrail = "yocto/standard/cedartrail"

KERNEL FEATURES append cedartrail += "bsp/cedartrail/cedartrail-p
KERNEL_FEATURES_ append_cedartrail += "cfg/efi-ext.scc"

COMPATIBLE MACHINE cedartrail-nopvr = "cedartrail"
KMACHINE cedartrail-nopvr = "cedartrail"

KBRANCH cedartrail-nopvr = "yocto/standard/cedartrail"
KERNEL FEATURES append cedartrail-nopvr += " cfg/smp.scc"

The KMACHINE statements in the kernel's append file make sure
that the OpenEmbedded build system and the Yocto Linux kernel
understand the same machine names.

This append file uses two KMACHINE statements. The first is not
really necessary but does ensure that the machine known to the
OpenEmbedded build system as cedartrail maps to the machine
in the kernel also known as cedartrail:

KMACHINE cedartrail = "cedartrail"

The second statement is a good example of why the KMACHINE
variable is needed. In this example, the OpenEmbedded build system
uses the cedartrail-nopvr machine name to refer to the Cedar Trail
BSP that does not support the proprietary PowerVR driver. The kernel,
however, uses the machine name cedartrail. Thus, the append
file must map the cedartrail-nopvr machine name to the kernel's
cedartrail name:

KMACHINE cedartrail-nopvr = "cedartrail"

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-repositories
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-repositories
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-repositories
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-repositories

i I'!Tr;l; Lus
KTYPE

EETr;I;K'I
LABELS

Context
THOD
3 LAYERDEPENDS

EETF;I;K'I
LAYERDIR

EETF;I;V.'I
LAYERVERSION

EETF;;V.'I
3 LDFLAGS

BSPs that ship with the Yocto Project release provide all mappings
between the Yocto Project kernel machine names and the
OpenEmbedded machine names. Be sure to use the KMACHINE if you
create a BSP and the machine name you use is different than that
used in the kernel.

Defines the kernel type to be used in assembling the configuration.
The linux-yocto recipes define "standard", "tiny", and "preempt-rt"
kernel types. See the "Kernel Types [http://www.yoctoproject.org/
docs/1.8/kernel-dev/kernel-dev.html#kernel-types]" section in the
Yocto Project Linux Kernel Development Manual for more information
on kernel types.

You define the KTYPE variable in the
BSP Descriptions [http://www.yoctoproject.org/docs/1.8/kernel-dev/
kernel-dev.html#bsp-descriptions]. The value you use must match
the value used for the LINUX _KERNEL_ TYPE value used by the kernel
recipe.

Provides a list of targets for automatic configuration.

See the grub-efi class for more information on how this variable is
used.

Lists the layers that this recipe depends upon, separated by
spaces. Optionally, you can specify a specific layer version for
a dependency by adding it to the end of the layer name
with a colon, (e.g. "anotherlayer:3" to be compared against
LAYERVERSION anotherlayer in this case). An error will be produced
if any dependency is missing or the version numbers do not match
exactly (if specified). This variable is used in the conf/layer.conf
file and must be suffixed with the name of the specific layer (e.qg.
LAYERDEPENDS mylayer).

When used inside the layer.conf configuration file, this variable
provides the path of the current layer. This variable is not available
outside of layer.conf and references are expanded immediately
when parsing of the file completes.

Optionally specifies the version of a layer as a single number. You can
use this within LAYERDEPENDS for another layer in order to depend
on a specific version of the layer. This variable is used in the conf/
layer. conf file and must be suffixed with the name of the specific
layer (e.g. LAYERVERSION mylayer).

Specifies the flags to pass to the linker. This variable is exported to
an environment variable and thus made visible to the software being
built during the compilation step.

Default initialization for LDFLAGS varies depending on what is being
built:

* TARGET LDFLAGS when building for the target
* BUILD LDFLAGS when building for the build host (i.e. -native)

* BUILDSDK LDFLAGS when building for an SDK (i.e. nativesdk-)

http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#kernel-types
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#kernel-types
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#kernel-types
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#bsp-descriptions
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#bsp-descriptions
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#bsp-descriptions

EETr;I;V.'I
LEAD_SONAME

EETF;I;V.'I
LICENSE

EETF;DEK'I]
LICENSE_FLAGS

Specifies the lead (or primary) compiled library file (.so) that the
debian class applies its naming policy to given a recipe that packages
multiple libraries.

This variable works in conjunction with the debian class.

Checksums of the license text in the recipe source code.

This variable tracks changes in license text of the source code files. If
the license text is changed, it will trigger a build failure, which gives

Contewt
THOD the developer an opportunity to review any license change.
LIC_FILES CHKSUM

This variable must be defined for all recipes (unless LICENSE is set
to "CLOSED").

For more information, see the " Tracking License Changes" section.
The list of source licenses for the recipe. Follow these rules:

* Do not use spaces within individual license names.

Separate license names using | (pipe) when there is a choice
between licenses.

Separate license names using & (ampersand) when multiple
licenses exist that cover different parts of the source.

* You can use spaces between license names.

e For standard licenses, use the names of the files in meta/files/
common-licenses/ or the SPDXLICENSEMAP flag names defined in
meta/conf/licenses.conf.

Here are some examples:

LICENSE = "LGPLv2.1 | GPLv3"
LICENSE = "MPL-1 & LGPLv2.1"
LICENSE = "GPLv2+"

The first example is from the recipes for Qt, which the user may
choose to distribute under either the LGPL version 2.1 or GPL version
3. The second example is from Cairo where two licenses cover
different parts of the source code. The final example is from sysstat,
which presents a single license.

You can also specify licenses on a per-package basis to handle
situations where components of the output have different licenses.
For example, a piece of software whose code is licensed under GPLv2
but has accompanying documentation licensed under the GNU Free
Documentation License 1.2 could be specified as follows:

LICENSE = "GFDL-1.2 & GPLv2"
LICENSE ${PN} = "GPLv2"
LICENSE ${PN}-doc = "GFDL-1.2"

Specifies additional flags for a recipe you must whitelist through
LICENSE_FLAGS WHITELIST in order to allow the recipe to be built.
When providing multiple flags, separate them with spaces.

This value is independent of LICENSE and is typically used to mark
recipes that might require additional licenses in order to be used
in @ commercial product. For more information, see the "Enabling
Commercially Licensed Recipes" section.

EETF;DEK'I]
LICENSE_PATH

EETF;DEK'I]
LINUX_VERSION

Lists license flags that when specified in LICENSE FLAGS within a
recipe should not prevent that recipe from being built. This practice is
otherwise known as "whitelisting" license flags. For more information,
see the Enabling Commercially Licensed Recipes" section.

Context
THD
3 LICENSE_FLAGS_WHITELIST

Path to additional licenses used during the build. By default, the
OpenEmbedded build system uses COMMON LICENSE DIR to define
the directory that holds common license text used during the build.
The LICENSE PATH variable allows you to extend that location to
other areas that have additional licenses:

LICENSE PATH += "path-to-additional-common-licenses"

Defines the kernel type to be used in assembling the configuration.
The linux-yocto recipes define "standard", "tiny", and "preempt-rt"
kernel types. See the "Kernel Types [http://www.yoctoproject.org/
docs/1.8/kernel-dev/kernel-dev.html#kernel-types]" section in the

Contemwt
THO
LINUX_KERNEL_TYm':CtO Project Linux Kernel Development Manual for more information

on kernel types.

If you do not specify a LINUX_KERNEL TYPE, it defaults to "standard".
Together with KMACHINE, the LINUX KERNEL TYPE variable defines
the search arguments used by the kernel tools to find the appropriate
description within the kernel Metadata [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#metadatal] with which to
build out the sources and configuration.

The Linux version from kernel.org on which the Linux kernel image
being built using the OpenEmbedded build system is based. You
define this variable in the kernel recipe. For example, the linux-
yocto-3.4.bb kernel recipe found in meta/recipes-kernel/linux
defines the variables as follows:

LINUX VERSION ?= "3.4.24"

The LINUX VERSION variable is used to define PV for the recipe:

PV = "${LINUX VERSION}+git${SRCPV}"

A string extension compiled into the version string of the Linux kernel
built with the OpenEmbedded build system. You define this variable
in the kernel recipe. For example, the linux-yocto kernel recipes all
define the variable as follows:

Contemet
THI
3 LINUX_VERSION_EXTENSION

LINUX VERSION EXTENSION ?= "-yocto-${LINUX KERNEL TYPE}"

Defining this variable essentially sets the Linux kernel configuration
item CONFIG LOCALVERSION, which is visible through the uname
command. Here is an example that shows the extension assuming it
was set as previously shown:

$ uname -r
3.7.0-rc8-custom

http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#kernel-types
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#kernel-types
http://www.yoctoproject.org/docs/1.8/kernel-dev/kernel-dev.html#kernel-types
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata

EETr;I;V.'I
3 LOG_DIR

EETr;I;V.'I
MACHINE

Context]
THO
MACHINE_ARCH

Specifies the directory to which the OpenEmbedded build system
writes overall log files. The default directory is ${TMPDIR}/1log.

For the directory containing logs specific to each task, see the T
variable.

Specifies the target device for which the image is built.
You define MACHINE in the 1local.conf file found in the
Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#build-directory]. By default, MACHINE is set to
"gemux86", which is an x86-based architecture machine to be
emulated using QEMU:

MACHINE ?= "qgemux86"

The variable corresponds to a machine configuration file of the same
name, through which machine-specific configurations are set. Thus,
when MACHINE is set to "gemux86" there exists the corresponding
gemux86.conf machine configuration file, which can be found in the
Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#source-directory] in meta/conf/machine.

The list of machines supported by the Yocto Project as shipped include
the following:

MACHINE ?= "gemuarm"
MACHINE ?= "qgemumips"
MACHINE ?= "gemuppc"
MACHINE ?= "gemux86"
MACHINE ?= "gemux86-64"
MACHINE ?= "genericx86"
MACHINE ?= "genericx86-64"
MACHINE ?= "beaglebone"
MACHINE ?= "mpc8315e-rdb"
MACHINE ?= "edgerouter"

The last five are Yocto Project reference hardware boards, which are
provided in the meta-yocto-bsp layer.

Note

Adding additional Board Support Package (BSP) layers to your
configuration adds new possible settings for MACHINE.

Specifies the name of the machine-specific architecture. This variable
is set automatically from MACHINE or TUNE PKGARCH. You should not
hand-edit the MACHINE ARCH variable.

A list of required machine-specific packages to install as part of the
image being built. The build process depends on these packages
being present. Furthermore, because this is a "machine essential"

:nTr;;m] variable, the list of packages are essential for the machine to boot.
MACHINE ESSENT-Ir E%Pﬂﬁt RBEBgNB%able affects images based on packagegroup-
- Core u

e
ore-bootsincfudingthe core-image-minimal image.
This variable is similar to the

MACHINE ESSENTIAL EXTRA RRECOMMENDS variable with the

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

exception that the image being built has a build dependency on the
variable's list of packages. In other words, the image will not build if
a file in this list is not found.

As an example, suppose the machine for which you are building
requires example-init to be run during boot to initialize the
hardware. In this case, you would use the following in the machine's
.conf configuration file:

MACHINE ESSENTIAL EXTRA RDEPENDS += "example-init"

A list of recommended machine-specific packages to install as
part of the image being built. The build process does not depend
on these packages being present. However, because this is a

E"Tr;;'"] "machine essential" variable, the list of packages are essential for

@é&cg pact of this variable affects images based

MACHINE ESSENTE%EE%agegroup EQQ,E(S , including the core-image-minimal
image.

This variable is similar to the MACHINE ESSENTIAL EXTRA RDEPENDS
variable with the exception that the image being built does not
have a build dependency on the variable's list of packages. In other
words, the image will still build if a package in this list is not found.
Typically, this variable is used to handle essential kernel modules,
whose functionality may be selected to be built into the kernel rather
than as a module, in which case a package will not be produced.

Consider an example where you have a custom kernel where a
specific touchscreen driver is required for the machine to be usable.
However, the driver can be built as a module or into the kernel
depending on the kernel configuration. If the driver is built as a
module, you want it to be installed. But, when the driver is built into
the kernel, you still want the build to succeed. This variable sets up
a "recommends" relationship so that in the latter case, the build will
not fail due to the missing package. To accomplish this, assuming
the package for the module was called kernel-module-ab123, you
would use the following in the machine's .conf configuration file:

MACHINE ESSENTIAL EXTRA RRECOMMENDS += "kernel-module-abl23"

Some examples of these machine essentials are flash, screen,
keyboard, mouse, or touchscreen drivers (depending on the
machine).

A list of machine-specific packages to install as part of the image
being built that are not essential for the machine to boot. However,
the build process for more fully-featured images depends on the

i packages being present.
MACHINE_EXTRA_RDEPEND

iS vana%le affects all images based on packagegroup-base, which
does not include the core-image-minimal or core-image-full-
cmdline images.

The variable is similar to the MACHINE_EXTRA RRECOMMENDS variable
with the exception that the image being built has a build dependency
on the variable's list of packages. In other words, the image will not
build if a file in this list is not found.

An example is a machine that has WiFi capability but is not essential
for the machine to boot the image. However, if you are building a
more fully-featured image, you want to enable the WiFi. The package
containing the firmware for the WiFi hardware is always expected to

exist, so it is acceptable for the build process to depend upon finding
the package. In this case, assuming the package for the firmware
was calledwifidriver-firmware, you would use the following in the
.conf file for the machine:

MACHINE EXTRA RDEPENDS += "wifidriver-firmware"

A list of machine-specific packages to install as part of the image
being built that are not essential for booting the machine. The image
being built has no build dependency on this list of packages.

Condewt
THD This variable affects only images based on packagegroup-base,
MACHINE_EXTRA_RIFEGHONMENES? include the core-image-minimal or core-image-

full-cmdline images.

This variable is similar to the MACHINE_EXTRA RDEPENDS variable with
the exception that the image being built does not have a build
dependency on the variable's list of packages. In other words, the
image will build if a file in this list is not found.

An example is a machine that has WiFi capability but is not essential
For the machine to boot the image. However, if you are building a
more fully-featured image, you want to enable WiFi. In this case, the
package containing the WiFi kernel module will not be produced if
the WiFi driver is built into the kernel, in which case you still want the
build to succeed instead of failing as a result of the package not being
found. To accomplish this, assuming the package for the module was
called kernel-module-examplewifi, you would use the following in
the . conf file for the machine:

MACHINE EXTRA RRECOMMENDS += "kernel-module-examplewifi"

Specifies the list of hardware features the MACHINE is capable

of supporting. For related information on enabling features, see

the DISTRO FEATURES, COMBINED FEATURES, and IMAGE FEATURES
Context variables.

=
=
(=]

MACHINE_FEATURESr a list of hardware features supported by the Yocto Project as
shipped, see the "Machine Features" section.

Features to be added to MACHINE FEATURES if not also present in
MACHINE FEATURES BACKFILL CONSIDERED.

This variable is set in the meta/conf/bitbake.conf file. It is not
intended to be user-configurable. It is best to just reference the

MACHINE_FEATUREGSiBA(eKEdLEee which machine features are being backfilled for all
machine configurations. See the "Feature backfilling" section for
more information.

Context

=
=
(=]

Features from MACHINE FEATURES BACKFILL that should not be
backfilled (i.e. added to MACHINE _FEATURES) during the build. See the
"Feature backfilling" section for more information.

Context

=
=
(=]

MACHINE_FEATURES_BACKFILL_CONSIDERED

Lists overrides specific to the current machine. By default, this list

includes the value of MACHINE. You can extend the list to apply

variable overrides for classes of machines. For example, all QEMU

Coniext emulated machines (e.g. gemuarm, gemux86, and so forth) include

ommon file named meta/conf/machine/include/qgemu. inc that
IVIACHINEOVERRID%rgépends MACHINEOVERRIDES with the following variable override:

=
=
1=

Context]
THO
MAINTAINER

EETr;I;K'I
MIRRORS

EETF;I;K'I
MLPREFIX

Contemet
THO
module_autoload

Context
THO
module_conf

MACHINEOVERRIDES =. "gemuall:"

Applying an override like gemuall affects all QEMU emulated
machines elsewhere. Here is an example from the connman-conf
recipe:

SRC_URI append gemuall = "file://wired.config \
file://wired-setup \

The email address of the distribution maintainer.

Specifies additional paths from which the OpenEmbedded build
system gets source code. When the build system searches for source
code, it first tries the local download directory. If that location fails,
the build system tries locations defined by PREMIRRORS, the upstream
source, and then locations specified by MIRRORS in that order.

Assuming your distribution (DISTRO) is "poky", the default value for
MIRRORS is defined in the conf/distro/poky.conf file in the meta-
yocto Git repository.

Specifies a prefix has been added to PN to create a special version of
a recipe or package, such as a Multilib version. The variable is used
in places where the prefix needs to be added to or removed from a
the name (e.g. the BPN variable). MLPREFIX gets set when a prefix
has been added to PN.

This variable has been replaced by the KERNEL MODULE AUTOLOAD
variable. You should replace all occurrences of module autoload with
additions to KERNEL_MODULE_AUTOLOAD, for example:

module autoload rfcomm = "rfcomm"

should now be replaced with:

KERNEL MODULE AUTOLOAD += "rfcomm"

See the KERNEL_MODULE_AUTOLOAD variable for more information.

Specifies modprobe.d [http://linux.die.net/man/5/modprobe.d]
syntax lines for inclusion in the /etc/modprobe.d/modname.conf
file.

You can use this variable anywhere that it can be recognized by the
kernel recipe or out-of-tree kernel module recipe (e.g. a machine
configuration file, a distribution configuration file, an append file for
the recipe, or the recipe itself). If you use this variable, you must also
be sure to list the module name in the KERNEL_MODULE AUTOLOAD
variable.

Here is the general syntax:

module conf module name = "modprobe.d-syntax"

http://linux.die.net/man/5/modprobe.d
http://linux.die.net/man/5/modprobe.d

You must use the kernel module name override.

Run man modprobe.d in the shell to find out more information on the
exact syntax you want to provide with module_ conf.

Including module conf causes the OpenEmbedded build system to
populate the /etc/modprobe.d/modname. conf file with modprobe.d
syntax lines. Here is an example that adds the options argl and arg2
to a module named mymodule:

module _conf mymodule = "options mymodule argl=vall arg2=val2"

For information on how to specify kernel modules to auto-load on
boot, see the KERNEL_MODULE_AUTOLOAD variable.

The base name of the kernel modules tarball. This variable is set in
the kernel class as follows:

Context
THD _
MODULE_IMAGE_BASE_I{\I/IRW'E*IMAGE*BASE*NAME ?= "modules-${PKGE}-${PKGV} - ${PKGR} - ${MACH

See the PKGE, PKGV, PKGR, MACHINE, and DATETIME variables for
additional information.

Controls creation of the modules-*. tgz file. Set this variable to "0" to
disable creation of this file, which contains all of the kernel modules
resulting from a kernel build.

Context
THD
3 MODULE_TARBALL_DEPLOY

Separates files for different machines such that you can build for
multiple target machines using the same output directories. See the
STAMP variable for an example.

Contemet
THI
3 MULTIMACH_TARGET_SYS

A string identifying the host distribution. Strings consist of the
host distributor ID followed by the release, as reported by the
1sb_release tool or as read from /etc/1lsb-release. For example,

:-:Tr;;m] when running a build on Ubuntu 12.10, the value is "Ubuntu-12.10".
NATIVELSBSTRIN

f this information is unable to be determined, the value resolves to
'Unknown".

This variable is used by default to isolate native shared state
packages for different distributions (e.g. to avoid problems with
glibc version incompatibilities). Additionally, the variable is checked
against SANITY TESTED DISTROS if that variable is set.

Prevents installation of all "recommended-only" packages.

Recommended-only packages are packages installed only through
the RRECOMMENDS variable). Setting the NO RECOMMENDATIONS

‘“Tr;;'“ variable to "1" turns this feature on:
NO_RECOMMENDATIONS

NO_RECOMMENDATIONS = "1"

EETr;I;V.'I
NOHDD

EETF;DEK'I]
NOISO

You can set this variable globally in your local. conf file or you can
attach it to a specificimage recipe by using the recipe name override:

NO_ RECOMMENDATIONS pn-target image = "package name"

It is important to realize that if you choose to not install packages
using this variable and some other packages are dependent on them
(i.e. listed in a recipe's RDEPENDS variable), the OpenEmbedded build
system ignores your request and will install the packages to avoid
dependency errors.

Note

Some recommended packages might be required for certain
system functionality, such as kernel modules. It is up to you
to add packages with the IMAGE_INSTALL variable.

Support for this variable exists only when using the IPK and RPM
packaging backend. Support does not exist for DEB.

See the BAD RECOMMENDATIONS and the PACKAGE EXCLUDE variables
for related information.

Causes the OpenEmbedded build system to skip building the .hddimg
image. The NOHDD variable is used with the bootimg class. Set the
variable to "1" to prevent the .hddimg image from being built.

Causes the OpenEmbedded build system to skip building the ISO
image. The NOISO variable is used with the bootimg class. Set the
variable to "1" to prevent the ISO image from being built. To enable
building an ISO image, set the variable to "0".

When inheriting the binconfig class, this variable specifies
additional arguments passed to the "sed" command. The sed
command alters any paths in configuration scripts that have been
set up during compilation. Inheriting this class results in all paths in

Context
THCH
e Sl eing changed to point into the sysroots/ directory so
3 OE_BlNCONHG_Eﬁgéaﬁig\ﬁgé’

EETF;I;V.'I
3 OE_IMPORTS

S that use the script will use the correct directories for
the cross compiling layout.

See the meta/classes/binconfig.bbclass in the Source
Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#source-directory] for details on how this class applies
these additional sed command arguments. For general information
on the binconfig.bbclass class, see the "Binary Configuration
Scripts - binconfig.bbclass" section.

An internal variable used to tell the OpenEmbedded build system
what Python modules to import for every Python function run by the
system.

Note

Do not set this variable. It is for internal use only.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

Context
THO

Context
THO

Context
THO

Contest
THO

Context
THO

Context
THO

OE_TERMINAL

OEROOT

OLDEST_KERNEL

OVERRIDES

P

PACKAGE_ARCH

Controls how the OpenEmbedded build system spawns
interactive terminals on the host development system (e.g.
using the BitBake command with the -c devshell
command-line option). For more information, see the "Using
a Development Shell [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#platdev-appdev-devshell]" section in the
Yocto Project Development Manual.

You can use the following values for the OE_ TERMINAL variable:

auto
gnhome
xfce
rxvt
screen
konsole
none

Note

Konsole support only works for KDE 3.x. Also, "auto" is the
default behavior for OE_ TERMINAL

The directory from which the top-level build environment setup script
is sourced. The Yocto Project makes two top-level build environment
setup scripts available: oe-init-build-env and oe-init-build-
env-memres. When you run one of these scripts, the OEROOT variable
resolves to the directory that contains the script.

For additional information on how this variable is used, see the
initialization scripts.

Declares the oldest version of the Linux kernel that the produced
binaries must support. This variable is passed into the build of the
Embedded GNU C Library (eglibc).

The default for this variable comes from the meta/conf/
bitbake.conf configuration file. You can override this default by
setting the variable in a custom distribution configuration file.

BitBake uses OVERRIDES to control what variables are overridden
after BitBake parses recipes and configuration files. You can find more
information on how overrides are handled in the "Conditional Syntax
(Overrides) [http://www.yoctoproject.org/docs/1.8/bitbake-user-
manual/bitbake-user-manual.html#conditional-syntax-overrides]"
section of the BitBake User Manual.

The recipe name and version. P is comprised of the following:

${PN}-${PV}

The architecture of the resulting package or packages.

By default, the value of this variable is set to TUNE_PKGARCH when
building for the target, BUILD ARCH when building for the build
host and "${SDK ARCH}-${SDKPKGSUFFIX}" when building for the
SDK. However, if your recipe's output packages are built specific to
the target machine rather than general for the architecture of the
machine, you should set PACKAGE_ARCH to the value of MACHINE ARCH
in the recipe as follows:

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-appdev-devshell
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-appdev-devshell
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-appdev-devshell
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-appdev-devshell
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#conditional-syntax-overrides
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#conditional-syntax-overrides
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#conditional-syntax-overrides
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html#conditional-syntax-overrides

PACKAGE_ARCH = "${MACHINE_ ARCH}"

Specifies a list of architectures compatible with the target machine.
This variable is set automatically and should not normally be hand-
edited. Entries are separated using spaces and listed in order of

:nTr;;m] priority. The default value for PACKAGE_ARCHS is "all any noarch
PACKAGE_ARCHS

${PACKAGE_EXTRA_ARCHS} ${MACHINE_ARCH}".

Enables easily adding packages to PACKAGES before ${PN} so that
those added packages can pick up files that would normally be
included in the default package.

Context

THO

g

PACKAGE_BEFORE_PN

This variable, which is set in the local. conf configuration file found
in the conf folder of the Build Directory [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#build-directory], specifies

E the package manager the OpenEmbedded build system uses when
PACKAGE_CLASSE§2ckaging data.

You can provide one or more of the following arguments for the
variable:

PACKAGE_CLASSES ?= "package rpm package deb package ipk package t

The build system uses only the first argument in the list as the
package manager when creating your image or SDK. However,
packages will be created using any additional packaging classes you
specify. For example, if you use the following in your local. conf file:

PACKAGE_CLASSES ?= "package ipk package tar"

The OpenEmbedded build system uses the IPK package manager to
create your image or SDK as well as generating TAR packages.

You cannot specify the package tar class first in the list. Files using
the . tar format cannot be used as a substitute packaging format for
DEB, RPM, and IPK formatted files for your image or SDK.

For information on packaging and build performance effects as a
result of the package manager in use, see the "package.bbclass"
section.

Determines how to split up the binary and debug information when
creating *-dbg packages to be used with the GNU Project Debugger

(GDB).
Condewt
[EC With_the PACKAGE DEBUG_SPLIT STYLE variable, you can control
PACKAGE DEBUG-\ﬁREFE—ﬁEBEE information, which can include or exclude source files,
is stored:

» ".debug": Debug symbol files are placed next to the binary in a
.debug directory on the target. For example, if a binary is installed
into /bin, the corresponding debug symbol files are installed in /
bin/.debug. Source files are placed in /usr/src/debug. This is the
default behavior.

* "debug-file-directory": Debug symbol files are placed under /usr/
lib/debug on the target, and separated by the path from where

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

the binary is installed. For example, if a binary is installed in /
bin, the corresponding debug symbols are installed in /usr/1lib/
debug/bin. Source files are placed in /usr/src/debug.

* "debug-without-src": The same behavior as ".debug" previously
described with the exception that no source files are installed.

You can find out more about debugging using GDB by
reading the "Debugging With the GNU Project Debugger
(GDB) Remotely [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#platdev-gdb-remotedebug]" section in the Yocto
Project Development Manual.

Lists packages that should not be installed into an image. For
example:

Context
THO —n n
PACKAGE_EXCLUDE PACKAGE_EXCLUDE = "package name package name package name ...

You can set this variable globally in your local. conf file or you can
attach it to a specificimage recipe by using the recipe name override:

PACKAGE_EXCLUDE pn-target image = "package name"

If you choose to not install a package using this variable and
some other package is dependent on it (i.e. listed in a recipe's
RDEPENDS variable), the OpenEmbedded build system generates a
fatal installation error. Because the build system halts the process
with a fatal error, you can use the variable with an iterative
development process to remove specific components from a system.

Support for this variable exists only when using the IPK and RPM
packaging backend. Support does not exist for DEB.

See the NO RECOMMENDATIONS and the BAD RECOMMENDATIONS
variables for related information.

Specifies the list of architectures compatible with the device CPU.
This variable is useful when you build for several different devices
that use miscellaneous processors such as XScale and ARM926-EJS.

Condewt
THO
3 PACKAGE_EXTRA_ARCHS

The PACKAGE GROUP variable has been renamed to
FEATURE_PACKAGES. See the variable description for
FEATURE_PACKAGES for information.

Contemwt
THO . . .
PACKAGE GROUP If if you use the PACKAGE_GROUP variable, the OpenEmbedded build
- system issues a warning message.

The final list of packages passed to the package manager for
installation into the image.

chr;;m] Because the package manager controls actual installation of all
packages, the list of packages passed using PACKAGE _INSTALL is not
PACKAGE—”\IS-I-ALI‘l:he final list of packages that are actually installed. This variable is
internal to the image construction code. Consequently, in general,
you should use the IMAGE INSTALL variable to specify packages
for installation. The exception to this is when working with the
core-image-minimal-initramfs [119] image. When working with
an initial RAM disk (initramfs) image, use the PACKAGE INSTALL

variable.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-gdb-remotedebug
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-gdb-remotedebug
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-gdb-remotedebug
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-gdb-remotedebug

Specifies a list of functions run to pre-process the PKGD directory prior
to splitting the files out to individual packages.

Context
THO
3 PACKAGE_PREPROCESS_FUNCS

This variable provides a means of enabling or disabling features of
a recipe on a per-recipe basis. PACKAGECONFIG blocks are defined in
recipes when you specify features and then arguments that define

chr;;m] feature behaviors. Here is the basic block structure:
PACKAGECONFIG

PACKAGECONFIG ??7= "f1 f2 f3 ..."

PACKAGECONFIG[f1l] = "--with-fl,--without-fl,build-deps-fl,rt-deps
PACKAGECONFIG[f2] = "--with-f2,--without-f2,build-deps-f2,rt-deps
PACKAGECONFIG[f3] = "--with-f3,--without-f3,build-deps-f3,rt-deps

The PACKAGECONFIG variable itself specifies a space-separated list of
the features to enable. Following the features, you can determine
the behavior of each feature by providing up to four order-dependent
arguments, which are separated by commas. You can omit any
argument you like but must retain the separating commas. The order
is important and specifies the following:

1. Extra arguments that should be added to the configure script
argument list (EXTRA_OECONF) if the feature is enabled.

2. Extra arguments that should be added to EXTRA OECONF if the
feature is disabled.

3. Additional build dependencies (DEPENDS) that should be added if
the feature is enabled.

4. Additional runtime dependencies (RDEPENDS) that should be added
if the feature is enabled.

Consider the following PACKAGECONFIG block taken from the librsvg
recipe. In this example the feature is croco, which has three
arguments that determine the feature's behavior.

PACKAGECONFIG ??= "croco"
PACKAGECONFIG[croco] = "--with-croco, --without-croco, libcroco"

The - -with-croco and libcroco arguments apply only if the feature
is enabled. In this case, - -with-crocois added to the configure script
argument list and libcroco is added to DEPENDS. On the other hand,
if the feature is disabled say through a .bbappend file in another
layer, then the second argument --without-croco is added to the
configure script rather than --with-croco.

The basic PACKAGECONFIG structure previously described holds true
regardless of whether you are creating a block or changing a block.
When creating a block, use the structure inside your recipe.

If you want to change an existing PACKAGECONFIG block, you can do
so one of two ways:

» Append file: Create an append file named recipename.bbappend

in your layer and override the value of PACKAGECONFIG. You can
either completely override the variable:

PACKAGECONFIG="f4 f5"

Or, you can just append the variable:

PACKAGECONFIG append = " f4"

» Configuration file: This method is identical to changing the block
through an append file except you edit your local.conf or
mydistro.conf file. As with append files previously described, you
can either completely override the variable:

PACKAGECONFIG pn-recipename="f4 f5"

Or, you can just amend the variable:

PACKAGECONFIG_append_pn-recipename = " f4"

The list of packages to be created from the recipe. The default value
is the following:

Tio PACKAGES ${PN}-dbg ${PN}-staticdev ${PN}-dev ${PN}-doc ${PN}-locale ${PACK

A promise that your recipe satisfies runtime dependencies for

optional modules that are found in other recipes. PACKAGES DYNAMIC

does not actually satisfy the dependencies, it only states that they

:nTr;;m] should be satisfied. For example, if a hard, runtime dependency

EPENDS) of another package is satisfied at build time through the

PACKAGES_DYNA CKAGES_DYNAMIC variable, but a package with the module name is

never actually produced, then the other package will be broken. Thus,

if you attempt to include that package in an image, you will get a

dependency failure from the packaging system during the do_rootfs
task.

Typically, if there is a chance that such a situation can occur and
the package that is not created is valid without the dependency
being satisfied, then you should use RRECOMMENDS (a soft runtime
dependency) instead of RDEPENDS.

For an example of how to use the PACKAGES DYNAMIC variable
when you are splitting packages, see the "Handling Optional Module
Packaging [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#handling-optional-module-packaging]" section in the
Yocto Project Development Manual.

Specifies a list of functions run to perform additional splitting of
files into individual packages. Recipes can either prepend to this
variable or prepend to the populate packages function in order
Conext] to perform additional package splitting. In either case, the function
THO H H
uld set PACKAGES, FILES, RDEPENDS and other packaging variables
PACKAGESPLlTFUI\z%%ropriately in order to perform the desired splitting.

Extra options passed to the make command during the do_compile

task in order to specify parallel compilation on the local build host.

This variable is usually in the form "-j <x>", where x represents the
Context maximum number of parallel threads make can run.

THD
PARALLEL_MAKE

£

If your development host supports multiple cores, a good rule of
thumb is to set this variable to twice the number of cores on the host.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#handling-optional-module-packaging
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#handling-optional-module-packaging
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#handling-optional-module-packaging
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#handling-optional-module-packaging

Context
THO
J PATCHRESOLVE

i I'!Tr;l; Lus
PATCHTOOL

Context]
THO
PE

Contemet
THO
3 PF

Contoxt
THO
3 PIXBUF_PACKAGE

If you do not set PARALLEL MAKE, it defaults to the number of cores
your build system has.

Note

Individual recipes might clear out this variable if the software
being built has problems running its make process in parallel.

Extra options passed to the make install command during the
do_install task in order to specify parallel installation. This variable
defaults to the value of PARALLEL MAKE.

EETr;I;VJ
3 PARALLEL_MAKEINST Note

Individual recipes might clear out this variable if the software
being built has problems running its make install process
in parallel.

Determines the action to take when a patch fails. You can set this
variable to one of two values: "noop" and "user".

The default value of "noop" causes the build to simply fail when
the OpenEmbedded build system cannot successfully apply a patch.
Setting the value to "user" causes the build system to launch a shell
and places you in the right location so that you can manually resolve
the conflicts.

Set this variable in your local. conf file.

Specifies the utility used to apply patches for a recipe during the
do_patch task. You can specify one of three utilities: "patch”, "quilt",
or "git". The default utility used is "quilt" except for the quilt-native
recipe itself. Because the quilt tool is not available at the time quilt-
native is being patched, it uses "patch".

If you wish to use an alternative patching tool, set the variable in the
recipe using one of the following:

PATCHTOOL = "patch"
PATCHTOOL = "quilt"
PATCHTOOL = "git"

The epoch of the recipe. By default, this variable is unset. The
variable is used to make upgrades possible when the versioning
scheme changes in some backwards incompatible way.

Specifies the recipe or package name and includes all version
and revision numbers (i.e. eglibc-2.13-r20+svnrl5508/ and
bash-4.2-r1/). This variable is comprised of the following:

${PN}-${EXTENDPE}${PV}-${PR}

When inheriting the pixbufcache class, this variable identifies
packages that contain the pixbuf loaders used with gdk-pixbuf. By
default, the pixbufcache class assumes that the loaders are in the
recipe's main package (i.e. ${PN}). Use this variable if the loaders
Jou need are in a package other than that main package.

Context]
THO
PKG

EETr;I;V.'I
PKGD

EETr;I;V.'I
PKGDATA_DIR

EETr;I;V.'I
PKGDEST

Context
THO
3 PKGDESTWORK

EETr;I;V.'I
PKGE

The name of the resulting package created by the OpenEmbedded
build system.

Note

When using the PKG variable, you must use a package name
override.
For example, when the debian class renames the output package, it
does so by setting PKG_packagename.

Points to the destination directory for files to be packaged before

they are split into individual packages. This directory defaults to the
following:

${WORKDIR}/package

Do not change this default.

Points to a shared, global-state directory that holds data generated
during the packaging process. During the packaging process, the
do_packagedata task packages data for each recipe and installs
it into this temporary, shared area. This directory defaults to the
following:

${STAGING DIR HOST}/pkgdata

Do not change this default.
Points to the parent directory for files to be packaged after they have

been split into individual packages. This directory defaults to the
following:

${WORKDIR}/packages-split
Under this directory, the build system creates directories for each
package specified in PACKAGES. Do not change this default.
Points to a temporary work area used by the do_package task to write

output from the do packagedata task. The PKGDESTWORK location
defaults to the following:

${WORKDIR}/pkgdata

The do_packagedata task then packages the data in the temporary
work area and installs it into a shared directory pointed to by
PKGDATA DIR.

Do not change this default.

The epoch of the output package built by the OpenEmbedded build
system. By default, PKGE is set to PE.

The revision of the output package built by the OpenEmbedded build
system. By default, PKGR is set to PR.

EETr;I;V.'I
PKGR

The version of the output package built by the OpenEmbedded build
system. By default, PKGV is set to PV.

Context

THO

g

PKGV

This variable can have two separate functions depending on the
context: a recipe name or a resulting package name.

El:r.u:m] PN refers to a recipe name in the context of a file used by the

THOD OpenEmbedded build system as input to create a package. The name

PN is normally extracted from the recipe file name. For example, if the
recipe is named expat_2.0.1.bb, then the default value of PN will
be "expat".

The variable refers to a package name in the context of a file created
or produced by the OpenEmbedded build system.

If applicable, the PN variable also contains any special suffix or prefix.
For example, using bash to build packages for the native machine,
PN is bash-native. Using bash to build packages for the target and
for Multilib, PN would be bash and 1ib64-bash, respectively.

Lists recipes you do not want the OpenEmbedded build system to
build. This variable works in conjunction with the blacklist class,
which the recipe must inherit globally.

Context
THD To prevent a recipe from being built, inherit the class globally and
PNBLACKLIST use the variable in your local.conf file. Here is an example that

prevents myrecipe from being built:

INHERIT += "blacklist"
PNBLACKLIST[myrecipe] = "Not supported by our organization."

The revision of the recipe. The default value for this variable is "r0".

Context]
THOD
PR

If multiple recipes provide an item, this variable determines which
recipe should be given preference. You should always suffix the
variable with the name of the provided item, and you should set it
Contest] to the PN of the recipe to which you want to give precedence. Some

THOD .
PREFERRED_PROVIBERP!ES:

PREFERRED PROVIDER virtual/kernel ?= "linux-yocto"
PREFERRED PROVIDER virtual/xserver = "xserver-xf86"
PREFERRED PROVIDER virtual/libgl ?= "mesa"

If there are multiple versions of recipes available, this variable
determines which recipe should be given preference. You must

Context
THDH
3 PREFERRED_VERSION

always suffix the variable with the PN you want to select, and you
should set the PV accordingly for precedence. You can use the "%"
character as a wildcard to match any number of characters, which
can be useful when specifying versions that contain long revision
numbers that could potentially change. Here are two examples:

PREFERRED VERSION python = "2.7.3"
PREFERRED VERSION linux-yocto = "3.10%"

Specifies additional paths from which the OpenEmbedded build

system gets source code. When the build system searches for source

code, it first tries the local download directory. If that location fails,

Conext the build system tries locations defined by PREMIRRORS, the upstream
o PREMIRRORS source, and then locations specified by MIRRORS in that order.

Assuming your distribution (DISTRO) is "poky", the default value for
PREMIRRORS is defined in the conf/distro/poky.conf file in the
meta-yocto Git repository.

Typically, you could add a specific server for the build
system to attempt before any others by adding something
like the following to the local.conf configuration file in the
Build Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#build-directory]:

PREMIRRORS prepend = "\

git://.*/.* http://www.yoctoproject.org/sources/ \n \
ftp://.*/.* http://www.yoctoproject.org/sources/ \n \
http://.*/.* http://www.yoctoproject.org/sources/ \n \
https://.*/.* http://www.yoctoproject.org/sources/ \n"

These changes cause the build system to intercept Git, FTP, HTTP,
and HTTPS requests and direct them to the http:// sources mirror.
You can use file:// URLs to point to local directories or network
shares as well.

The PRINC variable has been deprecated and triggers a warning

if detected during a build. For PR increments on changes, use the

PR service instead. You can find out more about this service in the

Contest "Working With a PR Service [http://www.yoctoproject.org/docs/1.8/

o PRINC dev-manual/dev-manual.html#working-with-a-pr-service]" section in
the Yocto Project Development Manual.

Specifies libraries installed within a recipe that should be ignored

by the OpenEmbedded build system's shared library resolver. This

variable is typically used when software being built by a recipe has its

Cones own private versions of a library normally provided by another recipe.

1o PRIVATE LIBS In this case, you would not want the package containing the private

- libraries to be set as a dependency on other unrelated packages

that should instead depend on the package providing the standard
version of the library.

g

Libraries specified in this variable should be specified by their file
name. For example, from the Firefox recipe in meta-browser:

PRIVATE LIBS = "libmozjs.so \
libxpcom.so \
libnspr4.so \
libxul.so \
libmozalloc.so \
libplc4.so \

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#working-with-a-pr-service

EETr;I;V.'I
PROVIDES

EETr;I;V.'I
3 PRSERV_HOST

Context
THO

g

PTEST_ENABLED

Context
THO

£

PV

EETr;I;V.'I
PYTHON_ABI

libplds4.so"

A list of aliases by which a particular recipe can be known. By default,
a recipe's own PN is implicitly already in its PROVIDES list. If a recipe
uses PROVIDES, the additional aliases are synonyms for the recipe
and can be useful satisfying dependencies of other recipes during
the build as specified by DEPENDS.

Consider the following example PROVIDES statement from a recipe
file libav_0.8.11.bb:

PROVIDES += "libpostproc"

The PROVIDES statement results in the "libav" recipe also being
known as "libpostproc".

The network based PR service host and port.

The conf/local.conf.sample.extended configuration file in the
Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#source-directory] shows how the PRSERV_HOST
variable is set:

PRSERV_HOST = "localhost:0"

You must set the variable if you want to automatically start a local
PR service [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#working-with-a-pr-service]. You can set PRSERV_HOST
to other values to use a remote PR service.

Specifies whether or not Package Test [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#testing-packages-with-
ptest] (ptest) functionality is enabled when building a recipe. You
should not set this variable directly. Enabling and disabling building
Package Tests at build time should be done by adding "ptest" to (or
removing it from) DISTRO FEATURES.

The version of the recipe. The version is normally extracted
from the recipe filename. For example, if the recipe is named
expat 2.0.1.bb, then the default value of PV will be "2.0.1". PV
is generally not overridden within a recipe unless it is building an
unstable (i.e. development) version from a source code repository
(e.g. Git or Subversion).

When used by recipes that inherit the distutils3, setuptools3,
distutils, or setuptools classes, denotes the Application Binary
Interface (ABI) currently in use for Python. By default, the ABI is "m".
You do not have to set this variable as the OpenEmbedded build
system sets it for you.

The OpenEmbedded build system uses the ABI to construct directory
names used when installing the Python headers and libraries in
sysroot (e.g. .../python3.3m/...).

Recipes that inherit the distutils class during cross-builds also use
this variable to locate the headers and libraries of the appropriate
Python that the extension is targeting.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#working-with-a-pr-service
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#testing-packages-with-ptest

When used by recipes that inherit the distutils3, setuptools3,
distutils, or setuptools classes, specifies the major Python
version being built. For Python 2.x, PYTHON PN would be "python2".

E"Tr;;'ﬂ] For Python 3.x, the variable would be "python3". You do not have to
PYTHON_PN

set this variable as the OpenEmbedded build system automatically
sets it for you.

The variable allows recipes to use common infrastructure such as the
following:

DEPENDS += "${PYTHON PN}-native"

In the previous example, the version of the dependency is
PYTHON_PN.

Specifies your own subset of . pro files to be built for use with gmake.
If you do not set this variable, all .pro files in the directory pointed
to by S will be built by default.

Context
THO
QMAKE PROFILESTh'S variable is used lWIth recipes that inherit the gmake_base class
- or other classes that inherit qmake_base.

The list of packages that conflict with packages. Note that packages
will not be installed if conflicting packages are not first removed.

conjunction with a package name override. Here is an example:

:nTr;um] Like all package-controlling variables, you must always use them in
RCONFLICTS

RCONFLICTS ${PN} = "another-conflicting-package-name"

BitBake, which the OpenEmbedded build system uses, supports
specifying versioned dependencies. Although the syntax varies
depending on the packaging format, BitBake hides these differences
from you. Here is the general syntax to specify versions with the
RCONFLICTS variable:

RCONFLICTS ${PN} = "package (operator version)"

For operator, you can specify the following:

vV Al

<=

For example, the following sets up a dependency on version 1.2 or
greater of the package foo:

RCONFLICTS ${PN} = "foo (>= 1.2)"

EETr;I;V.'I
RDEPENDS

Lists a package's runtime dependencies (i.e. other packages) that
must be installed in order for the built package to run correctly. If a
package in this list cannot be found during the build, you will get a
build error.

When you use the RDEPENDS variable in a recipe, you are essentially
stating that the recipe's do _build task depends on the existence
of a specific package. Consider this simple example for two recipes
named "a" and "b" that produce similarly named IPK packages. In
this example, the RDEPENDS statement appears in the "a" recipe:

RDEPENDS ${PN} = "b"

Here, the dependency is such that the do build task for recipe
"a" depends on the do_package write ipk task of recipe "b". This
means the package file for "b" must be available when the output
for recipe "a" has been completely built. More importantly, package
"a" will be marked as depending on package "b" in a manner that is
understood by the package manager.

The names of the packages you list within RDEPENDS must be the
names of other packages - they cannot be recipe names. Although
package names and recipe names usually match, the important point
here is that you are providing package names within the RDEPENDS
variable. For an example of the default list of packages created from
a recipe, see the PACKAGES variable.

Because the RDEPENDS variable applies to packages being built, you
should always use the variable in a form with an attached package
name. For example, suppose you are building a development
package that depends on the perl package. In this case, you would
use the following RDEPENDS statement:

RDEPENDS ${PN}-dev += "perl"

In the example, the development package depends on the perl
package. Thus, the RDEPENDS variable has the ${PN}-dev package
name as part of the variable.

The package name you attach to the RDEPENDS variable must appear
as it would in the PACKAGES namespace before any renaming of the
output package by classes like debian.

In many cases you do not need to explicitly add runtime
dependencies using RDEPENDS since some automatic handling
occurs:

* shlibdeps: If a runtime package contains a shared library (.so),
the build processes the library in order to determine other libraries
to which it is dynamically linked. The build process adds these
libraries to RDEPENDS when creating the runtime package.

* pcdeps: If the package ships a pkg-config information file, the
build process uses this file to add items to the RDEPENDS variable
to create the runtime packages.

BitBake, which the OpenEmbedded build system uses, supports
specifying versioned dependencies. Although the syntax varies
depending on the packaging format, BitBake hides these differences
from you. Here is the general syntax to specify versions with the
RDEPENDS variable:

Contemet

=
=
(=]

Context

=
=
1=

Context

=
=
(=]

Context

=
=
(=]

RDEPENDS ${PN} = "package (operator version)"

For operator, you can specify the following:

vV Al

<=

For example, the following sets up a dependency on version 1.2 or
greater of the package foo:

RDEPENDS ${PN} = "foo (>= 1.2)"

For information on build-time dependencies, see the DEPENDS
variable.

When inheriting the distro features check class, this variable
identifies distribution features that must exist in the current
configuration in order for the OpenEmbedded build system to
build the recipe. In other words, if the REQUIRED DISTRO FEATURES

REQUIRED_DISTR%?EE@I@J\E? a feature that does not appear in DISTRO_FEATURES

RM_OLD_IMAGE

e Current configuration, an error occurs and the build stops.

Reclaims disk space by removing previously built versions of the
same image from the images directory pointed to by the DEPLOY_DIR
variable.

Set this variable to "1" in your local.conf file to remove these
images.

With rm_work enabled, this variable specifies a list of recipes whose
work directories should not be removed. See the "rm_work.bbclass"
section for more details.

RM_WORK_EXCLUDE

ROOT_HOME

Defines the root home directory. By default, this directory is set as
follows in the BitBake configuration file:

ROOT_HOME ??= "/home/root"

Note

This default value is likely used because some embedded
solutions prefer to have a read-only root filesystem and
prefer to keep writeable data in one place.

You can override the default by setting the variable in any layer or
in the local.conf file. Because the default is set using a "weak"
assignment (i.e. "??="), you can use either of the following forms to
define your override:

ROOT_HOME = "/root"
ROOT_HOME ?= "/root"

EETr;I;V.'I
ROOTFS

Contoxt
THO

EETF;DEK'I]
RPROVIDES

Contoxt
THO
3 RRECOMMENDS

These override examples use /root, which is probably the most
commonly used override.

Indicates a filesystem image to include as the root filesystem.

The ROOTFS variable is an optional variable used with the bootimg
class.

Added by classes to run post processing commands once the
OpenEmbedded build system has created the root filesystem. You
can specify shell commands separated by semicolons:

ROOTFS—POSTPROCESS-R%gw\gf‘y&TPROCESS_COMMAND += "shell_command; ... "

If you need to pass the path to the root filesystem within the
command, you can use ${IMAGE ROOTFS}, which points to the
root filesystem image. See the IMAGE ROOTFS variable for more
information.

A list of package name aliases that a package also provides. These
aliases are useful for satisfying runtime dependencies of other
packages both during the build and on the target (as specified by
RDEPENDS).

Note

A package's own name is implicitly already in its RPROVIDES
list.

As with all package-controlling variables, you must always use the
variable in conjunction with a package name override. Here is an
example:

RPROVIDES ${PN} = "widget-abi-2"

A list of packages that extends the usability of a package being built.
The package being built does not depend on this list of packages
in order to successfully build, but rather uses them for extended
usability. To specify runtime dependencies for packages, see the
RDEPENDS variable.

The package manager will automatically install the RRECOMMENDS
list of packages when installing the built package. However,
you can prevent listed packages from being installed by
using the BAD_RECOMMENDATIONS, NO_RECOMMENDATIONS, and
PACKAGE_EXCLUDE variables.

Packages specified in RRECOMMENDS need not actually be produced.
However, a recipe must exist that provides each package, either
through the PACKAGES or PACKAGES DYNAMIC variables or the
RPROVIDES variable, or an error will occur during the build. If such
a recipe does exist and the package is not produced, the build
continues without error.

Because the RRECOMMENDS variable applies to packages being built,
you should always attach an override to the variable to specify the
particular package whose usability is being extended. For example,
suppose you are building a development package that is extended
to support wireless functionality. In this case, you would use the
following:

EETr;I;V.'I
3 RREPLACES

RRECOMMENDS ${PN}-dev += "wireless package name"

In the example, the package name (${PN}-dev) must appear as it
would in the PACKAGES namespace before any renaming of the output
package by classes such as debian.bbclass.

BitBake, which the OpenEmbedded build system uses, supports
specifying versioned recommends. Although the syntax varies
depending on the packaging format, BitBake hides these differences
from you. Here is the general syntax to specify versions with the
RRECOMMENDS variable:

RRECOMMENDS ${PN} = "package (operator version)"

For operator, you can specify the following:

vV Al

<=
>=

For example, the following sets up a recommend on version 1.2 or
greater of the package foo:

RRECOMMENDS ${PN} = "foo (>= 1.2)"

A list of packages replaced by a package. The package manager
uses this variable to determine which package should be installed to
replace other package(s) during an upgrade. In order to also have
the other package(s) removed at the same time, you must add the
name of the other package to the RCONFLICTS variable.

As with all package-controlling variables, you must use this variable
in conjunction with a package name override. Here is an example:

RREPLACES ${PN} = "other-package-being-replaced"

BitBake, which the OpenEmbedded build system uses, supports
specifying versioned replacements. Although the syntax varies
depending on the packaging format, BitBake hides these differences
from you. Here is the general syntax to specify versions with the
RREPLACES variable:

RREPLACES ${PN} = "package (operator version)"

For operator, you can specify the following:

vV Al

<=

For example, the following sets up a replacement using version 1.2
or greater of the package foo:

RREPLACES ${PN} = "foo (>= 1.2)"

A list of additional packages that you can suggest for installation
by the package manager at the time a package is installed. Not all
package managers support this functionality.

Condewt
s RSUGGESTS As with all package-controlling variables, you must always use this
variable in conjunction with a package name override. Here is an

example:

RSUGGESTS ${PN} = "useful-package another-package"

The location in the Build Directory [http://www.yoctoproject.org/

docs/1.8/dev-manual/dev-manual.html#build-directory] where

unpacked recipe source code resides. This location is within the work

Contest directory (WORKDIR), which is not static. The unpacked source location
e s depends on the recipe name (PN) and recipe version (PV) as follows:

${WORKDIR}/${PN}-${PV}

As an example, assume a Source Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#source-directory] top-level folder named poky and a
default Build Directory at poky/build. In this case, the work directory
the build system uses to keep the unpacked recipe for db is the
following:

poky/build/tmp/work/qemux86-poky-1linux/db/5.1.19-r3/db-5.1.19

Specifies a list of command-line utilities that should be checked for
during the initial sanity checking process when running BitBake. If
any of the utilities are not installed on the build host, then BitBake

:nTr;;m] immediately exits with an error.
SANITY_REQUIRED_UTILITIES

A list of the host distribution identifiers that the build system has
been tested against. Identifiers consist of the host distributor ID
followed by the release, as reported by the 1sb_release tool or as

:nTr;;m] read from /etc/1sb-release. Separate the list items with explicit
SANITY TESTED_ %‘8% characters (\n). If SANITY TESTED DISTROS is not empty and

he curfrent value of NATIVELSBSTRING does not appear in the list,
then the build system reports a warning that indicates the current
host distribution has not been tested as a build host.

The target architecture for the SDK. Typically, you do not directly set
this variable. Instead, use SDKMACHINE.

C nTr;I; L
SDK_ARCH

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

EETr;I;V.'I
SDK_DEPLOY

EETF;I;K'I
3 SDK_DIR

EETF;DEK'I]
SDK_NAME

EETF;I;V.'I
3 SDK_OUTPUT

Context
THD
3 SDKIMAGE_FEATURES

EETr;I;K'I
SDKMACHINE

The directory set up and used by the populate sdk base to
which the SDK is deployed. The populate _sdk base class defines
SDK_DEPLOY as follows:

SDK DEPLOY = "${TMPDIR}/deploy/sdk"

The parent directory used by the OpenEmbedded build system when
creating SDK output. The populate sdk base class defines the
variable as follows:

SDK_DIR = "${WORKDIR}/sdk"

Note

The SDK_DIR directory is a temporary directory as it is part
of WORKDIR. The final output directory is SDK_DEPLOY.

The base name for SDK output files. The name is derived from
the DISTRO, TCLIBC, SDK ARCH, IMAGE_BASENAME, and TUNE PKGARCH
variables:

SDK_NAME = "${DISTRO}-${TCLIBC}-${SDK ARCH}-${IMAGE BASENAME}-${T

The location used by the OpenEmbedded build system when creating
SDK output. The populate sdk base class defines the variable as
follows:

SDK_OUTPUT = "${SDK DIR}/image"

Note

The SDK_OUTPUT directory is a temporary directory as it is
part of WORKDIR by way of SDK_DIR. The final output directory
is SDK_DEPLOY.

Specifies a list of architectures compatible with the SDK machine.
This variable is set automatically and should not normally be hand-
edited. Entries are separated using spaces and listed in order of

ﬁ%DK_ARCH}-${SDKPKGSUFFIX}".

:nTr;;m] priority. The default value for SDK_PACKAGE_ARCHS is "all any noarch
SDK_PACKAG E_AR&

Equivalent to IMAGE_FEATURES. However, this variable applies to the
SDK generated from an image using the following command:

$ bitbake -c populate sdk imagename

The machine for which the Application Development Toolkit (ADT) or
SDK is built. In other words, the SDK or ADT is built such that it runs on
the target you specify with the SDKMACHINE value. The value points
to a corresponding . conf file under conf/machine-sdk/.

You can use "i686" and "x86_64" as possible values for this variable.
The variable defaults to "i686" and is set in the local.conf file in the
Build Directory.

SDKMACHINE ?= "i686"

Note

You cannot set the SDKMACHINE variable in your distribution
configuration file. If you do, the configuration will not take
affect.

Defines the path offered to the user for installation of the SDK that
is generated by the OpenEmbedded build system. The path appears
as the default location for installing the SDK when you run the SDK's

Context installation script. You can override the offered path when you run
o the script
SDKPATH '
The section in which packages should be categorized. Package
management utilities can make use of this variable.
Context
THO
SECTION

Specifies the optimization flags passed to the C compiler when
building for the target. The flags are passed through the default value
of the TARGET CFLAGS variable.

Context

Ik ELECTED OPTIMIZATION variable takes the value of

SELECTED—OPT'M'E}&&? TIMIZATION unless DEBUG BUILD = "1". If that is the case,
the value of DEBUG_OPTIMIZATION is used.

g

Defines a serial console (TTY) to enable using getty. Provide a
value that specifies the baud rate followed by the TTY device name
separated by a space. You cannot specify more than one TTY device:

Contemet

=
=
(=]

SERIAL_CONSOLE SERIAL CONSOLE = "115200 ttySe"

Note

The SERIAL CONSOLE variable is deprecated. Please use the
SERIAL CONSOLES variable.

Defines the serial consoles (TTYs) to enable using getty. Provide a
value that specifies the baud rate followed by the TTY device name
separated by a semicolon. Use spaces to separate multiple devices:

Context
THO

4

SERIAL_CONSOLES gpp1AL CONSOLES = "115200;ttyS0 115200;ttyS1"

Similar to SERIAL CONSOLES except the device is checked for
existence before attempting to enable it. This variable is currently
only supported with SysVinit (i.e. not with systemd).

Context
THO

g

SERIAL_CONSOLES_CHECK

A list of recipe dependencies that should not be used to determine
signatures of tasks from one recipe when they depend on tasks from
another recipe. For example:

Context
THO

g

SIGGEN_EXCLUDE_SAFEREEAPEREDBE SAFE RECIPE DEPS += "intone->mplayer2"

In this example, intone depends on mplayer2.

Use of this variable is one mechanism to remove dependencies that
affect task signatures and thus force rebuilds when a recipe changes.

Context
THO

g

Context

=
=
1=

Contemet

=
=
(=]

Context
THO

g

Context
THO

g

Context

=
=
(=]

Context

=
=
(=]

Caution

If you add an inappropriate dependency for a recipe
relationship, the software might break during runtime if the
interface of the second recipe was changed after the first
recipe had been built.

A list of recipes that are completely stable and will never change. The
ABI for the recipes in the list are presented by output from the tasks
run to build the recipe. Use of this variable is one way to remove
dependencies from one recipe on another that affect task signatures

SIGGEN EXCLUDEQEEIH?:%S chfseA?_eé)uilds when the recipe changes.

SITEINFO_BITS

Caution

If you add an inappropriate variable to this list, the software
might break at runtime if the interface of the recipe was
changed after the other had been built.

Specifies the number of bits for the target system CPU. The value
should be either "32" or "64".

Specifies the endian byte order of the target system. The value
should be either "le" for little-endian or "be" for big-endian.

SITEINFO_ENDIANNESS

SOC_FAMILY

SOLIBS

SOLIBSDEV

SOURCE_MIRROR

Groups together machines based upon the same family of SOC
(System On Chip). You typically set this variable in a common .inc
file that you include in the configuration files of all the machines.

Note

You must include conf/machine/include/soc-family.inc
for this variable to appear in MACHINEOVERRIDES.

Defines the suffix for shared libraries used on the target platform. By
default, this suffix is ".so.*" for all Linux-based systems and is defined
in the meta/conf/bitbake.conf configuration file.

You will see this variable referenced in the default values of FILES

${PN}.

Defines the suffix for the development symbolic link (symlink) for
shared libraries on the target platform. By default, this suffix is
".so" for Linux-based systems and is defined in the meta/conf/
bitbake.conf configuration file.

You will see this variable referenced in the default values of FILES
${PN}-dev.

Defines your own PREMIRRORS from which to first fetch source before
attempting to fetch from the upstream specified in SRC_URI.

To use this variable, you must globally inherit the own-mirrors class
?Rﬂthen provide the URL to your mirrors. Here is an example:

INHERIT += "own-mirrors"

SOURCE_MIRROR URL = "http://example.com/my-source-mirror"

Context
THDH
3 SPECIAL_PKGSUFFIX

I:r:Tr;I;m
3 SRC_URI

Note
You can specify only a single URL in SOURCE_MIRROR URL.

Maps commonly used license names to their SPDX counterparts
found in meta/files/common-licenses/. For the default
SPDXLICENSEMAP mappings, see the meta/conf/licenses. conf file.

Contexl
TR i ; ; ;
SPDXLICENSEMAPFor additional information, see the LICENSE variable.

A list of prefixes for PN used by the OpenEmbedded build system to
create variants of recipes or packages. The list specifies the prefixes
to strip off during certain circumstances such as the generation of
the BPN variable.

The list of source files - local or remote. This variable tells the
OpenEmbedded build system which bits to pull in for the build and
how to pull them in. For example, if the recipe or append file only
needs to fetch a tarball from the Internet, the recipe or append file
uses a single SRC_URI entry. On the other hand, if the recipe or
append file needs to fetch a tarball, apply two patches, and include
a custom file, the recipe or append file would include four instances
of the variable.

The following list explains the available URI protocols:

» file:// - Fetches files, which are usually files shipped with
the Metadata [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#metadatal, from the local machine. The path
is relative to the FILESPATH variable. Thus, the build system
searches, in order, from the following directories, which are
assumed to be a subdirectories of the directory in which the recipe
file (.bb) or append file (.bbappend) resides:

* ${BPN} - The base recipe name without any special suffix or
version numbers.

¢ ${BP} - ${BPN}-${PV}. The base recipe name and version but
without any special package name suffix.

« files - Files within a directory, which is named files and is also
alongside the recipe or append file.

Note

If you want the build system to pick up files specified
through a SRC_URI statement from your append file, you
need to be sure to extend the FILESPATH variable by
also using the FILESEXTRAPATHS variable from within your
append file.
* bzr:// - Fetches files from a Bazaar revision control repository.
* git:// - Fetches files from a Git revision control repository.

* 0sc:// - Fetches files from an OSC (OpenSUSE Build service)
revision control repository.

* repo:// - Fetches files from a repo (Git) repository.
* ccrc:// - Fetches files from a ClearCase repository.
* http:// - Fetches files from the Internet using http.

* https:// - Fetches files from the Internet using https.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#metadata

Context
THO

» ftp:// - Fetches files from the Internet using ftp.
* cvs:// - Fetches files from a CVS revision control repository.

* hg:// - Fetches files from a Mercurial (hg) revision control
repository.

* p4:// - Fetches files from a Perforce (p4) revision control repository.
* ssh:// - Fetches files from a secure shell.

e svn:// - Fetches files from a Subversion (svn) revision control
repository.

Standard and recipe-specific options for SRC_URI exist. Here are
standard options:

* apply - Whether to apply the patch or not. The default action is to
apply the patch.

* striplevel - Which striplevel to use when applying the patch. The
default level is 1.

* patchdir - Specifies the directory in which the patch should be
applied. The default is ${S}.

Here are options specific to recipes building code from a revision
control system:

* mindate - Apply the patch only if SRCDATE is equal to or greater
than mindate.

* maxdate - Apply the patch only if SRCDATE is not later than mindate.

* minrev - Apply the patch only if SRCREV is equal to or greater than
minrev.

* maxrev - Apply the patch only if SRCREV is not later than maxrev.
* rev - Apply the patch only if SRCREV is equal to rev.

* notrev - Apply the patch only if SRCREV is not equal to rev.
Here are some additional options worth mentioning:

* unpack - Controls whether or not to unpack the file if itis an archive.
The default action is to unpack the file.

* subdir - Places the file (or extracts its contents) into the specified
subdirectory of WORKDIR. This option is useful for unusual tarballs or
other archives that do not have their files already in a subdirectory
within the archive.

* name - Specifies a name to be used for association with SRC_URI
checksums when you have more than one file specified in SRC_URT.

downloadfilename - Specifies the filename used when storing the
downloaded file.

By default, the OpenEmbedded build system automatically detects
whether SRC URI contains files that are machine-specific. If so,
the build system automatically changes PACKAGE_ARCH. Setting this
variable to "0" disables this behavior.

SRC_URI_OVERRIDES_PACKAGE_ARCH

The date of the source code used to build the package. This variable
applies only if the source was fetched from a Source Code Manager
(SCM).

EETr;I;V.'I
SRCDATE

Returns the version string of the current package. This string is used
to help define the value of PV.

Cortms The SRCPV variable is defined in the meta/

1o SRCPV conf/bitbake.conf configuration file in the Source

Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#source-directory] as follows:

g

SRCPV = "${@bb.fetch2.get srcrev(d)}"

Recipes that need to define PV do so with the help of the SRCPV.
For example, the ofono recipe (ofono git.bb) located in meta/
recipes-connectivityinthe Source Directory defines PV as follows:

PV = "0.12-git${SRCPV}"

The revision of the source code used to build the package. This
variable applies to Subversion, Git, Mercurial and Bazaar only. Note
that if you wish to build a fixed revision and you wish to avoid
Conext performing a query on the remote repository every time BitBake
parses your recipe, you should specify a SRCREV that is a full revision
SRCREV ; o .
identifier and not just a tag.

=
=
(=]

The directory for the shared state cache.

Context
THO

g

SSTATE_DIR

If set to "1", allows fetches from mirrors that are specified in
SSTATE_MIRRORS to work even when fetching from the network
has been disabled by setting BB_NO NETWORK to "1". Using the
Coniext SSTATE_MIRROR ALLOW NETWORK variable is useful if you have set

THOr ; H
@]Edgﬁﬁ% :to point to an internal server for your shared state
SSTATE—MIRROR—AC%:Q‘C e,Hbut you want to disable any other fetching from the network.

g

Configures the OpenEmbedded build system to search other mirror

locations for prebuilt cache data objects before building out the data.

This variable works like fetcher MIRRORS and PREMIRRORS and points
Cones to the cache locations to check for the shared objects.

SSTATE_MIRRORS

=
=
(=]

You can specify a filesystem directory or a remote URL such as HTTP
or FTP. The locations you specify need to contain the shared state
cache (sstate-cache) results from previous builds. The sstate-cache
you point to can also be from builds on other machines.

If @ mirror uses the same structure as SSTATE_DIR, you need to add
"PATH" at the end as shown in the examples below. The build system
substitutes the correct path within the directory structure.

SSTATE_MIRRORS ?= "\
file://.* http://someserver.tld/share/sstate/PATH \n \
file://.* file:///some-local-dir/sstate/PATH"

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

=
=
1=

=
=
(=]

)

g

g

=
=
(=]

=
=
(=]

=
=
1=

Specifies the path to the /1ib subdirectory of the sysroot directory
for the build host.

STAGING_BASE_LIBDIR_NATIVE

Specifies the path to the /lib subdirectory of the sysroot
directory for the target for which the current recipe is being built
(STAGING _DIR HOST).

STAGING_BASELIBDIR

Specifies the path to the /usr/bin subdirectory of the sysroot
directory for the target for which the current recipe is being built
(STAGING _DIR HOST).

STAGING_BINDIR

Specifies the path to the directory containing binary configuration
scripts. These scripts provide configuration information for other
software that wants to make use of libraries or include files provided
by the software associated with the script.

STAGING_BINDIR CRORf
B - ote

This style of build configuration has been largely replaced
by pkg-config. Consequently, if pkg-config is supported by
the library to which you are linking, it is recommended you
use pkg-config instead of a provided configuration script.

Specifies the path to the /usr/bin subdirectory of the sysroot
directory for the build host.

STAGING_BINDIR_NATIVE

Specifies the path to the /usr/share subdirectory of the sysroot
directory for the target for which the current recipe is being built
(STAGING _DIR HOST).

STAGING_DATADIR

Specifies the path to the /usr/share subdirectory of the sysroot
directory for the build host.

STAGING_DATADIR_NATIVE

Specifies the path to the top-level sysroots directory (i.e. ${TMPDIR}/
sysroots).

Note

STAGING_DIR Recipes should never write files directly under this directory
because the OpenEmbedded build system manages the
directory automatically. Instead, files should be installed to
${D} within your recipe's do_install task and then the
OpenEmbedded build system will stage a subset of those files
into the sysroot.

Specifies the path to the primary sysroot directory for which the
target is being built. Depending on the type of recipe and the build
target, the recipe's value is as follows:

Condewt
i » For recipes building for the target machine, the value is
STAGING_DIR_HOST.¢ + STAGING DIR}/$ {MACHINE}".

* For native recipes building for the build host, the value is empty
given the assumption that when building for the build host, the
build host's own directories should be used.

* For nativesdk recipes that Build for the SDK, the value is
"${STAGING_DIR}/${MULTIMACH_HOST SYS}".

Specifies the path to the sysroot directory for the build host.

Context
THD
3 STAGING_DIR_NATIVE

Specifies the path to the sysroot directory for the target for which
the current recipe is being built. In most cases, this path is the
STAGING DIR HOST.

Contoxt
THO

g

STAGING DIR TAR e re_cipgs byild binaries that can run on the target system but
- =" those binaries in turn generate code for another different system
(e.g. cross-canadian recipes). Using terminology from GNU, the
primary system is referred to as the "HOST" and the secondary,
or different, system is referred to as the "TARGET". Thus, the
binaries run on the "HOST" system and and generate binaries for the
"TARGET" system. STAGING DIR TARGET points to the sysroot used
for the "TARGET" system.

Specifies the path to the /etc subdirectory of the sysroot directory
for the build host.

Contemet

=
=
(=]

STAGING_ETCDIR_NATIVE

Specifies the path to the /usr subdirectory of the sysroot
directory for the target for which the current recipe is being built
(STAGING _DIR HOST).

Context

=
=
(=]

STAGING_EXECPREFIXDIR

Specifies the path to the /usr/include subdirectory of the sysroot
directory for the target for which the current recipe being built
(STAGING DIR HOST).

Context
THOD

g

STAGING_INCDIR

Specifies the path to the /usr/include subdirectory of the sysroot
directory for the build host.

Context

=
=
(=]

STAGING_INCDIR_NATIVE

The directory with kernel headers that are required to build out-of-
tree modules.

Context

=
=
(=]

STAGING_KERNEL_DIR

Specifies the path to the /usr/lib subdirectory of the sysroot
directory for the target for which the current recipe is being built
(STAGING_DIR HOST).

EETr;I;V.'I
STAGING_LIBDIR

Specifies the path to the /usr/lib subdirectory of the sysroot
directory for the build host.

Contemet
THI
3 STAGING_LIBDIR_NATIVE

Specifies the base path used to create recipe stamp files. The path to

an actual stamp file is constructed by evaluating this string and then

appending additional information. Currently, the default assignment
Conim] for STAMP as set in the meta/conf/bitbake. conf file is:

THDH
STAMP

STAMP = "${STAMPS DIR}/${MULTIMACH TARGET SYS}/${PN}/${EXTENDPE}$
See STAMPS DIR, MULTIMACH TARGET SYS, PN, EXTENDPE, PV, and PR
for related variable information.

Specifies the base directory in which the OpenEmbedded build
system places stamps. The default directory is ${TMPDIR}/stamps.

EETr;I;K'I
STAMPS_DIR

The short (72 characters or less) summary of the binary package for
packaging systems such as opkg, rpm or dpkg. By default, SUMMARY
is used to define the DESCRIPTION variable if DESCRIPTION is not set

El:Tr;I;m] in the recipe.
SUMMARY

Specifies the kernel boot default console. If you want to use a console
other than the default, set this variable in your recipe as follows
where "X" is the console number you want to use:

SYSLINUX_DEFAULT_CONSOFENyx DEFAULT CONSOLE = "console=ttyX"

Contest
THOr

The syslinux class initially sets this variable to null but then checks
for a value later.

Lists additional options to add to the syslinux file. You need to set this
variable in your recipe. If you want to list multiple options, separate
the options with a semicolon character (;).

Condewt
THD . : : :
SYSLINUX_OPTS The syslinux class uses this variable to create a set of options.

Specifies the alternate serial port or turns it off. To turn off serial, set
this variable to an empty string in your recipe. The variable's default
value is set in the syslinux as follows:

Contest
THO
3 SYSLINUX_SERIAL

SYSLINUX SERIAL ?= "0 115200"

The class checks for and uses the variable as needed.

An . LSS file used as the background for the VGA boot menu when you
are using the boot menu. You need to set this variable in your recipe.

Cortest The syslinux class checks for this variable and if found, the
e SYSLINUX SpLAsHPPenEmbedded build system installs the splash screen.

Specifies the alternate console=tty... kernel boot argument. The
variable's default value is set in the syslinux as follows:

Contemet
THO 2= - "
SYSLINUX_SERIAL_TTY SYSLINUX SERIAL TTY * console=ttyS0,115200

The class checks for and uses the variable as needed.

A list of functions to execute after files are staged into the sysroot.
These functions are usually used to apply additional processing on
the staged files, or to stage additional files.

Contemet
THI
3 SYSROOT_PREPROCESS_FUNCS

When inheriting the systemd class, this variable specifies whether
the service you have specified in SYSTEMD SERVICE should be
started automatically or not. By default, the service is enabled to
:nTr;;m] automatically start at boot time. The default setting is in the systemd

SYSTEMD_AUTO_ENAELES follows:

SYSTEMD AUTO ENABLE ??= "enable"

You can disable the service by setting the variable to "disable".

When inheriting the systemd class, this variable locates the systemd

unit files when they are not found in the main recipe's package. By

default, the SYSTEMD PACKAGES variable is set such that the systemd
:nTr;;m] unit files are assumed to reside in the recipes main package:

SYSTEMD_PACKAGES

SYSTEMD PACKAGES ?= "${PN}"

If these unit files are not in this recipe's main package, you need to
use SYSTEMD PACKAGES to list the package or packages in which the
build system can find the systemd unit files.

When inheriting the systemd class, this variable specifies the
systemd service name for a package.

Contes When you specify this file in your recipe, use a package name
1o SYSTEMD SERvIcEVerTide to indicate the package to which the value applies. Here is

an example from the connman recipe:

SYSTEMD SERVICE ${PN} = "connman.service"

When using SysVinit [http://www.yoctoproject.org/docs/1.8/dev-

manual/dev-manual.html#new-recipe-enabling-system-services],

specifies a space-separated list of the virtual terminals that should
corian] be running a getty [http://en.wikipedia.org/wiki/Getty %28Unix%29]

SYSVINIT_ENABLEB"_Iwg()gm)' assuming USE_VT is not set to "0".

The default value for SYSVINIT ENABLED GETTYS is "1" (i.e. only run
a getty on the first virtual terminal).

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#new-recipe-enabling-system-services
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#new-recipe-enabling-system-services
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#new-recipe-enabling-system-services
http://en.wikipedia.org/wiki/Getty_%28Unix%29
http://en.wikipedia.org/wiki/Getty_%28Unix%29

This variable points to a directory were BitBake places temporary
files, which consist mostly of task logs and scripts, when building a
particular recipe. The variable is typically set as follows:

Context
THO
T

T = "${WORKDIR}/temp"

The WORKDIR is the directory into which BitBake unpacks and builds
the recipe. The default bitbake. conf file sets this variable.

The T variable is not to be confused with the TMPDIR variable, which
points to the root of the directory tree where BitBake places the
output of an entire build.

The target machine's architecture. The OpenEmbedded build system
supports many architectures. Here is an example list of architectures
supported. This list is by no means complete as the architecture is

I:nTr;I;m] configurable:
TARGET_ARCH

arm
1586
x86_64
powerpc
powerpc64
mips
mipsel

For additional information on machine architectures, see the
TUNE_ARCH variable.

Specifies architecture-specific assembler flags for the target system.
TARGET_AS_ARCH is initialized from TUNE_ASARGS by default in the
BitBake configuration file (meta/conf/bitbake. conf):

Contoxi
THO
3 TARGET AS_ARCH

TARGET _AS ARCH = "${TUNE_ASARGS}"

Specifies architecture-specific C compiler flags for the target system.
TARGET_CC_ARCH is initialized from TUNE_CCARGS by default.

e Note
TARGET CC_ARCH It

is a common workaround to append LDFLAGS to
TARGET_CC_ARCH in recipes that build software for the target
that would not otherwise respect the exported LDFLAGS
variable.

This is a specific kernel compiler flag for a CPU or Application Binary

Interface (ABI) tune. The flag is used rarely and only for cases

where a userspace TUNE_CCARGS is not compatible with the kernel

coniex] compilation. The TARGET _CC_KERNEL_ARCH variable allows the kernel

n ciated modules) to use a different configuration. See the

TARGET—CC—KERNn%E]é’E% ccE'r?f/machine/include/arm/feature-arm-thumb.inc file in

the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#source-directory] for an example.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

Specifies the flags to pass to the C compiler when building for the
target. When building in the target context, CFLAGS is set to the value
of this variable by default.

Context
THO

g

Additionally, the SDK's environment setup script sets the CFLAGS
variable in the environment to the TARGET CFLAGS value so that
executables built using the SDK also have the flags applied.

TARGET_CFLAGS

Specifies the flags to pass to the C pre-processor (i.e. to both the C

and the C++ compilers) when building for the target. When building

in the target context, CPPFLAGS is set to the value of this variable
Conext by default.

THO
TARGET—CPPFLAGidditionally, the SDK's environment setup script sets the CPPFLAGS
variable in the environment to the TARGET CPPFLAGS value so that
executables built using the SDK also have the flags applied.

g

Specifies the flags to pass to the C++4 compiler when building for the
target. When building in the target context, CXXFLAGS is set to the
value of this variable by default.

Context

=
=
1=

édditionally, the SDK's environment setup script sets the CXXFLAGS
Variable in the environment to the TARGET CXXFLAGS value so that
executables built using the SDK also have the flags applied.

TARGET_CXXFLAG

Specifies the method for handling FPU code. For FPU-less targets,

which include most ARM CPUs, the variable must be set to "soft". If

not, the kernel emulation gets used, which results in a performance
Cerest penalty.

TARGET_FPU

=
=
1=

Specifies architecture-specific linker flags for the target system.
TARGET LD ARCH is initialized from TUNE LDARGS by default in the
BitBake configuration file (meta/conf/bitbake. conf):

Contoxt
THO

g

TARGET LD _ARCH TARGET LD ARCH = "${TUNE LDARGS}"

Specifies the flags to pass to the linker when building for the target.
When building in the target context, LDFLAGS is set to the value of
this variable by default.

Contoxt
THO

g

Additionally, the SDK's environment setup script sets the LDFLAGS
variable in the environment to the TARGET LDFLAGS value so that
executables built using the SDK also have the flags applied.

TARGET_LDFLAGS

Specifies the target's operating system. The variable can be set to

"linux" for eglibc-based systems and to "linux-uclibc" for uclibc. For

ARM/EABI targets, there are also "linux-gnueabi" and "linux-uclibc-
Contoxt gnueabi" values possible.

TARGET_OS

=
=
(=]

Specifies the GNU standard C library (1ibc) variant to use during the
build process. This variable replaces POKYLIBC, which is no longer
supported.

Context

=
=
(=]

You can select "eglibc" or "uclibc".

Note

This release of the Yocto Project does not support the glibc
implementation of libc.

TCLIBC

EETr;I;V.'I
TCMODE

Context
THO

g

EETr;I;K'I
TEST_IMAGE

Context
THD
3 TEST_EXPORT_DIR

Specifies the toolchain selector. TCMODE controls the characteristics
of the generated packages and images by telling the OpenEmbedded
build system which toolchain profile to use. By default, the
OpenEmbedded build system builds its own internal toolchain.
The variable's default value is "default", which uses that internal
toolchain.

Note

If TCMODE is set to a value other than "default", then it is
your responsibility to ensure that the toolchain is compatible
with the default toolchain. Using older or newer versions
of these components might cause build problems. See
the Release Notes [http://www.yoctoproject.org/download/
yocto-project-18-poky-1300] for the specific components
with which the toolchain must be compatible.

With additional layers, it is possible to use a pre-compiled external
toolchain. One example is the Sourcery G++ Toolchain. The support
for this toolchain resides in the separate meta-sourcery layer
at http://github.com/MentorEmbedded/meta-sourcery/. You can use
meta-sourcery as a template for adding support for other external
toolchains.

The TCMODE variable points the build system to a file in conf/distro/
include/tcmode-${TCMODE}.inc. Thus, for meta-sourcery, which
has conf/distro/include/tcmode-external-sourcery.inc, you
would set the variable as follows:

TCMODE ?= "external-sourcery"

The variable is similar to TCLIBC, which controls the variant of the
GNU standard C library (1ibc) used during the build process: eglibc
or uclibc.

The location the OpenEmbedded build system uses to export tests
when the TEST EXPORT_ONLY variable is set to "1".

The TEST _EXPORT_DIR variable defaults to "${TMPDIR}/testimage/
${PN}".

Specifies to export the tests only. Set this variable to "1" if you do not
want to run the tests but you want them to be exported in a manner
that you to run them outside of the build system.

TEST_EXPORT_ONLY

Automatically runs the series of automated tests for images when an
image is successfully built.

These tests are written in Python making use of the unittest
module, and the majority of them run commands on the target
system over ssh. You can set this variable to "1" in your
local. conf file in the Build Directory [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#build-directory] to have the
OpenEmbedded build system automatically run these tests after an
image successfully builds:

TEST IMAGE = "1"

For more information on enabling, running, and
writing these tests, see the "Performing Automated

http://www.yoctoproject.org/download/yocto-project-18-poky-1300
http://www.yoctoproject.org/download/yocto-project-18-poky-1300
http://www.yoctoproject.org/download/yocto-project-18-poky-1300
http://github.com/MentorEmbedded/meta-sourcery/
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing

Runtime Testing [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#performing-automated-runtime-testing]" section
in the Yocto Project Development Manual and the
"testimage.bbclass" section.

Holds the SSH log and the boot log for QEMU machines. The
TEST LOG_DIR variable defaults to "${WORKDIR}/testimage".

Context N Ote

TEST LOG DIR Actual test results reside in the task log (Log.do_testimage),
which is in the ${WORKDIR}/temp/ directory.

=
=
(=]

For automated hardware testing, specifies the command to use to

control the power of the target machine under test. Typically, this

command would point to a script that performs the appropriate action

:nTr;;m (e.g. interacting with a web-enabled power strip). The specified
m should expect to receive as the last argument "off", "on"
TEST—POWERCON‘EE@&C pé&)specifying to power off, on, or cycle (power off and then

power on) the device, respectively.

g

For automated hardware testing, specifies additional arguments to
pass through to the command specified in TEST_POWERCONTROL CMD.
Setting TEST POWERCONTROL EXTRA ARGS is optional. You can use it
Cones if you wish, for example, to separate the machine-specific and non-

TEST POWERCON TR EKTIRA Aligearts of the arguments.

The time in seconds allowed for an image to boot before automated

runtime tests begin to run against an image. The default timeout

period to allow the boot process to reach the login prompt is 500
Conext seconds. You can specify a different value in the local. conf file.

=
=
1=

=
=
(=]

TEST_QEMUBOOT (MEQHE information on testing images, see the "Performing
Automated Runtime Testing [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#performing-automated-runtime-
testing]" section in the Yocto Project Development Manual.

For automated hardware testing, specifies the command to use to
connect to the serial console of the target machine under test. This
command simply needs to connect to the serial console and forward
Conext that connection to standard input and output as any normal terminal

THO
TEST SERIALCONTEBY ¥Mgoes:

For example, to use the Picocom terminal program on serial device /
dev/ttyUSBO at 115200bps, you would set the variable as follows:

g

TEST SERIALCONTROL CMD = "picocom /dev/ttyUSBO -b 115200"

For automated hardware testing, specifies additional
arguments to pass through to the command specified in
TEST SERIALCONTROL_CMD. Setting
Coniext TEST_SERIALCONTROL_EXTRA_ARGS is optional. You can use it if

THO . . .pr
TEST SERIALCON'VI?&#%R‘R% ple, to separate the machine-specific and non-
- ne-specific parts of the command.

g

mac

The IP address of the build machine (host machine). This IP address
is usually automatically detected. However, if detection fails, this
variable needs to be set to the IP address of the build machine (i.e.

I:l:Tr;I;m] where the build is taking place).
TEST_SERVER _IP Note

The TEST_SERVER IP variableis only used for a small number
of tests such as the "smart" test suite, which needs to
download packages from DEPLOY_DIR/rpm.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing

EETr;I;V.'I
TEST_TARGET

EETr;I;V.'I
3 TEST_TARGET_IP

EETr;I;V.'I
TEST_SUITES

Specifies the target controller to use when running tests against a
test image. The default controller to use is "gemu™":

TEST TARGET = "qgemu"

A target controller is a class that defines how an image gets
deployed on a target and how a target is started. A layer can
extend the controllers by adding a module in the layer's /1ib/oeqa/
controllers directory and by inheriting the BaseTarget class, which
is an abstract class that cannot be used as a value of TEST TARGET.

You can provide the following arguments with TEST TARGET:

* "gemu" and "QemuTarget": Boots a QEMU image and
runs the tests. See the "Enabling Runtime Tests
on QEMU [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#qgemu-image-enabling-tests]" section in the Yocto
Project Development Manual for more information.

"simpleremote" and "SimpleRemoteTarget": Runs the tests on
target hardware that is already up and running. The hardware can
be on the network or it can be a device running an image on QEMU.
You must also set TEST_TARGET IP when you use "simpleremote"
or "SimpleRemoteTarget".

Note

This argument is defined in meta/lib/oeqa/
targetcontrol.py. The small caps names are kept for
compatibility reasons.

* "GummibootTarget": Automatically deploys and runs tests on an
EFl-enabled machine that has a master image installed.

Note

This argument is defined inmeta/lib/oeqa/controllers/
masterimage.py.

For information on running tests on hardware, see the "Enabling
Runtime Tests on Hardware [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#hardware-image-enabling-tests]"
section in the Yocto Project Development Manual.

The IP address of your hardware under test. The TEST TARGET IP
variable has no effect when TEST_TARGET is set to "gemu".

When you specify the IP address, you can also include a port. Here
is an example:

TEST TARGET IP = "192.168.1.4:2201"

Specifying a port is useful when SSH is started on a non-standard
port or in cases when your hardware under test is behind a firewall or
network that is not directly accessible from your host and you need
to do port address translation.

An ordered list of tests (modules) to run against an image when
performing automated runtime testing.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#qemu-image-enabling-tests
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#qemu-image-enabling-tests
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#qemu-image-enabling-tests
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#qemu-image-enabling-tests
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#hardware-image-enabling-tests
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#hardware-image-enabling-tests
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#hardware-image-enabling-tests
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#hardware-image-enabling-tests

EETr;I;V.'I
THISDIR

EETF;DEK'I]
TMPDIR

The OpenEmbedded build system provides a core set of tests that
can be used against images.

Note

Currently, there is only support for running these tests under
QEMU.
Tests include ping, ssh, df among others. You can add your own tests
to the list of tests by appending TEST SUITES as follows:

TEST SUITES append = " mytest"”

Alternatively, you can provide the "auto" option to have all applicable
tests run against the image.

TEST SUITES append = " auto"

Using this option causes the build system to automatically run tests
that are applicable to the image. Tests that are not applicable are
skipped.

The order in which tests are run is important. Tests that depend on
another test must appear later in the list than the test on which they
depend. For example, if you append the list of tests with two tests
(test A and test B) where test B is dependent on test A, then
you must order the tests as follows:

TEST SUITES = " test A test B"

For more information on testing images, see the "Performing
Automated Runtime Testing [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#performing-automated-runtime-
testing]" section in the Yocto Project Development Manual.

The directory in which the file BitBake is currently parsing is located.
Do not manually set this variable.

This variable is the base directory the OpenEmbedded build system
uses for all build output and intermediate files (other than the
shared state cache). By default, the TMPDIR variable points to tmp
within the Build Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#build-directory].

If you want to establish this directory in a location
other than the default, you can uncomment and edit the
following statement in the conf/local.conf file in the
Source Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#source-directory]:

#TMPDIR = "${TOPDIR}/tmp"

An example use for this scenario is to set TMPDIR to a local disk, which
does not use NFS, while having the Build Directory use NFS.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#performing-automated-runtime-testing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

Context
THOD

Context
THOD

Context
THO

Context
THO

Context
THOD
3 TOOLCHAIN_HOS

The filesystem used by TMPDIR must have standard filesystem
semantics (i.e. mixed-case files are unique, POSIX file locking, and
persistent inodes). Due to various issues with NFS and bugs in some
implementations, NFS does not meet this minimum requirement.
Consequently, TMPDIR cannot be on NFS.

This variable lists packages the OpenEmbedded build system
uses when building an SDK, which contains a cross-development
environment. The packages specified by this variable are part of the
toolchain set that runs on the SDKMACHINE, and each package should
Tuﬁg»llli have the prefix "nativesdk-". When building an SDK using
bitbake -c populate sdk <imagename>, a default list of packages
is set in this variable, but you can add additional packages to the list.

For background information on cross-development toolchains in
the Yocto Project development environment, see the "Cross-
Development Toolchain Generation" section. For information on
setting up a cross-development environment, see the "Installing
the ADT and Toolchains [http://www.yoctoproject.org/docs/1.8/adt-
manual/adt-manual.html#installing-the-adt]" section in the Yocto
Project Application Developer's Guide.

This variable lists packages the OpenEmbedded build system uses
when it creates the target part of an SDK (i.e. the part built for the
target hardware), which includes libraries and headers.

For background information on cross-development toolchains in

TOOLCHAIN_TARG#], TAgE o Project development environment, see the "Cross-

TOPDIR

Development Toolchain Generation" section. For information on
setting up a cross-development environment, see the "Installing
the ADT and Toolchains [http://www.yoctoproject.org/docs/1.8/adt-
manual/adt-manual.html#installing-the-adt]" section in the Yocto
Project Application Developer's Guide.

The top-level Build Directory [http://www.yoctoproject.org/
docs/1.8/dev-manual/dev-manual.html#build-directory]. BitBake
automatically sets this variable when you initialize your build
environment using either oe-init-build-env or oe-init-build-
env-memres.

A sanitized version of TARGET_ARCH. This variable is used where the
architecture is needed in a value where underscores are not allowed,
for example within package filenames. In this case, dash characters
replace any underscore characters used in TARGET_ARCH.

TRANSLATED—TAREBTMt this variable.

TUNE_ARCH

The GNU canonical architecture for a specific architecture (i.e. arm,
armeb, mips, mips64, and so forth). BitBake uses this value to setup
configuration.

TUNE_ARCH definitions are specific to a given architecture.
The definitions can be a single static definition, or can
be dynamically adjusted. You can see details for a given
CPU family by looking at the architecture's README file. For
example, the meta/conf/machine/include/mips/README file in
the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#source-directory] provides information for
TUNE_ARCH specific to the mips architecture.

TUNE_ARCH is tied closely to TARGET ARCH, which defines the target
machine's architecture. The BitBake configuration file (meta/conf/
bitbake.conf) sets TARGET ARCH as follows:

http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#installing-the-adt
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#installing-the-adt
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#installing-the-adt
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#installing-the-adt
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#installing-the-adt
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#installing-the-adt
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#installing-the-adt
http://www.yoctoproject.org/docs/1.8/adt-manual/adt-manual.html#installing-the-adt
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

TARGET _ARCH = "${TUNE_ARCH}"

The following list, which is by no means complete since architectures
are configurable, shows supported machine architectures:

arm
1586
x86_64
powerpc
powerpc64
mips
mipsel

Specifies architecture-specific assembler flags for the target system.
The set of flags is based on the selected tune features.
TUNE_ASARGS is set using the tune include files, which are typically
Cones under meta/conf/machine/include/ and are influenced through
e TUNE ASARGS TUNE FEATURES. For example, the meta/conf/machine/include/
- x86/arch-x86.1inc file defines the flags for the x86 architecture as

follows:

TUNE_ASARGS += "${@bb.utils.contains("TUNE FEATURES", "mx32", "-x

Note

Board Support Packages (BSPs) select the tune. The selected
tune, in turn, affects the tune variables themselves (i.e. the
tune can supply its own set of flags).

Specifies architecture-specific C compiler flags for the target
system. The set of flags is based on the selected tune features.
TUNE_CCARGS is set using the tune include files, which are typically
Coniext] under meta/conf/machine/include/ and are influenced through
THO
TUNE_CCARGS

TUNE_FEATURES.

Note

Board Support Packages (BSPs) select the tune. The selected
tune, in turn, affects the tune variables themselves (i.e. the
tune can supply its own set of flags).

Specifies architecture-specific linker flags for the target system. The
set of flags is based on the selected tune features. TUNE LDARGS is
set using the tune include files, which are typically under meta/conf/
Contest] machine/include/ and are influenced through TUNE FEATURES. For
THO
TUNE_LDARGS

example, the meta/conf/machine/include/x86/arch-x86.1inc file
defines the flags for the x86 architecture as follows:

TUNE_ LDARGS += "${@bb.utils.contains("TUNE FEATURES", "mx32", "-m

Note

Board Support Packages (BSPs) select the tune. The selected
tune, in turn, affects the tune variables themselves (i.e. the
tune can supply its own set of flags).

Features used to "tune" a compiler for optimal use given a specific
processor. The features are defined within the tune files and allow
arguments (i.e. TUNE_*ARGS) to be dynamically generated based on

Context] the features.
THO
TUNE_FEATURES

The OpenEmbedded build system verifies the features to be sure
they are not conflicting and that they are supported.

The BitBake configuration file (meta/conf/bitbake.conf) defines
TUNE_FEATURES as follows:

TUNE_FEATURES ??= "${TUNE FEATURES tune-${DEFAULTTUNE}}"

See the DEFAULTTUNE variable for more information.

The package architecture understood by the packaging system to
define the architecture, ABI, and tuning of output packages. The
specific tune is defined using the "_tune" override as follows:

Context
THO

g

TUNE_PKGARCH TUNE_PKGARCH_tune-tune = "tune"

These tune-specific package architectures are defined in the machine
include files. Here is an example of the "core2-32" tuning as used in
the meta/conf/machine/include/tune-core2. inc file:

TUNE_PKGARCH_tune-core2-32 = "core2-32"

An underlying Application Binary Interface (ABI) used by a particular
tuning in a given toolchain layer. Providers that use prebuilt libraries
can use the TUNEABI, TUNEABI OVERRIDE, and TUNEABI WHITELIST
Coniext variables to check compatibility of tunings against their selection of

TUNEABI libraries.

=
=
(=]

If TUNEABI is undefined, then every tuning is allowed. See the sanity
class to see how the variable is used.

If set, the OpenEmbedded system ignores the TUNEABI WHITELIST

variable. Providers that use prebuilt libraries can use the

TUNEABI OVERRIDE, TUNEABI WHITELIST, and TUNEABI variables to
Cones check compatibility of a tuning against their selection of libraries.

=
=
(=]

TUNEABI_OVERRIRfze the sanity class to see how the variable is used.

A whitelist of permissible TUNEABI values. If TUNEABI WHITELIST is
not set, all tunes are allowed. Providers that use prebuilt libraries
can use the TUNEABI WHITELIST, TUNEABI OVERRIDE, and TUNEABI
Conext variables to check compatibility of a tuning against their selection of

TUNEABI WHITELIE§"aries.
See the sanity class to see how the variable is used.

=
=
(=]

Specifies CPU or Application Binary Interface (ABI) tuning features
that conflict with feature.

— Known tuning conflicts are specified in the machine include

TAD files in the Source Directory [http://www.yoctoproject.org/

TUNECONFLICTS[{gsdsy188/dev-manual/dev-manual.html#source-directory]. Here is
an example from the meta/conf/machine/include/mips/arch-
mips.inc include file that lists the "032" and "n64" features as
conflicting with the "n32" feature:

g

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

TUNECONFLICTS[n32] = "032 n64"

Specifies a valid CPU or Application Binary Interface (ABI) tuning

feature. The specified feature is stored as a flag. Valid features are

specified in the machine include files (e.g. meta/conf/machine/
:-:Tr;;m] include/arm/arch-arm.inc). Here is an example from that file:

TUNEVALID[feature]

TUNEVALID[bigendian] = "Enable big-endian mode."

See the machine include files in the Source
Directory [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#source-directory] for these features.

Configures the UBOOT_MACHINE and can also define IMAGE_FSTYPES
for individual cases.

e l Following is an example from the meta-fsl-arm layer.
UBOOT_CONFIG

UBOOT_CONFIG ??= "sd"

UBOOT CONFIG[sd] = "mx6gsabreauto config,sdcard"
UBOOT_CONFIG[eimnor] = "mx6qgsabreauto _eimnor config"
UBOOT_CONFIG[nand] = "mx6qsabreauto nand config,ubifs"
UBOOT_CONFIG[spinor] = "mx6qgsabreauto spinor config"

In this example, "sd" is selected as the configuration of the
possible four for the UBOOT_MACHINE. The "sd" configuration defines
"mx6qgsabreauto_config" as the value for UBOOT_MACHINE, while the
"sdcard" specifies the IMAGE_FSTYPES to use for the U-boot image.

For more information on how the UBOOT_CONFIG is handled, see
the uboot-config [http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/
meta/classes/uboot-config.bbclass] class.

Specifies the entry point for the U-Boot image. During U-Boot image
creation, the UBOOT_ENTRYPOINT variable is passed as a command-
line parameter to the uboot-mkimage utility.

Context
THDH
3 UBOOT_ENTRYPOINT

Specifies the load address for the U-Boot image. During U-Boot image
creation, the UBOOT_LOADADDRESS variable is passed as a command-
line parameter to the uboot-mkimage utility.

Context
THD
3 UBOOT_LOADADDRESS

Appends a string to the name of the local version of the U-Boot
image. For example, assuming the version of the U-Boot image built
was "2013.10, the full version string reported by U-Boot would be

tnTr;;m] "2013.10-yocto" given the following statement:
UBOOT_LOCALVERSION

UBOOT_LOCALVERSION = "-yocto"

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/classes/uboot-config.bbclass
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/classes/uboot-config.bbclass
http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/meta/classes/uboot-config.bbclass

Specifies the value passed on the make command line when building a

U-Boot image. The value indicates the target platform configuration.

You typically set this variable from the machine configuration file (i.e.
Contest conf/machine/machine name. conf).

UBOOT_MACHINE

=
=
1=

Please see the "Selection of Processor Architecture and Board Type"
section in the U-Boot README for valid values for this variable.

Specifies the target called in the Makefile. The default target is "all".

Context

=
=
1=

UBOOT_MAKE_TARGET

Points to the generated U-Boot extension. For example, u-boot.sb
has a .sb extension.

Context The default U-Boot extension is .bin
UBOOT _SUFFIX

=
=
(=]

Specifies the target used for building U-Boot. The target is passed
directly as part of the "make" command (e.g. SPL and AIS). If you do
not specifically set this variable, the OpenEmbedded build process
Context passes and uses "all" for the target during the U-Boot building

UBOOT TARGET Process:

=
=
(=]

When wusing SysVinit [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#new-recipe-enabling-system-services],
determines whether or not to run a getty [http://en.wikipedia.org/
Conext wiki/Getty_%28Unix%29] on any virtual terminals in order to enable
o USE VT logging in through those terminals.

g

The default value used for USE VT is "1" when no default value is
specifically set. Typically, you would set USE_VT to "0" in the machine
configuration file for machines that do not have a graphical display
attached and therefore do not need virtual terminal functionality.

A list of classes to globally inherit. These classes are used by
the OpenEmbedded build system to enable extra features (e.qg.
buildstats, image-mklibs, and so forth).

Context
THOD

g

USER_CLASSES The default list is set in your local. conf file:

USER CLASSES ?= "buildstats image-mklibs image-prelink"

For more information, see meta-yocto/conf/local.conf.sample
in the Source Directory [http://www.yoctoproject.org/docs/1.8/dev-
manual/dev-manual.html#source-directory].

Forces the OpenEmbedded build system to produce an error if the
user identification (uid) and group identification (gid) values are not
defined in files/passwd and files/group files.

Contewt
THD
T fault behavior for the build system is to dynamically apply uid
USERADD—ERROR—an gidvalues. Consequently, the USERADD ERROR DYNAMIC variable

is by default not set. If you plan on using statically assigned gid and
uid values, you should set the USERADD ERROR DYNAMIC variable in
your local.conf file as follows:

USERADD ERROR DYNAMIC = "1"

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#new-recipe-enabling-system-services
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#new-recipe-enabling-system-services
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#new-recipe-enabling-system-services
http://en.wikipedia.org/wiki/Getty_%28Unix%29
http://en.wikipedia.org/wiki/Getty_%28Unix%29
http://en.wikipedia.org/wiki/Getty_%28Unix%29
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory

Overriding the default behavior implies you are going to
also take steps to set static uid and gid values through
use of the USERADDEXTENSION, USERADD UID TABLES, and
USERADD GID TABLES variables.

Specifies a password file to use for obtaining static group
identification (gid) values when the OpenEmbedded build system
adds a group to the system during package installation.

Contewt
[EC When applying static group identification (gid) values, the
USERADD—GID—TA%lp%%\Embedded build system looks in BBPATH for a files/group file

and then applies those uid values. Set the variable as follows in your
local.conf file:

USERADD GID TABLES = "files/group"

Note

Setting the USERADDEXTENSION variable to "useradd-
staticids" causes the build system to use static gid values.

When inheriting the useradd class, this variable specifies the
individual packages within the recipe that require users and/or
groups to be added.

Condewt
[EC You must set this variable if the recipe inherits the class. For example,
USERADD—PACKAC{% following enables adding a user for the main package in a recipe:

USERADD PACKAGES = "${PN}"

Note

If follows that if you are going to use the USERADD PACKAGES
variable, you need to set one or more of the USERADD PARAM,
GROUPADD PARAM, or GROUPMEMS PARAM variables.

When inheriting the useradd class, this variable specifies for
a package what parameters should be passed to the useradd
command if you wish to add a user to the system when the package

Context] is installed.
THO

USERADD_PARAM L6 is an example from the dbus recipe:

USERADD PARAM ${PN} = "--system --home ${localstatedir}/lib/dbus
--no-create-home --shell /bin/false \
--user-group messagebus"

For information on the standard Linux shell command useradd, see
http://linux.die.net/man/8/useradd.

Specifies a password file to use for obtaining static user identification
(uid) values when the OpenEmbedded build system adds a user to
the system during package installation.

Context
LEC When applying static user identification (uid) values, the
USERADD—UID—TA%'FF;\Embedded build system looks in BBPATH for a files/passwd file

and then applies those uid values. Set the variable as follows in your
local. conf file:

USERADD UID TABLES = "files/passwd"

http://linux.die.net/man/8/useradd

Note
Setting the USERADDEXTENSION variable to "useradd-
staticids" causes the build system to use static uid values.

When set to "useradd-staticids", causes the OpenEmbedded build
system to base all user and group additions on a static passwd and
group files found in BBPATH.

Condext
TBD To use static user identification (uid) and group identification (gid)
USERADDEXTENS'\%\Y‘ues, set the variable as follows in your local. conf file:

USERADDEXTENSION = "useradd-staticids"

Note

Setting this variable to use static uid and gid values causes
the OpenEmbedded build system to employ the useradd-
staticids class.

If you use static uid and gid information, you must also
specify the files/passwd and files/group files by setting
the USERADD UID TABLES and USERADD GID TABLES variables.
Additionally, you should also set the USERADD ERROR DYNAMIC
variable.

Specifies the quality assurance checks whose failures are reported as

warnings by the OpenEmbedded build system. You set this variable

in your distribution configuration file. For a list of the checks you can
Context] control with this variable, see the "insane.bbclass" section.

THO
WARN_QA

The pathname of the work directory in which the OpenEmbedded
build system builds a recipe. This directory is located within the
TMPDIR directory structure and is specific to the recipe being built

I:r:Tr;I;m and the system for which it is being built.

g

WORKDIR The WORKDIR directory is defined as follows:
${TMPDIR}/work/${MULTIMACH TARGET SYS}/${PN}/${EXTENDPE}${PV}-${P

The actual directory depends on several things:

* TMPDIR: The top-level build output directory

* MULTIMACH TARGET SYS: The target system identifier
* PN: The recipe name

* EXTENDPE: The epoch - (if PE is not specified, which is usually the
case for most recipes, then EXTENDPE is blank)

* PV: The recipe version
* PR: The recipe revision

As an example, assume a Source Directory top-level folder name
poky, a default Build Directory at poky/build, and a gemux86-poky -
linux machine target system. Furthermore, suppose your recipe is

EETF;;V.'I
XSERVER

named foo 1.3.0-r0.Dbb. In this case, the work directory the build
system uses to build the package would be as follows:

poky/build/tmp/work/qemux86-poky-linux/foo0/1.3.0-r0

Specifies the packages that should be installed to provide an X server
and drivers for the current machine, assuming your image directly
includes packagegroup-core-xll-xserver or, perhaps indirectly,
includes "x11-base" in IMAGE FEATURES.

The default value of XSERVER, if not specified in the machine
configuration, is "xserver-xorg xf86-video-fbdev xf86-input-evdev".

Chapter 13. Variable Context

While you can use most variables in almost any context such as .conf, .bbclass, .inc, and .bb
files, some variables are often associated with a particular locality or context. This chapter describes
some common associations.

13.1. Configuration

The following subsections provide lists of variables whose context is configuration: distribution,
machine, and local.

13.1.1. Distribution (Distro)

This section lists variables whose configuration context is the distribution, or distro.

* DISTRO

DISTRO NAME

DISTRO_VERSION

MAINTAINER
* PACKAGE_CLASSES

TARGET_0S

TARGET_FPU

TCMODE
* TCLIBC

13.1.2. Machine

This section lists variables whose configuration context is the machine.
* TARGET ARCH

* SERIAL CONSOLES

* PACKAGE_EXTRA_ARCHS

* IMAGE FSTYPES

* MACHINE_FEATURES

* MACHINE_EXTRA RDEPENDS

* MACHINE_EXTRA RRECOMMENDS

* MACHINE ESSENTIAL EXTRA RDEPENDS

* MACHINE ESSENTIAL EXTRA RRECOMMENDS

13.1.3. Local

This section lists variables whose configuration context is the local configuration through the
local. conf file.

* DISTRO
* MACHINE

« DL_DIR

« BBFILES
« EXTRA IMAGE FEATURES

« PACKAGE_CLASSES

« BB_NUMBER_THREADS

« BBINCLUDELOGS

« ENABLE_BINARY LOCALE_GENERATION

13.2. Recipes

The following subsections provide lists of variables whose context is recipes: required, dependencies,
path, and extra build information.

13.2.1. Required

This section lists variables that are required for recipes.
* LICENSE
e LIC FILES CHKSUM

* SRC_URI - used in recipes that fetch local or remote files.

13.2.2. Dependencies

This section lists variables that define recipe dependencies.
» DEPENDS

* RDEPENDS

* RRECOMMENDS

RCONFLICTS
* RREPLACES

13.2.3. Paths

This section lists variables that define recipe paths.
* WORKDIR

*S

* FILES

13.2.4. Extra Build Information

This section lists variables that define extra build information for recipes.
* EXTRA_ OECMAKE
* EXTRA OECONF
* EXTRA OEMAKE

PACKAGES
* DEFAULT PREFERENCE

Chapter 14. FAQ

14.1.

14.2.

14.3.

14.4.

14.5.

14.6.

14.7.

How does Poky differ from OpenEmbedded [http://www.openembedded.org]?

The term "Poky [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky]"
refers to the specific reference build system that the Yocto Project provides. Poky is based
on OE-Core [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#oe-core] and
BitBake [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term].
Thus, the generic term used here for the build system is the "OpenEmbedded build system."
Development in the Yocto Project using Poky is closely tied to OpenEmbedded, with changes
always being merged to OE-Core or BitBake first before being pulled back into Poky. This practice
benefits both projects immediately.

My development system does not meet the required Git, tar, and Python versions. In particular,
I do not have Python 2.7.3 or greater, or 1 do have Python 3.x, which is specifically not supported
by the Yocto Project. Can | still use the Yocto Project?

You can get the required tools on your host development system a couple different ways (i.e.
building a tarball or downloading a tarball). See the "Required Git, tar, and Python Versions"
section for steps on how to update your build tools.

How can you claim Poky / OpenEmbedded-Core is stable?
There are three areas that help with stability;

* The Yocto Project team keeps OE-Core [http://www.yoctoproject.org/docs/1.8/dev-manual/
dev-manual.html#oe-core] small and focused, containing around 830 recipes as opposed to
the thousands available in other OpenEmbedded community layers. Keeping it small makes
it easy to test and maintain.

¢ The Yocto Project team runs manual and automated tests using a small, fixed set of reference
hardware as well as emulated targets.

¢ The Yocto Project uses an autobuilder, which provides continuous build and integration tests.
How do | get support for my board added to the Yocto Project?

Support for an additional board is added by creating a Board Support Package
(BSP) layer for it. For more information on how to create a BSP layer, see the
"Understanding and Creating Layers [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#understanding-and-creating-layers]" section in the Yocto Project Development
Manual and the Yocto Project Board Support Package (BSP) Developer's Guide [http://
www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html].

Usually, if the board is not completely exotic, adding support in the Yocto Project is fairly
straightforward.

Are there any products built using the OpenEmbedded build system?

The software running on the Vernier LabQuest [http://vernier.com/labquest/] is built using the
OpenEmbedded build system. See the Vernier LabQuest [http://www.vernier.com/products/
interfaces/labq/] website for more information. There are a number of pre-production devices
using the OpenEmbedded build system and the Yocto Project team announces them as soon
as they are released.

What does the OpenEmbedded build system produce as output?

Because you can use the same set of recipes to create output of various formats, the output of
an OpenEmbedded build depends on how you start it. Usually, the output is a flashable image
ready for the target device.

How do | add my package to the Yocto Project?

To add a package, you need to create a BitBake recipe. For information on how to create
a BitBake recipe, see the "Writing a New Recipe [http://www.yoctoproject.org/docs/1.8/dev-

http://www.openembedded.org
http://www.openembedded.org
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#oe-core
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#oe-core
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#oe-core
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#oe-core
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#oe-core
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#understanding-and-creating-layers
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html
http://vernier.com/labquest/
http://vernier.com/labquest/
http://www.vernier.com/products/interfaces/labq/
http://www.vernier.com/products/interfaces/labq/
http://www.vernier.com/products/interfaces/labq/
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#new-recipe-writing-a-new-recipe
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#new-recipe-writing-a-new-recipe

14.8.

14.9.

manual/dev-manual.html#new-recipe-writing-a-new-recipe]" in the Yocto Project Development
Manual.

Do | have to reflash my entire board with a new Yocto Project image when recompiling a
package?

The OpenEmbedded build system can build packages in various formats such as IPK for OPKG,
Debian package (.deb), or RPM. You can then upgrade the packages using the package tools on
the device, much like on a desktop distribution such as Ubuntu or Fedora. However, package
management on the target is entirely optional.

What is GNOME Mobile and what is the difference between GNOME Mobile and GNOME?

GNOME Mobile is a subset of the GNOME [http://www.gnome.org] platform targeted at mobile
and embedded devices. The main difference between GNOME Mobile and standard GNOME is
that desktop-orientated libraries have been removed, along with deprecated libraries, creating
a much smaller footprint.

14.101 see the error 'chmod: XXXXX new permissions are r-xrwxrwx, not r-xr-xr-x'. What

is wrong?

You are probably running the build on an NTFS filesystem. Use ext2, ext3, or ext4 instead.

14.111 see lots of 404 responses for files on /sources/*. Is something wrong?

Nothing is wrong. The OpenEmbedded build system checks any configured source mirrors
before downloading from the upstream sources. The build system does this searching for both
source archives and pre-checked out versions of SCM-managed software. These checks help
in large installations because it can reduce load on the SCM servers themselves. The address
above is one of the default mirrors configured into the build system. Consequently, if an
upstream source disappears, the team can place sources there so builds continue to work.

14.121 have machine-specific data in a package for one machine only but the package is being marked

as machine-specific in all cases, how do | prevent this?

Set SRC_URI OVERRIDES PACKAGE ARCH = "0" in the .bb file but make sure the package
is manually marked as machine-specific for the case that needs it. The code that handles
SRC_URI OVERRIDES PACKAGE ARCH is in the meta/classes/base.bbclass file.

14.131'm behind a firewall and need to use a proxy server. How do | do that?

Most source fetching by the OpenEmbedded build system is done by wget and you therefore
need to specify the proxy settings in a .wgetrc file in your home directory. Here are some
example settings:

http proxy = http://proxy.yoyodyne.com:18023/
ftp _proxy = http://proxy.yoyodyne.com:18023/

The Yocto Project also includes a site.conf.sample file that shows how to configure CVS and
Git proxy servers if needed.

14.14 What's the difference between target and target-native?

The *-native targets are designed to run on the system being used for the build. These are
usually tools that are needed to assist the build in some way such as quilt-native, which is
used to apply patches. The non-native version is the one that runs on the target device.

14.151'm seeing random build failures. Help?!

If the same build is failing in totally different and random ways, the most likely explanation is:
¢ The hardware you are running the build on has some problem.

* You are running the build under virtualization, in which case the virtualization probably has
bugs.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#new-recipe-writing-a-new-recipe
http://www.gnome.org
http://www.gnome.org

The OpenEmbedded build system processes a massive amount of data that causes lots of
network, disk and CPU activity and is sensitive to even single-bit failures in any of these areas.
True random failures have always been traced back to hardware or virtualization issues.

14.16 What do we need to ship for license compliance?

This is a difficult question and you need to consult your lawyer for the answer for your specific
case. It is worth bearing in mind that for GPL compliance, there needs to be enough information
shipped to allow someone else to rebuild and produce the same end result you are shipping.
This means sharing the source code, any patches applied to it, and also any configuration
information about how that package was configured and built.

You can find more information on licensing in the
"Licensing [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#licensing]"
and "Maintaining Open Source License Compliance During Your Product's
Lifecycle [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-
open-source-license-compliance-during-your-products-lifecycle]" sections, both of which are in
the Yocto Project Development Manual.

14.17How do | disable the cursor on my touchscreen device?

You need to create a form factor file as described in the "Miscellaneous BSP-Specific
Recipe Files [http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html#bsp-filelayout-
misc-recipes]" section in the Yocto Project Board Support Packages (BSP) Developer's Guide.
Set the HAVE_TOUCHSCREEN variable equal to one as follows:

HAVE_TOUCHSCREEN=1

14.18How do | make sure connected network interfaces are brought up by default?

The default interfaces file provided by the netbase recipe does not automatically bring up
network interfaces. Therefore, you will need to add a BSP-specific netbase that includes an
interfaces file. See the "Miscellaneous BSP-Specific Recipe Files [http://www.yoctoproject.org/
docs/1.8/bsp-guide/bsp-guide.html#bsp-filelayout-misc-recipes]" section in the Yocto Project
Board Support Packages (BSP) Developer's Guide for information on creating these types of
miscellaneous recipe files.

For example, add the following files to your layer:

meta-MACHINE/recipes-bsp/netbase/netbase/MACHINE/interfaces
meta-MACHINE/recipes-bsp/netbase/netbase 5.0.bbappend

14.19How do | create images with more free space?

By default, the OpenEmbedded build system creates images that are 1.3 times the size of the
populated root filesystem. To affect the image size, you need to set various configurations:

* Image Size: The OpenEmbedded build system uses the IMAGE_ROOTFS_SIZE variable to define
the size of the image in Kbytes. The build system determines the size by taking into account
the initial root filesystem size before any modifications such as requested size for the image
and any requested additional free disk space to be added to the image.

* Overhead: Use the IMAGE OVERHEAD FACTOR variable to define the multiplier that the build
system applies to the initial image size, which is 1.3 by default.

« Additional Free Space: Use the IMAGE ROOTFS EXTRA SPACE variable to add additional free
space to the image. The build system adds this space to the image after it determines its
IMAGE ROOTFS SIZE.

14.20Why don't you support directories with spaces in the pathnames?

The Yocto Project team has tried to do this before but too many of the tools the OpenEmbedded
build system depends on, such as autoconf, break when they find spaces in pathnames. Until
that situation changes, the team will not support spaces in pathnames.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#licensing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#licensing
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html#bsp-filelayout-misc-recipes
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html#bsp-filelayout-misc-recipes
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html#bsp-filelayout-misc-recipes
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html#bsp-filelayout-misc-recipes
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html#bsp-filelayout-misc-recipes
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html#bsp-filelayout-misc-recipes
http://www.yoctoproject.org/docs/1.8/bsp-guide/bsp-guide.html#bsp-filelayout-misc-recipes

14.21 How do | use an external toolchain?

The toolchain configuration is very flexible and customizable. It is primarily controlled with the
TCMODE variable. This variable controls which tcmode-*.inc file to include from the meta/conf/
distro/include directory within the Source Directory [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#source-directory].

The default value of TCMODE is "default", which tells the OpenEmbedded build system to use
its internally built toolchain (i.e. tcmode-default.inc). However, other patterns are accepted.
In particular, "external-*" refers to external toolchains. One example is the Sourcery G++
Toolchain. The support for this toolchain resides in the separate meta-sourcery layer at http://
github.com/MentorEmbedded/meta-sourcery/.

In addition to the toolchain configuration, you also need a corresponding toolchain recipe file.
This recipe file needs to package up any pre-built objects in the toolchain such as libgcc,
libstdcc++, any locales, and libc.

14.22 How does the OpenEmbedded build system obtain source code and will it work behind my
firewall or proxy server?

The way the build system obtains source code is highly configurable. You can setup the build
system to get source code in most environments if HTTP transport is available.

When the build system searches for source code, it first tries the local download directory. If
that location fails, Poky tries PREMIRRORS, the upstream source, and then MIRRORS in that order.

Assuming your distribution is "poky", the OpenEmbedded build system uses the Yocto Project
source PREMIRRORS by default for SCM-based sources, upstreams for normal tarballs, and then
falls back to a number of other mirrors including the Yocto Project source mirror if those fail.

As an example, you could add a specific server for the build system to attempt before any
others by adding something like the following to the local. conf configuration file:

PREMIRRORS prepend = "\

git://.*/.* http://www.yoctoproject.org/sources/ \n \
ftp://.*/.* http://www.yoctoproject.org/sources/ \n \
http://.*/.* http://www.yoctoproject.org/sources/ \n \
https://.*/.* http://www.yoctoproject.org/sources/ \n"

These changes cause the build system to intercept Git, FTP, HTTP, and HTTPS requests and
direct them to the http:// sources mirror. You can use file:// URLs to point to local directories
or network shares as well.

Aside from the previous technique, these options also exist:

BB_NO_ NETWORK = "1"

This statement tells BitBake to issue an error instead of trying to access the Internet. This
technique is useful if you want to ensure code builds only from local sources.

Here is another technique:

BB_FETCH_ PREMIRRORONLY = "1"
This statement limits the build system to pulling source from the PREMIRRORS only. Again, this
technique is useful for reproducing builds.

Here is another technique:

BB_GENERATE_MIRROR TARBALLS = "1"

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://github.com/MentorEmbedded/meta-sourcery/
http://github.com/MentorEmbedded/meta-sourcery/

This statement tells the build system to generate mirror tarballs. This technique is useful if you
want to create a mirror server. If not, however, the technique can simply waste time during
the build.

Finally, consider an example where you are behind an HTTP-only firewall. You could make the
following changes to the local.conf configuration file as long as the PREMIRRORS server is
current:

PREMIRRORS prepend = "\

ftp://.*/.* http://www.yoctoproject.org/sources/ \n \
http://.*/.* http://www.yoctoproject.org/sources/ \n \
https://.*/.* http://www.yoctoproject.org/sources/ \n"
BB FETCH PREMIRRORONLY = "1"

These changes would cause the build system to successfully fetch source over HTTP and any
network accesses to anything other than the PREMIRRORS would fail.

The build system also honors the standard shell environment variables http proxy, ftp proxy,
https_proxy, and all _proxy to redirect requests through proxy servers.

Note

You can find more information on the "Working Behind a Network Proxy [https://
wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy]" Wiki page.

14.23Can | get rid of build output so | can start over?

Yes - you can easily do this. When you use BitBake to build an image, all the build output
goes into the directory created when you run the build environment setup script (i.e. oe-
init-build-env or oe-init-build-env-memres). By default, this Build Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory] is named build
but can be named anything you want.

Within the Build Directory, is the tmp directory. To remove all the build output yet preserve any
source code or downloaded files from previous builds, simply remove the tmp directory.

14.24Why do ${bindir} and ${libdir} have strange values for -native recipes?

Executables and libraries might need to be used from a directory other than the directory
into which they were initially installed. Complicating this situation is the fact that sometimes
these executables and libraries are compiled with the expectation of being run from that initial
installation target directory. If this is the case, moving them causes problems.

This scenario is a fundamental problem for package maintainers of mainstream Linux
distributions as well as for the OpenEmbedded build system. As such, a well-established
solution exists. Makefiles, Autotools configuration scripts, and other build systems are expected
to respect environment variables such as bindir, libdir, and sysconfdir that indicate where
executables, libraries, and data reside when a program is actually run. They are also expected
to respect a DESTDIR environment variable, which is prepended to all the other variables when
the build system actually installs the files. It is understood that the program does not actually
run from within DESTDIR.

When the OpenEmbedded build system uses a recipe to build a target-architecture program
(i.e. one that is intended for inclusion on the image being built), that program eventually runs
from the root file system of that image. Thus, the build system provides a value of "/usr/bin"
for bindir, a value of "/usr/lib" for libdir, and so forth.

Meanwhile, DESTDIR is a path within the Build Directory [http://www.yoctoproject.org/docs/1.8/
dev-manual/dev-manual.html#build-directory]. However, when the recipe builds a native
program (i.e. one that is intended to run on the build machine), that program is never installed
directly to the build machine's root file system. Consequently, the build system uses paths
within the Build Directory for DESTDIR, bindir and related variables. To better understand this,
consider the following two paths where the first is relatively normal and the second is not:

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy
https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy
https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#build-directory

Note

Due to these lengthy examples, the paths are artificially broken across lines for
readability.

/home/maxtothemax/poky-bootchart2/build/tmp/work/i586-poky-1linux/z1lib/
1.2.8-r0/sysroot-destdir/usr/bin

/home/maxtothemax/poky-bootchart2/build/tmp/work/x86 64-1linux/
zlib-native/1.2.8-r0/sysroot-destdir/home/maxtothemax/poky-bootchart2/
build/tmp/sysroots/x86 64-1linux/usr/bin

Even if the paths look unusual, they both are correct - the first for a target and the second
for a native recipe. These paths are a consequence of the DESTDIR mechanism and while they
appear strange, they are correct and in practice very effective.

14.25The files provided by my -native recipe do not appear to be available to other recipes. Files
are missing from the native sysroot, my recipe is installing to the wrong place, or | am getting
permissions errors during the do_install task in my recipe! What is wrong?

This situation results when a build system does not recognize the environment
variables supplied to it by BitBake [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#bitbake-term]. The incident that prompted this FAQ entry involved a Makefile that
used an environment variable named BINDIR instead of the more standard variable bindir. The
makefile's hardcoded default value of "/usr/bin" worked most of the time, but not for the recipe's
-native variant. For another example, permissions errors might be caused by a Makefile that
ignores DESTDIR or uses a different name for that environment variable. Check the the build
system to see if these kinds of issues exist.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term

Chapter 15. Contributing to the
Yocto Project

15.1. Introduction

The Yocto Project team is happy for people to experiment with the Yocto Project. A number of
places exist to find help if you run into difficulties or find bugs. To find out how to download
source code, see the "Yocto Project Release [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-
manual.html#local-yp-release]" section in the Yocto Project Development Manual.

15.2. Tracking Bugs

If you find problems with the Yocto Project, you should report them using the Bugzilla application at
http://bugzilla.yoctoproject.org.

15.3. Mailing lists

A number of mailing lists maintained by the Yocto Project exist as well as related OpenEmbedded
mailing lists for discussion, patch submission and announcements. To subscribe to one of the following
mailing lists, click on the appropriate URL in the following list and follow the instructions:

* http://lists.yoctoproject.org/listinfo/yocto - General Yocto Project discussion mailing list.

http://lists.openembedded.org/mailman/listinfo/openembedded-core - Discussion mailing list about
OpenEmbedded-Core (the core metadata).

http://lists.openembedded.org/mailman/listinfo/openembedded-devel - Discussion mailing list
about OpenEmbedded.

http://lists.openembedded.org/mailman/listinfo/bitbake-devel - Discussion mailing list about the
BitBake [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term] build
tool.

http://lists.yoctoproject.org/listinfo/poky - Discussion mailing list about Poky [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky].

http://lists.yoctoproject.org/listinfo/yocto-announce - Mailing list to receive official Yocto Project
release and milestone announcements.

For more Yocto Project-related mailing lists, see the Yocto Project community mailing lists page here
[http://www.yoctoproject.org/tools-resources/community/mailing-lists].

15.4. Internet Relay Chat (IRC)

Two IRC channels on freenode are available for the Yocto Project and Poky discussions:
 #yocto

* #poky

15.5. Links

Here is a list of resources you will find helpful:
» The Yocto Project website [http://www.yoctoproject.org]: The home site for the Yocto Project.

* Intel Corporation [http://www.intel.com/]: The company that acquired OpenedHand in 2008 and
began development on the Yocto Project.

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#local-yp-release
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#local-yp-release
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#local-yp-release
http://bugzilla.yoctoproject.org
http://lists.yoctoproject.org/listinfo/yocto
http://lists.openembedded.org/mailman/listinfo/openembedded-core
http://lists.openembedded.org/mailman/listinfo/openembedded-devel
http://lists.openembedded.org/mailman/listinfo/bitbake-devel
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#bitbake-term
http://lists.yoctoproject.org/listinfo/poky
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#poky
http://lists.yoctoproject.org/listinfo/yocto-announce
http://www.yoctoproject.org/tools-resources/community/mailing-lists
http://www.yoctoproject.org/tools-resources/community/mailing-lists
http://www.yoctoproject.org
http://www.yoctoproject.org
http://www.intel.com/
http://www.intel.com/

* OpenEmbedded [http://www.openembedded.org]: The upstream, generic, embedded distribution
used as the basis for the build system in the Yocto Project. Poky derives from and contributes back
to the OpenEmbedded project.

BitBake [http://www.openembedded.org/wiki/BitBake]: The tool used to process metadata.

* BitBake User Manual [http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-
manual.html]: A comprehensive guide to the BitBake tool. In the Source Directory [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory], you can find the
BitBake User Manual in the bitbake/doc/bitbake-user-manual directory.

* QEMU [http://wiki.gemu.org/Index.htmlI]: An open source machine emulator and virtualizer.

15.6. Contributions

The Yocto Project gladly accepts contributions. You can submit changes to the project either by
creating and sending pull requests, or by submitting patches through email. For information on how
to do both as well as information on how to identify the maintainer for each area of code, see the
"How to Submit a Change [http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#how-
to-submit-a-change]" section in the Yocto Project Development Manual.

http://www.openembedded.org
http://www.openembedded.org
http://www.openembedded.org/wiki/BitBake
http://www.openembedded.org/wiki/BitBake
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/1.8/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#source-directory
http://wiki.qemu.org/Index.html
http://wiki.qemu.org/Index.html
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#how-to-submit-a-change
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#how-to-submit-a-change
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#how-to-submit-a-change

	Yocto Project Reference Manual
	Table of Contents
	Chapter 1. Introduction
	1.1. Introduction
	1.2. Documentation Overview
	1.3. System Requirements
	1.3.1. Supported Linux Distributions
	1.3.2. Required Packages for the Host Development System
	1.3.2.1. Ubuntu and Debian
	1.3.2.2. Fedora Packages
	1.3.2.3. openSUSE Packages
	1.3.2.4. CentOS Packages

	1.3.3. Required Git, tar, and Python Versions
	1.3.3.1. Downloading a Pre-Built buildtools Tarball
	1.3.3.2. Building Your Own buildtools Tarball

	1.4. Obtaining the Yocto Project
	1.5. Development Checkouts

	Chapter 2. Using the Yocto Project
	2.1. Running a Build
	2.1.1. Build Overview
	2.1.2. Building an Image Using GPL Components

	2.2. Installing and Using the Result
	2.3. Debugging Build Failures
	2.3.1. Task Failures
	2.3.2. Running Specific Tasks
	2.3.3. Dependency Graphs
	2.3.4. General BitBake Problems
	2.3.5. Development Host System Issues
	2.3.6. Building with No Dependencies
	2.3.7. Variables
	2.3.8. Recipe Logging Mechanisms
	2.3.8.1. Logging With Python
	2.3.8.2. Logging With Bash

	2.3.9. Other Tips

	2.4. Maintaining Build Output Quality
	2.4.1. Enabling and Disabling Build History
	2.4.2. Understanding What the Build History Contains
	2.4.2.1. Build History Package Information
	2.4.2.2. Build History Image Information
	2.4.2.3. Using Build History to Gather Image Information Only
	2.4.2.4. Build History SDK Information
	2.4.2.5. Examining Build History Information

	2.5. Speeding Up the Build

	Chapter 3. A Closer Look at the Yocto Project Development Environment
	3.1. User Configuration
	3.2. Metadata, Machine Configuration, and Policy Configuration
	3.2.1. Distro Layer
	3.2.2. BSP Layer
	3.2.3. Software Layer

	3.3. Sources
	3.3.1. Upstream Project Releases
	3.3.2. Local Projects
	3.3.3. Source Control Managers (Optional)
	3.3.4. Source Mirror(s)

	3.4. Package Feeds
	3.5. BitBake
	3.5.1. Source Fetching
	3.5.2. Patching
	3.5.3. Configuration and Compilation
	3.5.4. Package Splitting
	3.5.5. Image Generation
	3.5.6. SDK Generation

	3.6. Images
	3.7. Application Development SDK

	Chapter 4. Technical Details
	4.1. Yocto Project Components
	4.1.1. BitBake
	4.1.2. Metadata (Recipes)
	4.1.3. Classes
	4.1.4. Configuration

	4.2. Cross-Development Toolchain Generation
	4.3. Shared State Cache
	4.3.1. Overall Architecture
	4.3.2. Checksums (Signatures)
	4.3.3. Shared State
	4.3.4. Tips and Tricks
	4.3.4.1. Debugging
	4.3.4.2. Invalidating Shared State

	4.4. x32
	4.4.1. Support
	4.4.2. Completing x32
	4.4.3. Using x32 Right Now

	4.5. Wayland
	4.5.1. Support
	4.5.2. Enabling Wayland in an Image
	4.5.2.1. Building
	4.5.2.2. Installing

	4.5.3. Running Weston

	4.6. Licenses
	4.6.1. Tracking License Changes
	4.6.1.1. Specifying the LIC_FILES_CHKSUM Variable
	4.6.1.2. Explanation of Syntax

	4.6.2. Enabling Commercially Licensed Recipes
	4.6.2.1. License Flag Matching
	4.6.2.2. Other Variables Related to Commercial Licenses

	Chapter 5. Migrating to a Newer Yocto Project Release
	5.1. General Migration Considerations
	5.2. Moving to the Yocto Project 1.3 Release
	5.2.1. Local Configuration
	5.2.1.1. SSTATE_MIRRORS
	5.2.1.2. bblayers.conf

	5.2.2. Recipes
	5.2.2.1. Python Function Whitespace
	5.2.2.2. proto= in SRC_URI
	5.2.2.3. nativesdk
	5.2.2.4. Task Recipes
	5.2.2.5. IMAGE_FEATURES
	5.2.2.6. Removed Recipes

	5.2.3. Linux Kernel Naming

	5.3. Moving to the Yocto Project 1.4 Release
	5.3.1. BitBake
	5.3.2. Build Behavior
	5.3.3. Proxies and Fetching Source
	5.3.4. Custom Interfaces File (netbase change)
	5.3.5. Remote Debugging
	5.3.6. Variables
	5.3.7. Target Package Management with RPM
	5.3.8. Recipes Moved
	5.3.9. Removals and Renames

	5.4. Moving to the Yocto Project 1.5 Release
	5.4.1. Host Dependency Changes
	5.4.2. atom-pc Board Support Package (BSP)
	5.4.3. BitBake
	5.4.4. QA Warnings
	5.4.5. Directory Layout Changes
	5.4.6. Shortened Git SRCREV Values
	5.4.7. IMAGE_FEATURES
	5.4.8. /run
	5.4.9. Removal of Package Manager Database Within Image Recipes
	5.4.10. Images Now Rebuild Only on Changes Instead of Every Time
	5.4.11. Task Recipes
	5.4.12. BusyBox
	5.4.13. Automated Image Testing
	5.4.14. Build History
	5.4.15. udev
	5.4.16. Removed and Renamed Recipes
	5.4.17. Other Changes

	5.5. Moving to the Yocto Project 1.6 Release
	5.5.1. archiver Class
	5.5.2. Packaging Changes
	5.5.3. BitBake
	5.5.3.1. Matching Branch Requirement for Git Fetching
	5.5.3.2. Python Definition substitutions
	5.5.3.3. SVK Fetcher
	5.5.3.4. Console Output Error Redirection
	5.5.3.5. task-taskname Overrides

	5.5.4. Changes to Variables
	5.5.4.1. TMPDIR
	5.5.4.2. PRINC
	5.5.4.3. IMAGE_TYPES
	5.5.4.4. COPY_LIC_MANIFEST
	5.5.4.5. COPY_LIC_DIRS
	5.5.4.6. PACKAGE_GROUP

	5.5.5. Directory Layout Changes
	5.5.6. Package Test (ptest)
	5.5.7. Build Changes
	5.5.8. qemu-native
	5.5.9. core-image-basic
	5.5.10. Licensing
	5.5.11. CFLAGS Options
	5.5.12. Custom Image Output Types
	5.5.13. Tasks
	5.5.14. update-alternative Provider
	5.5.15. virtclass Overrides
	5.5.16. Removed and Renamed Recipes
	5.5.17. Removed Classes
	5.5.18. Reference Board Support Packages (BSPs)

	5.6. Moving to the Yocto Project 1.7 Release
	5.6.1. Changes to Setting QEMU PACKAGECONFIG Options in local.conf
	5.6.2. Minimum Git version
	5.6.3. Autotools Class Changes
	5.6.4. Binary Configuration Scripts Disabled
	5.6.5. eglibc 2.19 Replaced with glibc 2.20
	5.6.6. Kernel Module Autoloading
	5.6.7. QA Check Changes
	5.6.8. Removed Recipes
	5.6.9. Miscellaneous Changes

	Chapter 6. Source Directory Structure
	6.1. Top-Level Core Components
	6.1.1. bitbake/
	6.1.2. build/
	6.1.3. documentation/
	6.1.4. meta/
	6.1.5. meta-yocto/
	6.1.6. meta-yocto-bsp/
	6.1.7. meta-selftest/
	6.1.8. meta-skeleton/
	6.1.9. scripts/
	6.1.10. oe-init-build-env
	6.1.11. oe-init-build-env-memres
	6.1.12. LICENSE, README, and README.hardware

	6.2. The Build Directory - build/
	6.2.1. build/buildhistory
	6.2.2. build/conf/local.conf
	6.2.3. build/conf/bblayers.conf
	6.2.4. build/conf/sanity_info
	6.2.5. build/downloads/
	6.2.6. build/sstate-cache/
	6.2.7. build/tmp/
	6.2.8. build/tmp/buildstats/
	6.2.9. build/tmp/cache/
	6.2.10. build/tmp/deploy/
	6.2.11. build/tmp/deploy/deb/
	6.2.12. build/tmp/deploy/rpm/
	6.2.13. build/tmp/deploy/ipk/
	6.2.14. build/tmp/deploy/licenses/
	6.2.15. build/tmp/deploy/images/
	6.2.16. build/tmp/deploy/sdk/
	6.2.17. build/tmp/sstate-control/
	6.2.18. build/tmp/sysroots/
	6.2.19. build/tmp/stamps/
	6.2.20. build/tmp/log/
	6.2.21. build/tmp/work/
	6.2.22. build/tmp/work-shared/

	6.3. The Metadata - meta/
	6.3.1. meta/classes/
	6.3.2. meta/conf/
	6.3.3. meta/conf/machine/
	6.3.4. meta/conf/distro/
	6.3.5. meta/conf/machine-sdk/
	6.3.6. meta/files/
	6.3.7. meta/lib/
	6.3.8. meta/recipes-bsp/
	6.3.9. meta/recipes-connectivity/
	6.3.10. meta/recipes-core/
	6.3.11. meta/recipes-devtools/
	6.3.12. meta/recipes-extended/
	6.3.13. meta/recipes-gnome/
	6.3.14. meta/recipes-graphics/
	6.3.15. meta/recipes-kernel/
	6.3.16. meta/recipes-lsb4/
	6.3.17. meta/recipes-multimedia/
	6.3.18. meta/recipes-qt/
	6.3.19. meta/recipes-rt/
	6.3.20. meta/recipes-sato/
	6.3.21. meta/recipes-support/
	6.3.22. meta/site/
	6.3.23. meta/recipes.txt

	Chapter 7. Classes
	7.1. allarch.bbclass
	7.2. archiver.bbclass
	7.3. autotools.bbclass
	7.4. autotools-brokensep.bbclass
	7.5. base.bbclass
	7.6. bin_package.bbclass
	7.7. binconfig.bbclass
	7.8. binconfig-disabled.bbclass
	7.9. blacklist.bbclass
	7.10. boot-directdisk.bbclass
	7.11. bootimg.bbclass
	7.12. bugzilla.bbclass
	7.13. buildhistory.bbclass
	7.14. buildstats.bbclass
	7.15. buildstats-summary.bbclass
	7.16. ccache.bbclass
	7.17. chrpath.bbclass
	7.18. clutter.bbclass
	7.19. cmake.bbclass
	7.20. cml1.bbclass
	7.21. compress_doc.bbclass
	7.22. copyleft_compliance.bbclass
	7.23. copyleft_filter.bbclass
	7.24. core-image.bbclass
	7.25. cpan.bbclass
	7.26. cross.bbclass
	7.27. cross-canadian.bbclass
	7.28. crosssdk.bbclass
	7.29. debian.bbclass
	7.30. deploy.bbclass
	7.31. devshell.bbclass
	7.32. distro_features_check.bbclass
	7.33. distrodata.bbclass
	7.34. distutils.bbclass
	7.35. distutils3.bbclass
	7.36. externalsrc.bbclass
	7.37. extrausers.bbclass
	7.38. fontcache.bbclass
	7.39. gconf.bbclass
	7.40. gettext.bbclass
	7.41. gnome.bbclass
	7.42. gnomebase.bbclass
	7.43. grub-efi.bbclass
	7.44. gsettings.bbclass
	7.45. gtk-doc.bbclass
	7.46. gtk-icon-cache.bbclass
	7.47. gtk-immodules-cache.bbclass
	7.48. gummiboot.bbclass
	7.49. gzipnative.bbclass
	7.50. icecc.bbclass
	7.51. image.bbclass
	7.52. image_types.bbclass
	7.53. image_types_uboot.bbclass
	7.54. image-live.bbclass
	7.55. image-mklibs.bbclass
	7.56. image-prelink.bbclass
	7.57. image-swab.bbclass
	7.58. image-vmdk.bbclass
	7.59. insane.bbclass
	7.60. insserv.bbclass
	7.61. kernel.bbclass
	7.62. kernel-arch.bbclass
	7.63. kernel-module-split.bbclass
	7.64. kernel-yocto.bbclass
	7.65. lib_package.bbclass
	7.66. license.bbclass
	7.67. linux-kernel-base.bbclass
	7.68. logging.bbclass
	7.69. meta.bbclass
	7.70. metadata_scm.bbclass
	7.71. mime.bbclass
	7.72. mirrors.bbclass
	7.73. module.bbclass
	7.74. module-base.bbclass
	7.75. multilib*.bbclass
	7.76. native.bbclass
	7.77. nativesdk.bbclass
	7.78. oelint.bbclass
	7.79. own-mirrors.bbclass
	7.80. package.bbclass
	7.81. package_deb.bbclass
	7.82. package_ipk.bbclass
	7.83. package_rpm.bbclass
	7.84. package_tar.bbclass
	7.85. packagedata.bbclass
	7.86. packagegroup.bbclass
	7.87. packageinfo.bbclass
	7.88. patch.bbclass
	7.89. perlnative.bbclass
	7.90. pixbufcache.bbclass
	7.91. pkgconfig.bbclass
	7.92. populate_sdk.bbclass
	7.93. populate_sdk_*.bbclass
	7.94. prexport.bbclass
	7.95. primport.bbclass
	7.96. prserv.bbclass
	7.97. ptest.bbclass
	7.98. ptest-gnome.bbclass
	7.99. python-dir.bbclass
	7.100. pythonnative.bbclass
	7.101. qemu.bbclass
	7.102. qmake*.bbclass
	7.103. qt4*.bbclass
	7.104. relocatable.bbclass
	7.105. report-error.bbclass
	7.106. rm_work.bbclass
	7.107. rootfs*.bbclass
	7.108. sanity.bbclass
	7.109. scons.bbclass
	7.110. sdl.bbclass
	7.111. setuptools.bbclass
	7.112. setuptools3.bbclass
	7.113. sip.bbclass
	7.114. siteconfig.bbclass
	7.115. siteinfo.bbclass
	7.116. spdx.bbclass
	7.117. sstate.bbclass
	7.118. staging.bbclass
	7.119. syslinux.bbclass
	7.120. systemd.bbclass
	7.121. terminal.bbclass
	7.122. testimage.bbclass
	7.123. texinfo.bbclass
	7.124. tinderclient.bbclass
	7.125. toaster.bbclass
	7.126. toolchain-scripts.bbclass
	7.127. typecheck.bbclass
	7.128. uboot-config.bbclass
	7.129. uninative.bbclass
	7.130. update-alternatives.bbclass
	7.131. update-rc.d.bbclass
	7.132. useradd.bbclass
	7.133. useradd-staticids.bbclass
	7.134. utility-tasks.bbclass
	7.135. utils.bbclass
	7.136. vala.bbclass
	7.137. waf.bbclass

	Chapter 8. Tasks
	8.1. Normal Recipe Build Tasks
	8.1.1. do_build
	8.1.2. do_compile
	8.1.3. do_compile_ptest_base
	8.1.4. do_configure
	8.1.5. do_configure_ptest_base
	8.1.6. do_deploy
	8.1.7. do_fetch
	8.1.8. do_install
	8.1.9. do_install_ptest_base
	8.1.10. do_package
	8.1.11. do_package_qa
	8.1.12. do_package_write_deb
	8.1.13. do_package_write_ipk
	8.1.14. do_package_write_rpm
	8.1.15. do_package_write_tar
	8.1.16. do_packagedata
	8.1.17. do_patch
	8.1.18. do_populate_lic
	8.1.19. do_populate_sdk
	8.1.20. do_populate_sysroot
	8.1.21. do_rm_work
	8.1.22. do_rm_work_all
	8.1.23. do_unpack

	8.2. Manually Called Tasks
	8.2.1. do_checkuri
	8.2.2. do_checkuriall
	8.2.3. do_clean
	8.2.4. do_cleanall
	8.2.5. do_cleansstate
	8.2.6. do_devshell
	8.2.7. do_fetchall
	8.2.8. do_listtasks
	8.2.9. do_package_index

	8.3. Image-Related Tasks
	8.3.1. do_bootimg
	8.3.2. do_bundle_initramfs
	8.3.3. do_rootfs
	8.3.4. do_testimage
	8.3.5. do_testimage_auto
	8.3.6. do_vmdkimg

	8.4. Kernel-Related Tasks
	8.4.1. do_compile_kernelmodules
	8.4.2. do_diffconfig
	8.4.3. do_kernel_checkout
	8.4.4. do_kernel_configcheck
	8.4.5. do_kernel_configme
	8.4.6. do_kernel_link_vmlinux
	8.4.7. do_menuconfig
	8.4.8. do_savedefconfig
	8.4.9. do_sizecheck
	8.4.10. do_strip
	8.4.11. do_uboot_mkimage
	8.4.12. do_validate_branches

	8.5. Miscellaneous Tasks
	8.5.1. do_generate_qt_config_file
	8.5.2. do_spdx

	Chapter 9. QA Error and Warning Messages
	9.1. Introduction
	9.2. Errors and Warnings
	9.3. Configuring and Disabling QA Checks

	Chapter 10. Images
	Chapter 11. Features
	11.1. Machine Features
	11.2. Distro Features
	11.3. Image Features
	11.4. Feature Backfilling

	Chapter 12. Variables Glossary
	Glossary

	Chapter 13. Variable Context
	13.1. Configuration
	13.1.1. Distribution (Distro)
	13.1.2. Machine
	13.1.3. Local

	13.2. Recipes
	13.2.1. Required
	13.2.2. Dependencies
	13.2.3. Paths
	13.2.4. Extra Build Information

	Chapter 14. FAQ
	Chapter 15. Contributing to the Yocto Project
	15.1. Introduction
	15.2. Tracking Bugs
	15.3. Mailing lists
	15.4. Internet Relay Chat (IRC)
	15.5. Links
	15.6. Contributions

