Yocto Project Profiling = ™
and Tracing Manual

Tom Zanussi, Intel Corporation <tom.zanussi@intel.com>

by Tom Zanussi
Copyright © 2010-2014 Linux Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Share Alike 2.0 UK: England & Wales [http://creativecommons.org/licenses/by-sa/2.0/uk/] as published
by Creative Commons.

Note

For the latest version of this manual associated with this Yocto Project release, see the Yocto Project
Profiling and Tracing Manual [http://www.yoctoproject.org/docs/1.8/profile-manual/profile-manual.html]
from the Yocto Project website.

http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://creativecommons.org/licenses/by-sa/2.0/uk/
http://www.yoctoproject.org/docs/1.8/profile-manual/profile-manual.html
http://www.yoctoproject.org/docs/1.8/profile-manual/profile-manual.html
http://www.yoctoproject.org/docs/1.8/profile-manual/profile-manual.html

Table of Contents

1. Yocto Project Profiling and Tracing Manualooiiiiiiii e e e 1
L L INErOAUCEION e 1

A =Y o 1= =Y Y = L o 1

2. Overall Architecture of the Linux Tracing and Profiling Toolscoooiiiiiiiici e 3
2.1. Architecture of the Tracing and Profiling ToOIScccoiiiiiiiii e 3

3. Basic Usage (with examples) for each of the Yocto Tracing Toolscccoooviiiiiiiiiiieeen 4
0 I 7= o 4
0 Y U o PPt 4

0 I = T 1] i U 1T Yo T 4

3.1.3. DOCUMENEATION 1ouitiiii i 32

T Yo < S PP 33

3. 2. L, S IUP ittt s 33

3.2.2. BaSIC flrate USAQE .viiiiiic i e 33

3.2.3. The 'trace events' SUDSYSEEM ... e 37

3.2.4. trace-cmA/KerNeISNark ... 40

3.2.5. DOCUMENEATION 1ouitiiii i 44

0 T TR Y21 =] = o 45
3.3 L S IUP ittt e 46

3.3.2. Running a Script on @ Target ..o 46

3.3.3. DOCUMENEATION 1ouitiiii i 47

o T o o) i1 1 47
3. L. S IUP ittt s 47

R = T T Ut U 1 Yo T 48

3.4.3. OProfileUl - A GUI for OProfileccoviiiiiiii e 53

3.4.4. DOCUMENEATION 1ouitiiii i 58

0 T V27 o o 59
3. 0. L, S BIUP i e 59

35,2, BaSIiC USAQE ittt e eaas 59

3.5.3. DOCUMENEATION 1uuitiiii i 61

3.6. LTTng (Linux Trace Toolkit, next generation)coiiiiiiiii i e 61
30, L. S IUP ittt s 61

3.6.2. Collecting and VIieWing TraCeSccuiuiiuiiiiieiiii e e e e e e ee e 61

3.6.3. DOCUMENEATION 1ouitiiiii i 67

3.7 BIKEIACE e 67
3.7 L S IUP it 67

37,2, BaSiC USAQE oiuiiiiii it e 68

3.7.3. DOCUMENEATION 1ouitiiii i 73

4. REAIFWOIIA EXAMPIES oottt 74

4.1. Slow Write Speed 0N LiVE IMageS ...t e e e eaas 74

Chapter 1. Yocto Project Profiling
and Tracing Manual

1.1. Introduction

Yocto bundles a number of tracing and profiling tools - this 'HOWTQ' describes their basic usage and
shows by example how to make use of them to examine application and system behavior.

The tools presented are for the most part completely open-ended and have quite good and/or
extensive documentation of their own which can be used to solve just about any problem you
might come across in Linux. Each section that describes a particular tool has links to that tool's
documentation and website.

The purpose of this 'HOWTO' is to present a set of common and generally useful tracing and profiling
idioms along with their application (as appropriate) to each tool, in the context of a general-purpose
'drill-down' methodology that can be applied to solving a large number (90%7?) of problems. For help
with more advanced usages and problems, please see the documentation and/or websites listed for
each tool.

The final section of this 'HOWTO' is a collection of real-world examples which we'll be continually
adding to as we solve more problems using the tools - feel free to add your own examples to the list!

1.2. General Setup

Most of the tools are available only in 'sdk' images or in images built after adding 'tools-profile' to
your local.conf. So, in order to be able to access all of the tools described here, please first build and
boot an 'sdk' image e.g.

$ bitbake core-image-sato-sdk
or alternatively by adding 'tools-profile' to the EXTRA_IMAGE_FEATURES line in your local.conf:
EXTRA IMAGE FEATURES = "debug-tweaks tools-profile"

If you use the 'tools-profile' method, you don't need to build an sdk image - the tracing and profiling
tools will be included in non-sdk images as well e.g.:

$ bitbake core-image-sato

Note

By default, the Yocto build system strips symbols from the binaries it packages, which makes
it difficult to use some of the tools.

You can prevent that by putting the following in your local.conf when you build the image:
INHIBIT PACKAGE STRIP = "1"

The above setting will noticeably increase the size of your image.

If you've already built a stripped image, you can generate debug packages (xxx-dbg) which you can
manually install as needed.

To generate debug info for packages, you can add dbg-pkgs to EXTRA_IMAGE_FEATURES in local.conf.
For example:

EXTRA IMAGE FEATURES = "debug-tweaks tools-profile dbg-pkgs"

Additionally, in order to generate the right type of debuginfo, we also need to add the following to
local.conf:

PACKAGE DEBUG SPLIT STYLE = 'debug-file-directory'

Chapter 2. Overall Architecture of
the Linux Tracing and Profiling Tools

2.1. Architecture of the Tracing and Profiling
Tools

It may seem surprising to see a section covering an 'overall architecture' for what seems to be a
random collection of tracing tools that together make up the Linux tracing and profiling space. The
fact is, however, that in recent years this seemingly disparate set of tools has started to converge
on a 'core' set of underlying mechanisms:

* static tracepoints
* dynamic tracepoints
* kprobes
e uprobes
* the perf_events subsystem
* debugfs

Tying it Together: Rather than enumerating here how each tool makes use of these common
mechanisms, textboxes like this will make note of the specific usages in each tool as they come up
in the course of the text.

Chapter 3. Basic Usage (with
examples) for each of the Yocto
Tracing Tools

This chapter presents basic usage examples for each of the tracing tools.

3.1. perf

The 'perf' tool is the profiling and tracing tool that comes bundled with the Linux kernel.

Don't let the fact that it's part of the kernel fool you into thinking that it's only for tracing and profiling
the kernel - you can indeed use it to trace and profile just the kernel, but you can also use it to profile
specific applications separately (with or without kernel context), and you can also use it to trace and
profile the kernel and all applications on the system simultaneously to gain a system-wide view of
what's going on.

In many ways, perf aims to be a superset of all the tracing and profiling tools available in Linux today,
including all the other tools covered in this HOWTO. The past couple of years have seen perf subsume
a lot of the functionality of those other tools and, at the same time, those other tools have removed
large portions of their previous functionality and replaced it with calls to the equivalent functionality
now implemented by the perf subsystem. Extrapolation suggests that at some point those other tools
will simply become completely redundant and go away; until then, we'll cover those other tools in
these pages and in many cases show how the same things can be accomplished in perf and the other
tools when it seems useful to do so.

The coverage below details some of the most common ways you'll likely want to apply the tool;

full documentation can be found either within the tool itself or in the man pages at perf(1) [http://
linux.die.net/man/1/perf].

3.1.1. Setup

For this section, we'll assume you've already performed the basic setup outlined in the General Setup
section.

In particular, you'll get the most mileage out of perf if you profile an image built with
INHIBIT_PACKAGE_STRIP = "1" in your local.conf.

perf runs on the target system for the most part. You can archive profile data and copy it to the host

for analysis, but for the rest of this document we assume you've ssh'ed to the host and will be running
the perf commands on the target.

3.1.2. Basic Usage

The perf tool is pretty much self-documenting. To remind yourself of the available commands, simply
type 'perf', which will show you basic usage along with the available perf subcommands:

root@crownbay:~# perf
usage: perf [--version] [--help] COMMAND [ARGS]

The most commonly used perf commands are:

annotate Read perf.data (created by perf record) and display annotated code
archive Create archive with object files with build-ids found in perf.data file
bench General framework for benchmark suites

buildid-cache Manage build-id cache.
buildid-list List the buildids in a perf.data file

http://linux.die.net/man/1/perf
http://linux.die.net/man/1/perf
http://linux.die.net/man/1/perf

diff
evlist
inject
kmem
kvm
list
lock
probe
record
report
sched
script
stat
test
timechart
top

Read two perf.data files and display the differential profile
List the event names in a perf.data file

Filter to augment the events stream with additional information
Tool to trace/measure kernel memory(slab) properties

Tool to trace/measure kvm guest os

List all symbolic event types

Analyze lock events

Define new dynamic tracepoints

Run a command and record its profile into perf.data

Read perf.data (created by perf record) and display the profile
Tool to trace/measure scheduler properties (latencies)

Read perf.data (created by perf record) and display trace output
Run a command and gather performance counter statistics

Runs sanity tests.

Tool to visualize total system behavior during a workload
System profiling tool.

See 'perf help COMMAND' for more information on a specific command.

3.1.2.1. Using perf to do Basic Profiling

As a simple test case, we'll profile the 'wget' of a fairly large file, which is a minimally interesting case
because it has both file and network 1/O aspects, and at least in the case of standard Yocto images,
it's implemented as part of busybox, so the methods we use to analyze it can be used in a very similar
way to the whole host of supported busybox applets in Yocto.

root@crownbay:~# rm linux-2.6.19.2.tar.bz2; \
wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2

The quickest and easiest way to get some basic overall data about what's going on for a particular
workload is to profile it using 'perf stat'. 'perf stat' basically profiles using a few default counters and
displays the summed counts at the end of the run:

root@crownbay:~# perf stat wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.:

Connecting to downloads.yoctoproject.org (140.211.169.59:80)
lanX-26192tarb 1000/0 |***| 41727k 00(

Performance counter stats for 'wget http://downloads.yoctoproject.org/mirror/sources/linux-z

4597.223902
23568

68

241

3045817293

<not supported>
<not supported>
858909167
165441165
19550329

59.836627620

.077 CPUs utilized
.005 M/sec

.015 K/sec

.052 K/sec

.663 GHz

task-clock
context-switches
CPU-migrations
page-faults

cycles
stalled-cycles-frontend
stalled-cycles-backend

H R HHH
[cNoNoNoNo

instructions # 0.28 insns per cycle
branches # 35.987 M/sec
branch-misses # 11.82% of all branches

seconds time elapsed

Many times such a simple-minded test doesn't yield much of interest, but sometimes it does (see
Real-world Yocto bug (slow loop-mounted write speed)).

Also, note that 'perf stat' isn't restricted to a fixed set of counters - basically any event listed in the
output of 'perf list' can be tallied by 'perf stat'. For example, suppose we wanted to see a summary
of all the events related to kernel memory allocation/freeing along with cache hits and misses:

http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2
http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2
http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2

root@crownbay:~# perf stat -e kmem:* -e cache-references -e cache-misses wget http://downlo:

Connecting to downloads.yoctoproject.org (140.211.169.59:80)
linux-2.6.19.2.tar.b 100% |***| 41727k @:OG

Performance counter stats for 'wget http://downloads.yoctoproject.org/mirror/sources/linux-:

5566 kmem:kmalloc
125517 kmem:kmem cache alloc
0 kmem:kmalloc_node
0 kmem:kmem cache alloc_node
34401 kmem:kfree
69920 kmem:kmem cache free
133 kmem:mm_page free
41 kmem:mm_page free batched
11502 kmem:mm_page alloc
11375 kmem:mm_page_alloc_zone locked
0 kmem:mm_page pcpu_drain
0 kmem:mm_page alloc extfrag
66848602 cache-references
2917740 cache-misses # 4.365 % of all cache refs

44.831023415 seconds time elapsed

So 'perf stat' gives us a nice easy way to get a quick overview of what might be happening for a set
of events, but normally we'd need a little more detail in order to understand what's going on in a way
that we can act on in a useful way.

To dive down into a next level of detail, we can use 'perf record'/'perf report' which will collect profiling
data and present it to use using an interactive text-based Ul (or simply as text if we specify --stdio
to 'perf report').

As our first attempt at profiling this workload, we'll simply run 'perf record', handing it the workload
we want to profile (everything after 'perf record' and any perf options we hand it - here none - will
be executed in a new shell). perf collects samples until the process exits and records them in a file
named 'perf.data’ in the current working directory.

root@crownbay:~# perf record wget http://downloads.yoctoproject.org/mirror/sources/linux-2.¢
Connecting to downloads.yoctoproject.org (140.211.169.59:80)

linux-2.6.19.2.tar.b 100% |**| 41727k 0:00:0¢

[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.176 MB perf.data (~7700 samples)]

To see the results in a 'text-based Ul' (tui), simply run 'perf report’, which will read the perf.data file
in the current working directory and display the results in an interactive Ul:

root@crownbay:~# perf report

http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2
http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2
http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2

Basic Usage (with examples) for each of the Yocto Tracing Tools

trz@empanada:~ - | O

File Edit View 5Search Terminal Help

Events: 4K cycles, Thread: wget(1231)

3.86% wget [kernel.kallsyms] [k] sub preempt count *
3.47% wget [kernel.kallsyms] [k] add preempt count @
3.16% wget [kernel.kallsyms] [k] read hpet @
1.95% wget [kernel.kallsyms] [k] _ copy to user 11 8
1.92% wget [kernel.kallsyms] [k] system call 8
1.82% wget [kernel.kallsyms] [k] _ copy from user 11 nozero 8
1.76% wget [kernel.kallsyms] [k] get _parent ip i
1.67% wget [kernel.kallsyms] [k] ext3 mark _iloc dirty i
1.67% wget busybox [.] OxBE0651e3 i
1.54% wget [kernel.kallsyms] [k] __find get block i
1.37% wget [kernel.kallsyms] [k] ext3_get blocks_handle i
1.22% wget [kernel.kallsyms] [k] do_sys poll i
1.16% wget [kernel.kallsyms] [k] journal_add_journal_head i
1.10% wget [kernel.kallsyms] [k] _ block write begin i
1.07% wget [kernel.kallsyms] [k] tcp_recvmsg i
1.02% wget [kernel.kallsyms] [k] in_lock_functions i
1.01% wget [kernel.kallsyms] [k] ext3_new blocks i
0.97% wget [kernel.kallsyms] [k] do_get write_access i
0.94% wget [kernel.kallsyms] [k] memset i
0.88% wget [kernel.kallsyms] [k] fget_light i
0.84% wget [kernel.kallsyms] [k] ioread32 &
0.82% wget [kernel.kallsyms] [k] ext3 get inode loc &
0.79% wget [kernel.kallsyms] [k] bit waitqueue &
0.78% wget [kernel.kallsyms] [k] _ schedule i
0.74% wget Tlibc-2.16.s0 [.] read i
0.73% wget [kernel.kallsyms] [k] journal_dirty metadata i
0.73% wget [kernel.kallsyms] [k] _raw spin lock @
0.72% wget Tlibc-2.16.so0 [.] GOxERG5f4de @
0.67% wget [kernel.kallsyms] [k] fsnotify @
0.67% wget [kernel.kallsyms] [k] kmem cache alloc 8
0.67% wget [kernel.kallsyms] [k] debug smp processcr_id 8
0.66% wget [kernel.kallsyms] [k] ext3 ordered write end 8
0.64% wget [kernel.kallsyms] [k] journal dirty data i
0.62% wget [kernel.kallsyms] [k] find busiest group i
0.62% wget [kernel.kallsyms] [k] __rcu_read_unlock i
0.61% wget [kernel.kallsyms] [k] radix_tree lookup_element i
0.60% wget [kernel.kallsyms] [k] kmem_cache_free i
0.59% wget [kernel.kallsyms] [k] kfree i
0.58% wget [kernel.kallsyms] [k] __mark_inode dirty i
0.57% wget [kernel.kallsyms] [k] ext3 journal start sh i

for help on key bindings

The above screenshot displays a 'flat' profile, one entry for each 'bucket' corresponding to the
functions that were profiled during the profiling run, ordered from the most popular to the least (perf
has options to sort in various orders and keys as well as display entries only above a certain threshold
and so on - see the perf documentation for details). Note that this includes both userspace functions
(entries containing a [.]) and kernel functions accounted to the process (entries containing a [k]).
(perf has command-line modifiers that can be used to restrict the profiling to kernel or userspace,
among others).

Notice also that the above report shows an entry for 'busybox', which is the executable that
implements 'wget' in Yocto, but that instead of a useful function name in that entry, it displays a not-
so-friendly hex value instead. The steps below will show how to fix that problem.

Before we do that, however, let's try running a different profile, one which shows something a little
more interesting. The only difference between the new profile and the previous one is that we'll add
the -g option, which will record not just the address of a sampled function, but the entire callchain
to the sampled function as well:

Basic Usage (with examples) for each of the Yocto Tracing Tools

root@crownbay:~# perf record -g wget http://downloads.yoctoproject.org/mirror/sources/linux-
Connecting to downloads.yoctoproject.org (140.211.169.59:80)

llnux-26192tarb 100% |**| 41727k 0000(
[perf record: Woken up 3 times to write data]

[perf record: Captured and wrote 0.652 MB perf.data (~28476 samples)]

root@crownbay:~# perf report

trz@empanada:~ - | O

File Edit View Search Terminal Help

Events: 4K cycles
+ 1.77% wget [kernel.kallsyms] [k] _ copy from user 11 nozero
- 1.77% wget [kernel.kallsyms] [k] _ copy to user 11
- __copy_to user_11
- 90.87% copy_to_user
- 97.759% memcpy_toiovec
- skb_copy_datagram_iovec
- 89.99% tcp_recvmsg
inet_recvmsg
sock_aio_read
do_sync_read
vTs_read
sys_read
syscall_call
read
- 10.01% skb_copy_datagram_iovec
tcp_recvmsg
inet recvmsg
sock_aio_read
do_sync_read
vfs_ read
sys_read
syscall_call
read
+ 2.21% sys clock gettime
- 6.75% sys clock gettime
syscall _call
syscall
OxB8EBcE5
- 2.38% memcpy_toiovec
skb_copy_datagram_iovec
tcp_recvmsg
inet_recvmsg
sock_aio_read
do_sync_read
vfs_read
sys_read
syscall_call
read
+ 1.43% wget [kernel.kallsyms] [k] ext3_get blocks_handle
+ 1.42% wget [kernel.kallsyms] [k] tcp recvmsg

ST S S T G BRI A0 RN AN ST ST ST ST 0 A0 SANT AN RN S ST ST ST SR0T BA0T BRAT SANT SN SH ST T GO SO0 SRMT BRI BRI BN @ AN

for help on key bindings

Using the callgraph view, we can actually see not only which functions took the most time, but we can
also see a summary of how those functions were called and learn something about how the program
interacts with the kernel in the process.

Notice that each entry in the above screenshot now contains a '+' on the left-hand side. This means
that we can expand the entry and drill down into the callchains that feed into that entry. Pressing

http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2

‘enter’' on any one of them will expand the callchain (you can also press 'E' to expand them all at the
same time or 'C' to collapse them all).

In the screenshot above, we've toggled the _ copy_to_user_lI() entry and several subnodes all the
way down. This lets us see which callchains contributed to the profiled __copy_to_user_ll() function
which contributed 1.77% to the total profile.

As a bit of background explanation for these callchains, think about what happens at a high level
when you run wget to get a file out on the network. Basically what happens is that the data comes into
the kernel via the network connection (socket) and is passed to the userspace program 'wget' (which
is actually a part of busybox, but that's not important for now), which takes the buffers the kernel
passes to it and writes it to a disk file to save it.

The part of this process that we're looking at in the above call stacks is the part where the kernel
passes the data it's read from the socket down to wget i.e. a copy-to-user.

Notice also that here there's also a case where the hex value is displayed in the callstack, here in
the expanded sys_clock_gettime() function. Later we'll see it resolve to a userspace function call in
busybox.

Basic Usage (with examples) for each of the Yocto Tracing Tools

trz@empanada:~ - | O

File Edit View 5Search Terminal Help

Events: 4K cycles

+ 3.60% wget [kernel.kallsyms] [k] sub _preempt count @
+ 3.12% wget [kernel.kallsyms] [k] read hpet @
+ 2.73% wget [kernel.kallsyms] [k] add preempt _count *
+ 2.48% wget busybox [.] GxBEEEcO 8
+ 2.21% wget [kernel.kallsyms] [k] get parent ip 8
+ 1.94% wget [kernel.kallsyms] [k] system call 8
+ 1.88% wget [kernel.kallsyms] [k] _ find get block i
- 1.77% wget [kernel.kallsyms] [k] _ copy_ from user 11 nozero i
- _copy_from_user_11_nozero i
- 91.57% iov_iter copy_from_user_atomic i
generic_file buffered write i
__generic_file aio_write i
generic_file aio write i
do_sync_write i
vfs_write i
sys_write i
syscall_call i
write i
- 8.43% generic_file buffered write i
__generic_file aio write i
generic_file aio write &
do_sync_write &
vfs write &
sys_write i
syscall call i
write i
+ wget [kernel.kallsyms] [k] _ copy to user 11 i
+ wget [kernel.kallsyms] [k] ext3 get blocks handle @
+ wget [kernel.kallsyms] [k] tcp_recvmsg @
+ wget [kernel.kallsyms] [k] ext3 new blocks 8
+ wget [kernel.kallsyms] [k] _ block write begin 8
+ wget [kernel.kallsyms] [k] in lock functions 8
+ wget [kernel.kallsyms] [k] ext3 mark iloc dirty i
+ wget [kernel.kallsyms] [k] memset i
+ wget [kernel.kallsyms] [k] debug_smp_processor_id i
+ wget [kernel.kallsyms] [k] _ schedule i
+ wget [kernel.kallsyms] [k] journal_add_journal_head i
+ wget [kernel.kallsyms] [k] _ ext3 get inode loc i
+ wget [kernel.kallsyms] [k] do_sys_poll i
+ wget [kernel.kallsyms] [k] journal dirty metadata i
P for help on key bindings

The above screenshot shows the other half of the journey for the data - from the wget program's
userspace buffers to disk. To get the buffers to disk, the wget program issues a write(2), which does a
copy-from-user to the kernel, which then takes care via some circuitous path (probably also present
somewhere in the profile data), to get it safely to disk.

Now that we've seen the basic layout of the profile data and the basics of how to extract useful
information out of it, let's get back to the task at hand and see if we can get some basic idea
about where the time is spent in the program we're profiling, wget. Remember that wget is actually
implemented as an applet in busybox, so while the process name is 'wget', the executable we're
actually interested in is busybox. So let's expand the first entry containing busybox:

10

Basic Usage (with examples) for each of the Yocto Tracing Tools

trz@empanada:~ - | O

File Edit View 5Search Terminal Help

: 4K cycles
+ 3.60% wget [kernel.kallsyms] [
+ 3.12% wget [kernel.kallsyms] [
+ 2.73% wget [kernel.kallsyms] [
- 2.48% wget busybox [

BxB808chHn
Bx80530d
Bx804bf1
AIxB0BE8e
AIxB0B6Ze
Bx805310
Bx804b50
BxB80530a
Bx80acld
BxB80aclb
Bx804bbb
Bx808ch5
BxB0BGaa
Bx808ch5
Bx80833d
Bx808ch5
BxB808315
Bx805307
Bx808cH3
Bx80531a
Bx805311
Bx805307
Bx805309
Bx808318
Bx808cH5
BxB808691
Bx80531b
BxB808chH3
AxB08cHZ
AxBOBEET
AxB0B69kL
AxB08699
Bx808chs
BxB805311
AxB08316
AxB08chs

] sub_preempt count
] read hpet

] add preempt count
] O0xG000ctdd

{530 SAI0 B80T BRI B0 AT ST ST S0 A0 00T SRNT BRAT SR ST ST SO SN0 BRI GRAT BRT SN ST SHT ST T A0 BRI BRI RN BN ST ST SR SO0 GO0 SORT SEIE BN @

for help on key bindings

Again, before we expanded we saw that the function was labeled with a hex value instead of a symbol
as with most of the kernel entries. Expanding the busybox entry doesn't make it any better.

The problem is that perf can't find the symbol information for the busybox binary, which is actually
stripped out by the Yocto build system.

One way around that is to put the following in your local.conf when you build the image:

INHIBIT PACKAGE STRIP = "1"

However, we already have an image with the binaries stripped, so what can we do to get perf to
resolve the symbols? Basically we need to install the debuginfo for the busybox package.

To generate the debug info for the packages in the image, we can add dbg-pkgs to
EXTRA_IMAGE_FEATURES in local.conf. For example:

11

EXTRA IMAGE FEATURES = "debug-tweaks tools-profile dbg-pkgs"

Additionally, in order to generate the type of debuginfo that perf understands, we also need to add
the following to local.conf:

PACKAGE DEBUG SPLIT STYLE = 'debug-file-directory'

Once we've done that, we can install the debuginfo for busybox. The debug packages once built can
be found in build/tmp/deploy/rpm/* on the host system. Find the busybox-dbg-...rpm file and copy it
to the target. For example:

[trz@empanada core2]$ scp /home/trz/yocto/crownbay-tracing-dbg/build/tmp/deploy/rpm/core2 3-
root@l92.168.1.31's password:

busybox-dbg-1.20.2-r2.core2_32.rpm 100% 1826KB 1.8MB/s 00:01
Now install the debug rpm on the target:
root@crownbay:~# rpm -i busybox-dbg-1.20.2-r2.core2 32.rpm

Now that the debuginfo is installed, we see that the busybox entries now display their functions
symbolically:

Basic Usage (with examples) for each of the Yocto Tracing Tools

trz@empanada:~ - | O

File Edit View 5Search Terminal Help

Events: 4K cycles

clearerr
ext3 write_begin
sched_clock_local
fsnotify
journal_put_journal_head
rcu_read unlock

.61% wget libc-2.16.s0
.B0% wget kernel.kallsyms
.559% wget kernel.kallsyms

[]
[]
.58% wget [kernel.kallsyms]
[]
[]

o

.58% wget
.55% wget
7' for help on

kernel.kallsyms
kernel .kallsyms

r bindi

]
]
]
]
]
]
] ext3 ordered write end
]
]
]
]
]
]

=«

[4

+ 3.60% wget [kernel.kallsyms] [k] sub _preempt count @
+ 3.12% wget [kernel.kallsyms] [k] read hpet @
+ 2.73% wget [kernel.kallsyms] [k] add preempt _count *
+ 2.21% wget [kernel.kallsyms] [k] get parent ip 8
+ 1.94% wget [kernel.kallsyms] [k] system call 8
+ 1.88% wget [kernel.kallsyms] [k] _ find get block 8
+ 1.77% wget [kernel.kallsyms] [k] _ copy from user 11 nozero i
+ 1.77% wget [kernel.kallsyms] [k] _ copy to user 11 i
+ 1.43% wget [kernel.kallsyms] [k] ext3_get blocks_handle i
+ 1.42% wget [kernel.kallsyms] [k] tcp_recvmsg i
+ 1.41% wget [kernel.kallsyms] [k] ext3_new blocks i
+ 1.34% wget [kernel.kallsyms] [k] _ block write_begin i
+ 1.32% wget [kernel.kallsyms] [k] in_lock_functions i
+ 1.32% wget [kernel.kallsyms] [k] ext3_mark_iloc_dirty i
+ 1.17% wget [kernel.kallsyms] [k] memset i
+ 1.12% wget [kernel.kallsyms] [k] debug_smp_processor_id i
+ 1.08% wget [kernel.kallsyms] [k] _ schedule i
+ 1.05% wget [kernel.kallsyms] [k] journal_add_journal_head i
+ 0.92% wget [kernel.kallsyms] [k] _ ext3_get inode loc i
+ 0.83% wget [kernel.kallsyms] [k] do_sys poll i
+ 0.81% wget [kernel.kallsyms] [k] journal_dirty metadata &
+ 0.75% wget Tibc-2.16.s0 [.] Gx0E115093 &
+ 0.74% wget [kernel.kallsyms] [k] fTind busiest group &
+ 0.73% wget [kernel.kallsyms] [k] bit waltqueue i
+ 0.73% wget Tlibc-2.16.s0 [.] read i
- 0.67% wget busybox [.] udhcpc_main i
udhcpec_main @
[.67% wget [kernel.kallsyms] k] restore nocheck @
0.66% wget [kernel.kallsyms] k] radix tree lookup_ element i
0.63% wget [kernel.kallsyms] k]l journal_stop 8
0.63% wget [kernel.kallsyms] k] kmem _cache alloc 8
0.62% wget [kernel.kallsyms] k]l tcp poll 8
0.62% wget [kernel.kallsyms] k] do _get write access i
0.61% wget [kernel.kallsyms] ke i

|§| ﬁ

Iil ﬁ

Iil ﬁ

' i

] - - + - + + + + + + + + +

If we expand one of the entries and press 'enter' on a leaf node, we're presented with a menu of
actions we can take to get more information related to that entry:

trz@empanada:~ - | O

File Edit View Search Terminal Help

Annotate udhcpc_main

Zoom into wget(1241) thread
Zoom into busybox DSO
Browse map details

Exit

exit, ENTER|-=: Select option

13

Basic Usage (with examples) for each of the Yocto Tracing Tools

One of these actions allows us to show a view that displays a busybox-centric view of the profiled
functions (in this case we've also expanded all the nodes using the 'E' key):

trz@empanada:~ - | O

File Edit View Search Terminal Help

Events: 103 cycles, DSO0: busybox
- 27.21% wget [.] udhcpc _main
udhcpe_main
- 14.67% wget [.] handle_ input
handle_input
- 8.95% wget [.] common_ping main
- common_ping_main
100.090% handle_input
- 8.94% wget [.] tftp_main
- tftp_main
100.00% handle_input
- B8.30% wget [.] Ox000651d4
Ox80acld
Ox80aclb
Ox8lacle
Ox80aclb
- 5.79% wget [.] INET setroute
INET_setroute
- 5.44% wget [.] doexit
doexit
- 4.85% wget [.] bb_init module
- bb_init_module
100.0890% handle_input
- 4.48% wget [.] handle_net_output
handle net output
- 3.67% wget [.] ife_print
ife print
- 3.66% wget [.] load_modules_dep
Lload modules dep
handle input
- 3.36% wget [.] gather options str
- gather options_str
100.00% handle input
- 0.68% wget [.] nslockup main
nslookup_main

b RN T T T R T T B R T R R T R R N S N S S I S S ST S B S S S S S T S R T W

for help on key bindings

Finally, we can see that now that the busybox debuginfo is installed, the previously unresolved
symbol in the sys clock _gettime() entry mentioned previously is now resolved, and shows that the
sys_clock_gettime system call that was the source of 6.75% of the copy-to-user overhead was initiated
by the handle_input() busybox function:

14

Basic Usage (with examples) for each of the Yocto Tracing Tools

trz@empanada:~ - | B x

File Edit View 5Search Terminal Help

Events: 4K cycles
+ 1.77% wget [kernel.kallsyms] [k] _ copy fTrom user 11 nozero
- 1.77% wget [kernel.kallsyms] [k] _ copy to user 11
- _ copy_to user 11
- 90.87% copy_to_user
- 97.759% memcpy_toiovec
- skb _copy datagram_iovec
- 89.99% tcp_recvmsg
inet recvmsg
sock_alo_read
do_sync_read
vfs_read
sys_read
syscall_call
read
- 10.01% skb_copy_datagram_iovec
tcp_recvmsg
inet_recvmsg
sock_aio_read
do_sync_read
vfs_read
sys_read
syscall _call
read
+ 2.21% sys _clock _gettime
- 6.75% sys_clock _gettime
syscall _call
syscall
handle input
- 2.38% memcpy_ toiovec
skb_copy datagram_iovec
tcp_recvmsg
inet recvmsg
sock _alo read
do_sync_read
vfs_read
sys_read
syscall_call
read
+ 1.43% wget [kernel.kallsyms] [k] ext3_get blocks_handle
i 1.42% wget [kernel.kallsyms] [k] tcp recvmsg

{530 SAI0 B80T RN B0 ST ST ST S0 00T SANT SRET RN ST ST SO SN0 SRIT BA0T SRRT SUB0T SHA SHY ST T A0 BRI BRI RN GBI ST ST SR SO0 G001 SOE0 ¢ SRS IEN

00N |--Z.f:—'.'j," bindi

At the lowest level of detail, we can dive down to the assembly level and see which instructions
caused the most overhead in a function. Pressing 'enter' on the 'udhcpc_main' function, we're again
presented with a menu:

15

Basic Usage (with examples) for each of the Yocto Tracing Tools

trz@empanada:~ - | O

File Edit View 5Search Terminal Help

Annotate udhcpc main

Zoom into wget(1241) thread
Zoom out of busybox DSO
Browse map details

Exit

o AR SAET G GO EET

ESC: exit, ENTER|-=: Select option

Selecting 'Annotate udhcpc_main', we get a detailed listing of percentages by instruction for the
udhcpc_main function. From the display, we can see that over 50% of the time spent in this function
is taken up by a couple tests and the move of a constant (1) to a register:

16

Basic Usage (with examples) for each of the Yocto Tracing Tools

trz@empanada:~ - |0 x
File Edit View Search Terminal Help

3.70 : 805307a: test Sscl,%cl

7.41 : 805307c: ine B80531laa =fchmod@plt+@x6fda=
0.00 : 8053082 : lea 0x28(%esp) ,%esi

0.00 : 8053086 mov S%esi,0x18(%esp)

0.06 : 805308a: mov $0x1000,%edi

0.00 : 8O5308f: mov Ox48(%ebx) ,%esi

0.00 : 8053092 mowv 0x18(%esp) ,%eax

3.70 : 8053096 : mov $0x%3e8,%ecx

G.06 805309b; mov $0x1,%edx

0.00 : 80530a0: call B0aclbb =fchmod@plt+0x5ffeb=>
11.11 : 80530a5: test Sseax,%Beax

0.00 : 80530a7: je 80531e2 =fchmod@plt+0x/012=>
0.00 80530ad: mowv Sebp, (Sesp)

3.70 : 8053000 : call 804bf10 =clearerr@plt=

0.00 : 80530b5: mov Bx80d3988,%esi

0.00 : 80530bb : movL $0x0, (%esi)

0.00 : 80530c] : mov Bxlc (%esp) ,%esi

0.00 : 80530c5: mov Sebp, 0xc (%esp)

3.70 : B80530c9: mowv Sedi,0x8(%esp)

0.00 : 80530cd: movL $0x1,0x4 (%esp)

0.00 : 80530d5: mov S%esi, (%esp)

0.00 : 80530d8: call 804b5cO =fread@plt=
28.63 : 80530dd : test Sseax,%Seax

0.06 : 80530df: mov Sseax ,%sesi

.06 : 80530el : ig 805308 =fchmod@plt+Ox6f28=
G.06 80530e3: mov OxB80d3988 ,%es1

0.00 : 8053029 : cmpl $0xb, (%esi)

0.00 80530ec : jne 8053210 =fchmod@plt+0x7040=
0.00 : 805302 : movzhl Ox55(%ebx) ,%ecx

0.00 805306 : imp B05307a <fchmod@plt+Oxbeaa=
0.00 : B8O530f8: mov Oxdc (%ebx) ,%eax

0.e0 : 80530fb : mowv S%esi,%ecx

0.00 : 80530fd: mov %esi,%edi

0.00 : BO530Ff: mov Bxlc (%esp) ,%edx

0.00 : 8053103: sar $0x1f,%edl

0.00 : 8053106 call B086Zea =fchmod@plt+0x3alla=
14.81 : 805310k : mov $0x1 ,%eax

0.06 : 8053110: add Sesi, 0x10(%ebx)

3.70 : 8053113: adc Ssedi, 0x14(%ebx)

0.06 : 8053116: call B08bfff <fchmod@plt+0x3feZf=>
0.06 : 805311b: movzbl @x55(%ebx) ,%ecx

3.70 : 805311f: test Scl,%cl

0.00 : 8053121 : je 805308a =fchmod@plt+0xteba=
0.00 : 8053127 : mov (%ebx) ,%eax

: S le hot lines, H: Go to hottest , -=/ENTER: L]

As a segue into tracing, let's try another profile using a different counter, something other than the
default 'cycles'.

The tracing and profiling infrastructure in Linux has become unified in a way that allows us to use the
same tool with a completely different set of counters, not just the standard hardware counters that
traditional tools have had to restrict themselves to (of course the traditional tools can also make use of
the expanded possibilities now available to them, and in some cases have, as mentioned previously).

We can get a list of the available events that can be used to profile a workload via 'perf list":

root@crownbay:~# perf list

List of pre-defined events (to be used in -e):

cpu-cycles OR cycles [Hardware event]
stalled-cycles-frontend OR idle-cycles-frontend [Hardware event]
stalled-cycles-backend OR idle-cycles-backend [Hardware event]

17

instructions

cache-references

cache-misses
branch-instructions OR branches
branch-misses

bus-cycles

ref-cycles

cpu-clock

task-clock

page-faults OR faults
minor-faults

major-faults
context-switches OR cs
cpu-migrations OR migrations
alignment-faults
emulation-faults

L1-dcache-1loads
L1-dcache-load-misses
L1-dcache-prefetch-misses
L1-icache-1loads
L1-icache-load-misses

rNNN

cpu/tl=vl[,t2=v2,t3 ...]/modifier
(see 'perf list --help' on how to encode it)

mem:<addr>[:access]

sunrpc:rpc_call status
sunrpc:rpc_bind status
sunrpc:rpc_connect status
sunrpc:rpc_task begin
skb:kfree skb
skb:consume_skb
skb:skb copy datagram iovec
net:net dev xmit
net:net dev _queue

net:netif receive skb
net:netif rx

napi:napi _poll

sock:sock rcvqueue full
sock:sock exceed buf limit
udp:udp fail queue rcv_skb
hda:hda_send cmd
hda:hda get response
hda:hda _bus reset

scsi:scsi dispatch cmd start
scsi:scsi dispatch cmd error
scsi:scsi_eh wakeup
drm:drm_vblank event
drm:drm_vblank event queued
drm:drm_vblank event delivered
random:mix_pool bytes
random:mix_pool bytes nolock
random:credit_entropy bits
gpio:gpio direction
gpio:gpio value
block:block rq abort
block:block rq_requeue
block:block rq issue

[Hardware event]
[Hardware event]
[Hardware event]
[Hardware event]
[Hardware event]
[Hardware event]
[Hardware event]

[Software event]
[Software event]
[Software event]
[Software event]
[Software event]
[Software event]
[Software event]
[Software event]
[Software event]

[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]

[Raw hardware event descriptor]
[Raw hardware event descriptor]

[Hardware breakpoint]

[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]
[Tracepoint event]

block:block bio bounce
block:block bio complete
block:block bio backmerge

writeback:writeback wake thread
writeback:writeback wake forker thread
writeback:writeback bdi register

writeback:writeback single inode requeue
writeback:writeback single inode

kmem: kmalloc

kmem: kmem cache alloc
kmem:mm_page _alloc
kmem:mm_page alloc_zone locked
kmem:mm_page pcpu_drain
kmem:mm_page alloc extfrag
vmscan:mm_vmscan_kswapd_ sleep
vmscan:mm_vmscan_kswapd_ wake
vmscan:mm_vmscan_wakeup_ kswapd

vmscan:mm_vmscan _direct reclaim begin

module:module get
module:module put
module:module request
sched:sched kthread stop
sched:sched wakeup
sched:sched wakeup new
sched:sched process fork
sched:sched process exec
sched:sched stat runtime
rcu:rcu_utilization
workqueue:workqueue queue work

workqueue:workqueue execute end

signal:signal _generate
signal:signal deliver
timer:timer init

timer:timer start
timer:hrtimer cancel
timer:itimer state
timer:itimer _expire
irq:irg_handler_entry
irg:irg handler exit
irg:softirqg entry
irg:softirqg exit

irg:softirqg _raise
printk:console

task:task newtask

task:task rename
syscalls:sys enter socketcall
syscalls:sys exit socketcall

syscalls:sys enter unshare
syscalls:sys exit unshare
raw_syscalls:sys enter
raw_syscalls:sys exit

[Tracepoint
[Tracepoint
[Tracepoint

[Tracepoint
[Tracepoint
[Tracepoint

[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint

[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint

[Tracepoint
[Tracepoint
[Tracepoint
[Tracepoint

event]
event]
event]

event]
event]
event]

event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]

event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]
event]

event]
event]
event]
event]

Tying it Together: These are exactly the same set of events defined by the trace event subsystem and
exposed by ftrace/tracecmd/kernelshark as files in /sys/kernel/debug/tracing/events, by SystemTap
as kernel.trace("tracepoint_name") and (partially) accessed by LTTng.

Only a subset of these would be of interest to us when looking at this workload, so let's choose the
most likely subsystems (identified by the string before the colon in the Tracepoint events) and do a
'perf stat' run using only those wildcarded subsystems:

root@crownbay:~# perf stat -e skb:* -e net:* -e napi:* -e sched:* -e workqueue:* -e irqg:* -e
Performance counter stats for 'wget http://downloads.yoctoproject.org/mirror/sources/linux-:

23323 skb:kfree skb
0 skb:consume skb
49897 skb:skb copy datagram iovec
6217 net:net dev xmit
6217 net:net_dev_queue
7962 net:netif receive skb
2 net:netif rx
8340 napi:napi poll
0 sched:sched _kthread stop
0 sched:sched kthread stop ret
3749 sched:sched wakeup
sched:sched wakeup new
sched:sched switch
sched:sched migrate task
sched:sched process free
sched:sched process exit
sched:sched wait task
sched:sched process wait
sched:sched process fork
sched:sched process exec
sched:sched stat wait
2106519415641 sched:sched stat sleep
0 sched:sched stat iowait
147453613 sched:sched stat blocked
12903026955 sched:sched stat runtime
0 sched:sched pi_setprio
3574 workqueue:workqueue queue_work
3574 workqueue:workqueue activate work
0 workqueue:workqueue execute start
0 workqueue:workqueue execute_end
16631 irq:irq_handler_entry
16631 irq:irq handler exit
28521 irqg:softirqg_entry
28521 irq:softirqg exit
28728 irq:softirqg_raise
1 syscalls:sys enter_ sendmmsg
1 syscalls:sys exit sendmmsg
0 syscalls:sys _enter recvmmsg
0 syscalls:sys exit recvmmsg
14 syscalls:sys enter socketcall
14 syscalls:sys exit socketcall

ol SNoNoNoN pNoNleNoNo]

16965 syscalls:sys _enter read
16965 syscalls:sys exit read
12854 syscalls:sys enter write
12854 syscalls:sys exit write

58.029710972 seconds time elapsed

http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2
http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2

Basic Usage (with examples) for each of the Yocto Tracing Tools

Let's pick one of these tracepoints and tell perf to do a profile using it as the sampling event:

root@crownbay:~# perf record -g -e sched:sched wakeup wget http://downloads.yoctoproject.orc

trz@empanada:” -

File Edit WView Search Terminal Help

Events: 2K sched:sched wakeup
- 100.00% wget [kernel.kallsyms] [k] ttwu_do_wakeup
- ttwu_do_wakeup
- 86.91% ttwu_do_activate.constprop.86
- try_to_wake_up
+ 91.34% wake_up_process
- B.66% default_wake_ function
+ 81.53% wake up_common
+ 17.20% autoremove wake function
- 1.27% pollwake
- wake_up_common
- 50.00% _ wake_up_sync_key
sock_def_readable
sock_gueue_rcv_skb
__udp_gueue_rcv_skb
udp_queue rcv_skb
_udpd 1lib_rcv
udp_rcv
ip_local _deliver finish
ip_local_deliver
ip_rcv_finish
ip_rcv
__netif receive_skb
process _backlog
net rx_action
__do_softirg
sendmmsg
+ 50.00% _ wake_up
- 13.09% try_to_wake_up
- default_wake_ function
+ 52.01% _ wake up_common
- 47.959% pollwake
_wake_up_common
__wake_up_sync_key
sock_def_readable
tcp_rcv_established
tcp_vd do_rcv
tocp_vd rcw
ip local_deliver finish
ip_local_deliver
ip_rcv_finish
ip_rcv
__netif receive skb
netif receive skb
napl_gro_complete
napi_complete
pch_gbe napi poll
net rx_action
_do_softirg
poll

51 ST 0T T T T T T R ST AT O (T RO ST (T RO T AT S T (AT ST ST R T T S0 ST (AT ST ST 0T ST T AT SN (BN AT (T ST S0 ST AN ST ST ORI S T

for help on

The screenshot above shows the results of running a profile using sched:sched_switch tracepoint,
which shows the relative costs of various paths to sched_wakeup (note that sched_wakeup is the
name of the tracepoint - it's actually defined just inside ttwu_do_wakeup(), which accounts for the
function name actually displayed in the profile:

/*
* Mark the task runnable and perform wakeup-preemption.
*/

21

http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2

static void
ttwu do wakeup(struct rq *rq, struct task struct *p, int wake flags)

{

trace sched wakeup(p, true);

A couple of the more interesting callchains are expanded and displayed above, basically some
network receive paths that presumably end up waking up wget (busybox) when network data is ready.

Note that because tracepoints are normally used for tracing, the default sampling period for
tracepoints is 1 i.e. for tracepoints perf will sample on every event occurrence (this can be changed
using the -c option). This is in contrast to hardware counters such as for example the default
‘cycles' hardware counter used for normal profiling, where sampling periods are much higher (in the
thousands) because profiling should have as low an overhead as possible and sampling on every
cycle would be prohibitively expensive.

3.1.2.2. Using perf to do Basic Tracing

Profiling is a great tool for solving many problems or for getting a high-level view of what's going on
with a workload or across the system. It is however by definition an approximation, as suggested by
the most prominent word associated with it, 'sampling'. On the one hand, it allows a representative
picture of what's going on in the system to be cheaply taken, but on the other hand, that cheapness
limits its utility when that data suggests a need to 'dive down' more deeply to discover what's really
going on. In such cases, the only way to see what's really going on is to be able to look at (or
summarize more intelligently) the individual steps that go into the higher-level behavior exposed by
the coarse-grained profiling data.

As a concrete example, we can trace all the events we think might be applicable to our workload:

root@crownbay:~# perf record -g -e skb:* -e net:* -e napi:* -e sched:sched switch -e sched::
-e syscalls:sys enter read -e syscalls:sys exit read -e syscalls:sys enter write -e syscall

wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2

We can look at the raw trace output using 'perf script’ with no arguments:

root@crownbay:~# perf script

perf 1262 [000] 11624.857082: sys exit read: 0x0

perf 1262 [000] 11624.857193: sched wakeup: comm=migration/0 pid=6 prio=0 success=1 1

wget 1262 [001] 11624.858021: softirq_raise: vec=1 [action=TIMER]
wget 1262 [001] 11624.858074: softirq_entry: vec=1 [action=TIMER]
wget 1262 [001] 11624.858081: softirq exit: vec=1l [action=TIMER]

wget 1262 [001] 11624.858166: sys enter read: fd: 0x0003, buf: Oxbf82c940, count: OxC

wget 1262 [001] 11624.858177: sys_exit read: 0x200

wget 1262 [001] 11624.858878: kfree skb: skbaddr=0xeb248d80 protocol=0 location=0xclt
wget 1262 [001] 11624.858945: kfree skb: skbaddr=0xeb248000 protocol=0 location=0xclt

wget 1262 [001] 11624.859020: softirq_raise: vec=1 [action=TIMER]
wget 1262 [001] 11624.859076: softirq_entry: vec=1 [action=TIMER]
wget 1262 [001] 11624.859083: softirq exit: vec=1l [action=TIMER]

wget 1262 [001] 11624.859167: sys enter_read: fd: 0x0003, buf: 0xb7720000,

wget 1262 [001] 11624.859192: sys exit read: 0x1d7

wget 1262 [001] 11624.859228: sys enter_read: fd: 0x0003, buf: 0xb7720000,

wget 1262 [001] 11624.859233: sys exit read: 0x0

wget 1262 [001] 11624.859573: sys enter_read: fd: 0x0003, buf: 0xbf82c580,

wget 1262 [001] 11624.859584: sys exit read: 0x200

wget 1262 [001] 11624.859864: sys enter_read: fd: 0x0003, buf: 0xb7720000,

wget 1262 [001] 11624.859888: sys exit read: 0x400

wget 1262 [001] 11624.859935: sys enter_read: fd: 0x0003, buf: 0xb7720000,

count:

count:

count:

count:

count:

0x(

0x(

0x(

0x(

0x(

http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2

wget 1262 [001] 11624.859944: sys exit read: 0x400

This gives us a detailed timestamped sequence of events that occurred within the workload with
respect to those events.

In many ways, profiling can be viewed as a subset of tracing - theoretically, if you have a set of trace
events that's sufficient to capture all the important aspects of a workload, you can derive any of the
results or views that a profiling run can.

Another aspect of traditional profiling is that while powerful in many ways, it's limited by the
granularity of the underlying data. Profiling tools offer various ways of sorting and presenting the
sample data, which make it much more useful and amenable to user experimentation, but in the end
it can't be used in an open-ended way to extract data that just isn't present as a consequence of the
fact that conceptually, most of it has been thrown away.

Full-blown detailed tracing data does however offer the opportunity to manipulate and present the
information collected during a tracing run in an infinite variety of ways.

Another way to look at it is that there are only so many ways that the 'primitive' counters can be used
on their own to generate interesting output; to get anything more complicated than simple counts
requires some amount of additional logic, which is typically very specific to the problem at hand.
For example, if we wanted to make use of a 'counter' that maps to the value of the time difference
between when a process was scheduled to run on a processor and the time it actually ran, we wouldn't
expect such a counter to exist on its own, but we could derive one called say 'wakeup_latency' and
use it to extract a useful view of that metric from trace data. Likewise, we really can't figure out from
standard profiling tools how much data every process on the system reads and writes, along with
how many of those reads and writes fail completely. If we have sufficient trace data, however, we
could with the right tools easily extract and present that information, but we'd need something other
than pre-canned profiling tools to do that.

Luckily, there is a general-purpose way to handle such needs, called 'programming languages'.
Making programming languages easily available to apply to such problems given the specific format
of data is called a 'programming language binding' for that data and language. Perf supports two
programming language bindings, one for Python and one for Perl.

Tying it Together: Language bindings for manipulating and aggregating trace data are of course
not a new idea. One of the first projects to do this was IBM's DProbes dpcc compiler, an ANSI C
compiler which targeted a low-level assembly language running on an in-kernel interpreter on the
target system. This is exactly analogous to what Sun's DTrace did, except that DTrace invented its
own language for the purpose. Systemtap, heavily inspired by DTrace, also created its own one-
off language, but rather than running the product on an in-kernel interpreter, created an elaborate
compiler-based machinery to translate its language into kernel modules written in C.

Now that we have the trace data in perf.data, we can use 'perf script -g' to generate a skeleton script
with handlers for the read/write entry/exit events we recorded:

root@crownbay:~# perf script -g python
generated Python script: perf-script.py

The skeleton script simply creates a python function for each event type in the perf.data file. The
body of each function simply prints the event name along with its parameters. For example:

def net netif rx(event _name, context, common_cpu,
common_secs, common_nsecs, common pid, common_comm,
skbaddr, len, name):
print_header(event name, common_cpu, common_secs, common_nsecs,
common_pid, common_comm)

print "skbaddr=%u, len=%u, name=%s\n" % (skbaddr, len, name),

We can run that script directly to print all of the events contained in the perf.data file:

root@crownbay:~# perf script -s perf-script.py

in trace begin

syscalls sys exit read 0 11624.857082795 1262 perf nr=3, ret=0
sched sched wakeup 0 11624.857193498 1262 perf comm=migration/0,
irg_softirqg raise 1 11624.858021635 1262 wget vec=TIMER
irqg_softirqg entry 1 11624.858074075 1262 wget vec=TIMER
irg_softirg exit 1 11624.858081389 1262 wget vec=TIMER
syscalls sys enter read 1 11624.858166434 1262 wget nr=3, fd=3, bt
syscalls sys exit read 1 11624.858177924 1262 wget nr=3, ret=512
skb kfree skb 1 11624.858878188 1262 wget skbaddr=394504128¢
skb kfree skb 1 11624.858945608 1262 wget skbaddr=394503782¢
irg_softirqg raise 1 11624.859020942 1262 wget vec=TIMER
irg_softirqg entry 1 11624.859076935 1262 wget vec=TIMER
irg_softirg exit 1 11624.859083469 1262 wget vec=TIMER
syscalls sys enter read 1 11624.859167565 1262 wget nr=3, fd=3, bt
syscalls sys exit read 1 11624.859192533 1262 wget nr=3, ret=471
syscalls sys enter read 1 11624.859228072 1262 wget nr=3, fd=3, bt
syscalls sys exit read 1 11624.859233707 1262 wget nr=3, ret=0
syscalls sys enter read 1 11624.859573008 1262 wget nr=3, fd=3, bt
syscalls sys exit read 1 11624.859584818 1262 wget nr=3, ret=512
syscalls sys enter read 1 11624.859864562 1262 wget nr=3, fd=3, bt
syscalls sys exit read 1 11624.859888770 1262 wget nr=3, ret=1024
syscalls sys enter read 1 11624.859935140 1262 wget nr=3, fd=3, bt
syscalls sys exit read 1 11624.859944032 1262 wget nr=3, ret=1024

That in itself isn't very useful; after all, we can accomplish pretty much the same thing by simply
running 'perf script' without arguments in the same directory as the perf.data file.

We can however replace the print statements in the generated function bodies with whatever we
want, and thereby make it infinitely more useful.

As a simple example, let's just replace the print statements in the function bodies with a simple
function that does nothing but increment a per-event count. When the program is run against a
perf.data file, each time a particular event is encountered, a tally is incremented for that event. For
example:

def net netif rx(event name, context, common cpu,
common_secs, common_nsecs, common pid, common_comm,
skbaddr, len, name):
inc_counts(event name)

Each event handler function in the generated code is modified to do this. For convenience, we
define a common function called inc_counts() that each handler calls; inc_counts() simply tallies a
count for each event using the 'counts' hash, which is a specialized hash function that does Perl-like
autovivification, a capability that's extremely useful for kinds of multi-level aggregation commonly
used in processing traces (see perf's documentation on the Python language binding for details):

counts = autodict()

def inc_counts(event name):
try:
counts[event _name] +=1
except TypeError:
counts[event name] =1

Finally, at the end of the trace processing run, we want to print the result of all the per-event tallies.
For that, we use the special 'trace_end()' function:

def trace end():
for event name, count in counts.iteritems():
print "%-40s %10s\n" % (event name, count)

The end result is a summary of all the events recorded in the trace:

skb__skb copy datagram_iovec 13148
irq__softirq_entry 4796
irg irq handler exit 3805
irq_softirq exit 4795
syscalls sys enter write 8990
net net dev xmit 652
skb__kfree skb 4047
sched sched wakeup 1155
irg irq handler entry 3804
irg__softirqg raise 4799
net net dev queue 652
syscalls sys enter_ read 17599
net netif receive skb 1743
syscalls sys exit read 17598
net netif rx 2
napi_ napi poll 1877
syscalls sys exit write 8990

Note that this is pretty much exactly the same information we get from 'perf stat', which goes a little
way to support the idea mentioned previously that given the right kind of trace data, higher-level
profiling-type summaries can be derived from it.

Documentation on using the 'perf script' python binding [http://linux.die.net/man/1/perf-script-
python].

3.1.2.3. System-Wide Tracing and Profiling

The examples so far have focused on tracing a particular program or workload - in other words, every
profiling run has specified the program to profile in the command-line e.g. 'perf record wget ...".

It's also possible, and more interesting in many cases, to run a system-wide profile or trace while
running the workload in a separate shell.

To do system-wide profiling or tracing, you typically use the -a flag to 'perf record'.
To demonstrate this, open up one window and start the profile using the -a flag (press Ctrl-C to stop

tracing):

root@crownbay:~# perf record -g -a
~C[perf record: Woken up 6 times to write data]
[perf record: Captured and wrote 1.400 MB perf.data (~61172 samples)]

In another window, run the wget test:

root@crownbay:~# wget http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.b:
Connecting to downloads.yoctoproject.org (140.211.169.59:80)
linux-2.6.19.2.tar.b 100% |**¥idkktkkaoboffofokrrtortoffkxxrk | 41727k 0:00:00 ETA

Here we see entries not only for our wget load, but for other processes running on the system as well:

http://linux.die.net/man/1/perf-script-python
http://linux.die.net/man/1/perf-script-python
http://linux.die.net/man/1/perf-script-python
http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2

Basic Usage (with examples) for each of the Yocto Tracing Tools

trz@empanada:~/kdev/tip - | 0O

File Edit View Search Terminal Help

kS 8.05% swapper [kernel.kallsyms] [k] intel_idle

- 5.04% Xorg Tlibc-2.16.s0 [.] memset &

- memset i

- 58.17% SGXQueueTransfer i

Oxb767fb &

- PVRZDBLt i

70.54% 0Oxb76abf i

29.46% 0xb76acl &

- 41.83% Oxb767f6 i

PYRZDELt &

Oxb76abf 5

+ 3.61% swapper [kernel.kallsyms] [k] read hpet @

+ 1.93% swapper [kernel.kallsyms] [k] ioread3Zz &

+ 1.21% Xorg [kernel.kallsyms] [k] ohci irg §

+ 0.73% swapper [kernel.kallsyms] [k] debug_smp_pi

+ 0.70% swapper [kernel.kallsyms] [k] menu selectf

+ 0.69% swapper [kernel.kallsyms] [k] ohci irg @&

+ 0.57% swapper [kernel.kallsyms] [k] sub_preemptf

- 0.53% wget [kernel.kallsyms] [k] memset &

- memset i

+ B88.85% _ block write begin i

+ B8.22% alloc_buffer head i

- 1.65% kmem_cache_alloc i

alloc_buffer_head &

alloc_page buffers i

create_empty_buffers i

__block write begin &

extd4 _da_write_begin i

generic_file buffered write &

__generic file aio write i

generic_file aio_write i

extd file write &

do_sync_write i

vfs_write i

sys_write &

syscall_call i

__GI__ libc_write &

+ 1.27% kmem_cache alloc_trace i

+ 0.51% swapper [kernel.kallsyms] [k] add_preempti

+ 0.49% Xorg [kernel.kallsyms] [k] read hpet §

+ 0.49% Korg [emgd] [k] igd alter ci

+ 0.48% wget [kernel.kallsyms] [k] read hpet @

+ 0.47% wget [kernel.kallsyms] [k] _ copy_ to uf

+ 0.45% swapper [kernel.kallsyms] [kl _raw spin_ 1§

+ 0.45% wget [kernel.kallsyms] [K] sub preempt§
P ?' for help on key bindings

In the snapshot above, we can see callchains that originate in libc, and a callchain from Xorg that
demonstrates that we're using a proprietary X driver in userspace (notice the presence of 'PVR' and
some other unresolvable symbols in the expanded Xorg callchain).

Note also that we have both kernel and userspace entries in the above snapshot. We can also tell
perf to focus on userspace but providing a modifier, in this case 'u', to the 'cycles' hardware counter
when we record a profile:

root@crownbay:~# perf record -g -a -e cycles:u
~C[perf record: Woken up 2 times to write data]
[perf record: Captured and wrote 0.376 MB perf.data (~16443 samples)]

26

Basic Usage (with examples) for each of the Yocto Tracing Tools

trz@empanada:~/kdev/tip - | 0O
File Edit View Search Terminal Help
Events: 4K cycles
- 12.84% wget [kernel.kallsyms] [k] system_call i
- system_call &
39.73% _ read nocancel i
20.38% _ GI__ libc_poll i
19.90% syscall &
19.66% GI 1ibc write i
+ 7.01% wget busybox [.] retrieve_file data e
+ 5.71% wget libc-2.16.s0 [.] _I0_file_xsgetn i
+ 4.49% wget Tlibc-2.16.s0 [.] I0 fread i
+ 4 . 36% wget Tlibc-2.16.s0 [.] clearerr &
+ 3.84% wget T1ibc-2.16.s0 [.]1 _GI__ 1libc poll i
+ 3.69% wget libc-2.16.s0 [.] __read_nocancel i
+ 3.42% wget busybox [.] progress meter &
+ 3.16% wget Tlibc-2.16.s0 [.] syscall i
+ 3.11% wget busybox [.] safe_poll i
+ 3.04% wget Tlibc-2.16.s0 [.] underflow &
+ 2.95% wget Tlibc-2.16.s0 [.] I0 file underflow@@
+ 2.95% wget libc-2.16.s0 [.] _GI_ libc_write
+ 2.55% wget busybox [.] bb_progress update @
+ 2.54% wget busybox [.] GxGOEE4TLO
- 2.32% wget Tlibc-2.16.so [.] _ x86.get_pc_thunk.bf
- xB6.get pc_thunk.bx i
- 68.83% fprintf i
progress_meter &
- 31.17% buffered vfprintf i
fprintf i
progress _meter &
+ 1.79% wget busybox [.] xwrite i
+ 1.71% wget busybox [.] full write &
+ 1.65% wget Tlibc-2.16.s0 [.] I0 file read i
+ 1.57% wget libc-2.16.s0 [.] _I0_sgetn i
+ 1.43% wget busybox [.] safe write &
+ 1.09% wget Tlibc-2.16.s0 [.] GI 1libc read i
+ 0.85% wget libc-2.16.s0 [.] _10 switch_to_get_mof}
+ 0.80% dropbear dropbearmulti [.] rijndael ecb encrypti
+ 0.78% perf perf [.] hex2utd i
+ 0.71% dropbear dropbearmulti [.] md5 compress &
+ 0D.60% wget busybox [.] monotonic_sec i
+ 0B.57% dropbear Tlibc-2.16.s0 [.] _int_free i
+ 0.57% wget busybox [.] get mono &
+ 0.55% dropbear dropbearmulti [.] shal compress i
+ 0.39% perf libc-2.16.s0 [.] _ xB6.get_pc_thunk.bf}
+ 0.38% dropbear Tlibc-2.16.s0 [.] int malloc
+ 0. wget Tlibc-2.16.s0 [.] vfprintf
+ @. wget Tlibc-2.16.s0 [.] 0xBEGcSabd
P i

Notice in the screenshot above, we see only userspace entries ([.])

Finally, we can press 'enter' on a leaf node and select the 'Zoom into DSO' menu item to show only
entries associated with a specific DSO. In the screenshot below, we've zoomed into the 'libc' DSO
which shows all the entries associated with the libc-xxx.so DSO.

27

Basic Usage (with examples) for each of the Yocto Tracing Tools

File Edit

View Search Terminal

trz@empanada:~/kdev/tip - | 0O
Help

Events: 1K cycles, DS0: 1ibc-2.16.s0

- B0.86%

Xorg

- memset

- 58.17% SGXQueueTransfer

Oxb767fb
- PVRZDBLt

70.54% Oxb76abf
29.46% Oxb76acl

- 41.83% Oxb767f6

- 2.61%

PVRZDELt
Oxb76abf
pcmantm

- strocmp

+ 50.21% gconv_find transform

49.79% dcgettext

- 2.08% pcmanfm
_int malloc
- 1.92% Xorg
_int_malloc
- 1.49% Xorg
- memcpy
- 100.00% SGXQueueTransfer

Oxb767fb

PVRZ2DELt

Oxb76abf
+ 1.25% wget
+ 1.06% wget
+ 0.97% wget
+ 0.93% wget
+ 0.906% wget
+ 0.79% pcmantm
+ 0.73% leafpad
+ 0.70% wget
+ 0.68% Xorg
+ 0.64% pcmantm
+ 0.61% wget
+ 0.60% leafpad
+ 0.559% Xorg
+ 0.49% Xorg
+ 0.45% pcmantm
+ 0.47% pcmantm
+ 0.46% slant
+ 0.44% wget
+ 0.44% matchbox-deskto
+ 0.35%% slant
+ 0.38% matchbox-deskto
|::- 2!

[.]

memset

[.]

stremp

[.] _int_malloc
[.] int malloc

[.]

memcpy

] GI libc poll
] __read nocancel
] 10 file xsgetn
] clearerr
] syscall
] malloc
] strcmp
] underflow
] _int free

.] memcpy
] I0 fread
] _int malloc
1 free
] select
1
1
1
1
1
1

__xB86.get_pc_thunk.bx
memset

strcmp
__¥86.get_pc_thunk.bx
memcpy

_ xB6.get_pc_thunk.bx
.1 int malloc

S N S R S S R S T B S T B S S T BT @ R

R e R e B e e e I e B e e i e e B R e R R N e T W

for help on key bindings

We can also use the system-wide -a switch to do system-wide tracing. Here we'll trace a couple of
scheduler events:

root@crownbay:~# perf record -a -e sched:sched switch -e sched:sched wakeup
~C[perf record: Woken up 38 times to write data]
[perf record: Captured and wrote 9.780 MB perf.data (~427299 samples)]

We can look at the raw output using 'perf script' with no arguments:

root@crownbay:~# perf script

perf 1383 [001] 6171.460045: sched wakeup: comm=kworker/1:1 pid=21 prio=120 suc
perf 1383 [001] 6171.460066: sched switch: prev_comm=perf prev_pid=1383 prev_pi
kworker/1:1 21 [001] 6171.460093: sched switch: prev_comm=kworker/1l:1 prev_pid=21 pi

28

swapper 0 [000] 6171.468063: sched wakeup: comm=kworker/0:3 pid=1209 prio=120 -
swapper 0 [000] 6171.468107: sched switch: prev_comm=swapper/0 prev_pid=0 prev_
kworker/0:3 1209 [000] 6171.468143: sched switch: prev_comm=kworker/0:3 prev_pid=1209
perf 1383 [001] 6171.470039: sched wakeup: comm=kworker/1l:1 pid=21 prio=120 suc

perf 1383 [001] 6171.470058: sched switch: prev_comm=perf prev _pid=1383 prev_pi
kworker/1:1 21 [001] 6171.470082: sched switch: prev_comm=kworker/1l:1 prev_pid=21 pr
perf 1383 [001] 6171.480035: sched wakeup: comm=kworker/1l:1 pid=21 prio=120 suc

3.1.2.3.1. Filtering

Notice that there are a lot of events that don't really have anything to do with what we're interested
in, namely events that schedule 'perf' itself in and out or that wake perf up. We can get rid of those
by using the '--filter' option - for each event we specify using -e, we can add a --filter after that to
filter out trace events that contain fields with specific values:

root@crownbay:~# perf record -a -e sched:sched switch --filter 'next comm != perf && prev_cc

~C[perf record: Woken up 38 times to write data]
[perf record: Captured and wrote 9.688 MB perf.data (~423279 samples)]

root@crownbay:~# perf script

swapper 0 [000] 7932.162180: sched switch: prev_comm=swapper/0 prev_pid=0 prev
kworker/0:3 1209 [000] 7932.162236: sched switch: prev_comm=kworker/0:3 prev_pid=1209

perf 1407 [001] 7932.170048: sched wakeup: comm=kworker/1l:1 pid=21 prio=120 suc
perf 1407 [001] 7932.180044: sched wakeup: comm=kworker/1l:1 pid=21 prio=120 suc
perf 1407 [001] 7932.190038: sched wakeup: comm=kworker/1l:1 pid=21 prio=120 suc
perf 1407 [001] 7932.200044: sched wakeup: comm=kworker/1l:1 pid=21 prio=120 suc
perf 1407 [001] 7932.210044: sched wakeup: comm=kworker/1l:1 pid=21 prio=120 suc
perf 1407 [001] 7932.220044: sched wakeup: comm=kworker/1l:1 pid=21 prio=120 suc
swapper 0 [001] 7932.230111: sched wakeup: comm=kworker/1l:1 pid=21 prio=120 suc
swapper 0 [001] 7932.230146: sched switch: prev_comm=swapper/l prev_pid=0 prev
kworker/1:1 21 [001] 7932.230205: sched switch: prev_comm=kworker/1l:1 prev_pid=21 pi
swapper 0 [000] 7932.326109: sched wakeup: comm=kworker/0:3 pid=1209 prio=120 -
swapper 0 [000] 7932.326171: sched switch: prev_comm=swapper/0 prev_pid=0 prev

kworker/0:3 1209 [000] 7932.326214: sched switch: prev_comm=kworker/0:3 prev_pid=1209

In this case, we've filtered out all events that have 'perf' in their 'comm' or '‘comm_prev' or
‘comm_next' fields. Notice that there are still events recorded for perf, but notice that those events
don't have values of 'perf' for the filtered fields. To completely filter out anything from perf will require
a bit more work, but for the purpose of demonstrating how to use filters, it's close enough.

Tying it Together: These are exactly the same set of event filters defined by the trace event subsystem.
See the ftrace/tracecmd/kernelshark section for more discussion about these event filters.

Tying it Together: These event filters are implemented by a special-purpose pseudo-interpreter in the
kernel and are an integral and indispensable part of the perf design as it relates to tracing. kernel-
based event filters provide a mechanism to precisely throttle the event stream that appears in user
space, where it makes sense to provide bindings to real programming languages for postprocessing
the event stream. This architecture allows for the intelligent and flexible partitioning of processing
between the kernel and user space. Contrast this with other tools such as SystemTap, which
does all of its processing in the kernel and as such requires a special project-defined language in
order to accommodate that design, or LTTng, where everything is sent to userspace and as such
requires a super-efficient kernel-to-userspace transport mechanism in order to function properly.
While perf certainly can benefit from for instance advances in the design of the transport, it doesn't
fundamentally depend on them. Basically, if you find that your perf tracing application is causing
buffer I/O overruns, it probably means that you aren't taking enough advantage of the kernel filtering
engine.

3.1.2.4. Using Dynamic Tracepoints

perf isn't restricted to the fixed set of static tracepoints listed by 'perf list'. Users can also add their
own 'dynamic' tracepoints anywhere in the kernel. For instance, suppose we want to define our own
tracepoint on do_fork(). We can do that using the 'perf probe' perf subcommand:

root@crownbay:~# perf probe do fork
Added new event:
probe:do fork (on do_fork)
You can now use it in all perf tools, such as:
perf record -e probe:do fork -aR sleep 1
Adding a new tracepoint via 'perf probe' results in an event with all the expected files and format in /

sys/kernel/debug/tracing/events, just the same as for static tracepoints (as discussed in more detail
in the trace events subsystem section:

root@crownbay:/sys/kernel/debug/tracing/events/probe/do fork# ls -al

drwxr-xr-x 2 root root 0 Oct 28 11:42
drwxr-xr-x 3 root root 0 Oct 28 11:42 ..
-rwW-r--r-- 1 root root 0 Oct 28 11:42 enable
-rw-r--r-- 1 root root 0 Oct 28 11:42 filter
-r--r--r-- 1 root root 0 Oct 28 11:42 format
-r--r--r-- 1 root root 0 Oct 28 11:42 id

root@crownbay:/sys/kernel/debug/tracing/events/probe/do fork# cat format
name: do_fork

ID: 944

format:

field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;

field:int common _padding; offset:8; size:4; signed:1;

field:unsigned long _ probe ip; offset:12; size:4; signed:0;

print fmt: "(%lx)", REC->_ probe ip

We can list all dynamic tracepoints currently in existence:

root@crownbay:~# perf probe -1
probe:do fork (on do_fork)
probe:schedule (on schedule)

Let's record system-wide ('sleep 30' is a trick for recording system-wide but basically do nothing and
then wake up after 30 seconds):

root@crownbay:~# perf record -g -a -e probe:do fork sleep 30
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.087 MB perf.data (~3812 samples) 1|

Using 'perf script' we can see each do_fork event that fired:

root@crownbay:~# perf script

captured on: Sun Oct 28 11:55:18 2012
hostname : crownbay

os release : 3.4.11-yocto-standard

perf version : 3.4.11

arch : 1686
nrcpus avail
cpudesc :
cpuid
total memory :
cmdline :
event :

=0'

HHHHHHHH

name =

nrcpus online :
2
Intel(R) Atom(TM) CPU E660 @ 1.30GHz
: GenuineIntel,6,38,1

2

1017184 kB

/usr/bin/perf record -g -a -e
probe:do fork, type =
id={5, 6}

2,

HEADER CPU TOPOLOGY info available, use

matchbox-deskto
matchbox-deskto
pcmanfm

pcmanfm
matchbox-deskto
matchbox-deskto
gthumb

gthumb

gthumb

gthumb

pcmanfm
matchbox-deskto
matchbox-deskto
matchbox-termin
matchbox-termin
matchbox-termin
matchbox-deskto
matchbox-deskto
gaku

And using 'perf report' on the same file, we can see the callgraphs from starting a few programs

during those 30 seconds:

1197
1295
1296
1296
1197
1299
1300
1300
1300
1300
1296
1197
1306
1307
1307
1307
1197
1311
1312

[601]
[601]
[000]
[000]
[601]
[601]
[601]
[601]
[000]
[601]
[000]
[601]
[601]
[000]
[601]
[000]
[601]
[601]
[000]

34211.
34211.
34211.
34211.
34217.
34217.
34217.
34219.
34219.
34219.
34219.
34224.
34224.
34225.
34225.
34225.
34237.
34237.
34237.

378318:
380388:
632350:
639917:
541603:
543584:
697451:
085734:
121351:
264551:
590380:
955965:
957972:
038214:
044218:
046442:
112138:
114106:
202388:

probe:do fork sleep 30
config = O0x3b0, configl = 0x0, config2 = Ox0, excl

-I to display

do fork:
do fork:
do fork:
do fork:
do fork:
do fork:
do fork:
do fork:
do fork:
do fork:
do fork:
do fork:
do fork:
do fork:
do fork:
do fork:
do fork:
do fork:
do fork:

(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)
(c1028460)

Basic Usage (with examples) for each of the Yocto Tracing Tools

trz@empanada:~/danny-meta-intel-release - | O

File Edit View Search Terminal Help

Events: 19 probe:do fork
- 42.11% matchbox-deskto [kernel.kallsyms] [k] do_fork
do_fork
ptregs clone
__libc_fork
fork_exec with pipes
- 21.05% gthumb [kernel.kallsyms] [k] do_fork
do_fork
ptregs clone
__clone
€]
- 15.79% pcmantm [kernel.kallsyms] [k] do_fork
do_fork
ptregs_clone
__clone
€]
- 15.79% matchbox-termin [kernel.kallsyms] [k] do_fork
- do_fork
- ptregs_clone
- 66.67% libc fork
50.00% vte_pty_initable init
50.00% fork_exec with pipes
- 33.33% _ clone
€]
- 5.26% gaku [kernel.kallsyms] [k] do_fork
do_fork
ptregs clone
__libc_fork
fork

for help on key bindings

Tying it Together: The trace events subsystem accommodate static and dynamic tracepoints in exactly
the same way - there's no difference as far as the infrastructure is concerned. See the ftrace section
for more details on the trace event subsystem.

Tying it Together: Dynamic tracepoints are implemented under the covers by kprobes and uprobes.
kprobes and uprobes are also used by and in fact are the main focus of SystemTap.

3.1.3. Documentation

Online versions of the man pages for the commands discussed in this section can be found here:
* The 'perf stat’' manpage [http://linux.die.net/man/1/perf-stat].

* The 'perf record' manpage [http://linux.die.net/man/1/perf-record].

* The 'perf report' manpage [http://linux.die.net/man/1/perf-report].

* The 'perf probe' manpage [http://linux.die.net/man/1/perf-probe].

32

http://linux.die.net/man/1/perf-stat
http://linux.die.net/man/1/perf-stat
http://linux.die.net/man/1/perf-record
http://linux.die.net/man/1/perf-record
http://linux.die.net/man/1/perf-report
http://linux.die.net/man/1/perf-report
http://linux.die.net/man/1/perf-probe
http://linux.die.net/man/1/perf-probe

* The 'perf script’' manpage [http://linux.die.net/man/1/perf-script].

* Documentation on using the 'perf script’ python binding [http://linux.die.net/man/1/perf-script-
python].

* The top-level perf(1) manpage [http://linux.die.net/man/1/perf].

Normally, you should be able to invoke the man pages via perf itself e.g. 'perf help' or 'perf help
record'.

However, by default Yocto doesn't install man pages, but perf invokes the man pages for most help
functionality. This is a bug and is being addressed by a Yocto bug: Bug 3388 - perf: enable man pages
for basic 'help' functionality [https://bugzilla.yoctoproject.org/show_bug.cgi?id=3388].

The man pages in text form, along with some other files, such as a set of examples, can be found
in the 'perf' directory of the kernel tree:

tools/perf/Documentation

There's also a nice perf tutorial on the perf wiki that goes into more detail than we do here in certain
areas: Perf Tutorial [https://perf.wiki.kernel.org/index.php/Tutorial]

3.2. ftrace

'ftrace' literally refers to the 'ftrace function tracer' but in reality this encompasses a number of related
tracers along with the infrastructure that they all make use of.

3.2.1. Setup

For this section, we'll assume you've already performed the basic setup outlined in the General Setup
section.

ftrace, trace-cmd, and kernelshark run on the target system, and are ready to go out-of-the-box - no
additional setup is necessary. For the rest of this section we assume you've ssh'ed to the host and
will be running ftrace on the target. kernelshark is a GUI application and if you use the '-X' option to
ssh you can have the kernelshark GUI run on the target but display remotely on the host if you want.

3.2.2. Basic ftrace usage

'ftrace’ essentially refers to everything included in the /tracing directory of the mounted debugfs
filesystem (Yocto follows the standard convention and mounts it at /sys/kernel/debug). Here's a listing
of all the files found in /sys/kernel/debug/tracing on a Yocto system:

root@sugarbay:/sys/kernel/debug/tracing# 1s

README kprobe events trace

available events kprobe profile trace _clock
available filter functions options trace marker
available tracers per_cpu trace options
buffer size kb printk formats trace pipe
buffer total size kb saved cmdlines tracing_ cpumask
current_tracer set_event tracing_enabled
dyn ftrace total info set ftrace filter tracing on
enabled functions set ftrace notrace tracing thresh
events set ftrace pid

free buffer set _graph_function

The files listed above are used for various purposes - some relate directly to the tracers themselves,
others are used to set tracing options, and yet others actually contain the tracing output when a
tracer is in effect. Some of the functions can be guessed from their names, others need explanation;
in any case, we'll cover some of the files we see here below but for an explanation of the others,
please see the ftrace documentation.

We'll start by looking at some of the available built-in tracers.

http://linux.die.net/man/1/perf-script
http://linux.die.net/man/1/perf-script
http://linux.die.net/man/1/perf-script-python
http://linux.die.net/man/1/perf-script-python
http://linux.die.net/man/1/perf-script-python
http://linux.die.net/man/1/perf
http://linux.die.net/man/1/perf
https://bugzilla.yoctoproject.org/show_bug.cgi?id=3388
https://bugzilla.yoctoproject.org/show_bug.cgi?id=3388
https://bugzilla.yoctoproject.org/show_bug.cgi?id=3388
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial

cat'ing the 'available_tracers' file lists the set of available tracers:

root@sugarbay:/sys/kernel/debug/tracing# cat available tracers
blk function graph function nop

The 'current_tracer' file contains the tracer currently in effect:

root@sugarbay:/sys/kernel/debug/tracing# cat current tracer
nop

The above listing of current_tracer shows that the 'nop' tracer is in effect, which is just another way
of saying that there's actually no tracer currently in effect.

echo'ing one of the available_tracers into current_tracer makes the specified tracer the current tracer:

root@sugarbay:/sys/kernel/debug/tracing# echo function > current tracer
root@sugarbay:/sys/kernel/debug/tracing# cat current tracer
function

The above sets the current tracer to be the 'function tracer'. This tracer traces every function call in
the kernel and makes it available as the contents of the 'trace' file. Reading the 'trace' file lists the
currently buffered function calls that have been traced by the function tracer:

root@sugarbay:/sys/kernel/debug/tracing# cat trace | less

tracer: function

#

entries-in-buffer/entries-written: 310629/766471 #P:8

#

_-----=> 1irqgs-off

/ _----=> need-resched

| / ---=> hardirg/softirq

|| / _--=> preempt-depth

[l 7 delay

TASK-PID CPU# | ||| TIMESTAMP FUNCTION

| | | 1111 |
<idle>-0 [004] d..1 470.867169: ktime get real <-intel idle
<idle>-0 [004] d..1 470.867170: getnstimeofday <-ktime get real
<idle>-0 [004] d..1 470.867171: ns to timeval <-intel idle
<idle>-0 [004] d..1 470.867171: ns to timespec <-ns to timeval
<idle>-0 [004] d..1 470.867172: smp_apic timer interrupt <-apic_ timer interri
<idle>-0 [004] d..1 470.867172: native apic _mem write <-smp _apic timer interi
<idle>-0 [004] d..1 470.867172: irq_enter <-smp apic_timer interrupt
<idle>-0 [004] d..1 470.867172: rcu_irq enter <-irq_enter
<idle>-0 [004] d..1 470.867173: rcu idle exit common.isra.33 <-rcu irq enter
<idle>-0 [004] d..1 470.867173: local bh disable <-irq enter
<idle>-0 [004] d..1 470.867173: add preempt count <-local bh disable
<idle>-0 [004] d.s1 470.867174: tick check idle <-irq enter
<idle>-0 [004] d.s1 470.867174: tick check oneshot broadcast <-tick check id1
<idle>-0 [004] d.s1 470.867174: ktime get <-tick check idle
<idle>-0 [004] d.s1 470.867174: tick nohz stop idle <-tick check idle
<idle>-0 [004] d.s1 470.867175: update ts time stats <-tick nohz stop idle
<idle>-0 [004] d.s1 470.867175: nr_iowait cpu <-update ts time stats
<idle>-0 [004] d.s1 470.867175: tick do update jiffies64 <-tick check idle
<idle>-0 [004] d.s1 470.867175: raw spin lock <-tick do update jiffies64
<idle>-0 [004] d.s1 470.867176: add preempt count <- raw spin lock
<idle>-0 [004] d.s2 470.867176: do_timer <-tick do update jiffies64
<idle>-0 [004] d.s2 470.867176: raw spin lock <-do timer
<idle>-0 [004] d.s2 470.867176: add preempt count <- raw spin lock
<idle>-0 [004] d.s3 470.867177: ntp tick length <-do timer

<idle>-0

[004] d.s3 470.867177: raw_spin_lock irgsave <-ntp_ tick length

Each line in the trace above shows what was happening in the kernel on a given cpu, to the level of
detail of function calls. Each entry shows the function called, followed by its caller (after the arrow).

The function tracer gives you an extremely detailed idea of what the kernel was doing at the point in
time the trace was taken, and is a great way to learn about how the kernel code works in a dynamic

sense.

Tying it Together: The ftrace function tracer is also available from within perf, as the ftrace:function

tracepoint.

It is a little more difficult to follow the call chains than it needs to be - luckily there's a variant of the
function tracer that displays the callchains explicitly, called the 'function_graph' tracer:

root@sugarbay:/sys/kernel/debug/tracing# echo function graph > current tracer
root@sugarbay:/sys/kernel/debug/tracing# cat trace | less

tracer: function_graph

CPU DURATION

|
.046

.043
.042
.032
.030

[cNoNoNoNo]

.033
.258
.032

[ocNoNo)

0.095
0.060
0.044
0.033
0.247

0.031
.246

(<]

.030
.029
.484
.030

[ocNoNoNO]

.031
.029
.035
.906
.141
.022

NN SNSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNSNNSNSNSNNNNNNNNNNNNNNNY
ol SN oNoNoNO]

e e e e e v e e e v e e e e e e e e e e e e e e e e e e e S e e ——

0.031

us
us
us
us
us

us
us
us

+ 13.341 us

us

us
us

us
us

us
us

us
us
us
us

us
us
us
us
us
us

us

FUNCTION CALLS
[
pick next task fair();
pick next task stop();
pick next task rt();
pick next task fair(
pick next task idle(
_raw_spin_unlock irq
sub_preempt count(
}
sub_preempt count();
} /* _ schedule */
} /* sub _preempt count */
schedule() {
__schedule() {
add _preempt_count();
rcu_note context switch();
_raw_spin lock irq() {
add _preempt_count();

~— o~ — ~—

) {

}
idle balance() {
~raw_spin_unlock() {
sub_preempt _count();
}
update _shares() {
__rcu_read_lock();
__rcu_read_unlock();
}
__rcu_read_lock();
load balance() {
find busiest group() {
idle cpu();
idle cpu();
idle cpu();
}
}
msecs_to jiffies();
load balance() {
find busiest group() {
idle cpu();

4) 0.062 us | msecs_to jiffies();
4) 0.062 us | __rcu_read_unlock();
4) | _raw_spin_lock() {
4) 0.073 us | add _preempt_count();
4) 0.562 us | }

4) + 17.452 us | }

4) 0.108 us | put prev_task fair();
4) 0.102 us | pick next task fair();
4) 0.084 us | pick next task stop();
4) 0.075 us | pick next task rt();
4) 0.062 us | pick next task fair();
4) 0.066 us | pick next task idle();

4) | finish task switch() {

4) | _raw_spin_unlock irqg() {

4) 0.100 us | sub_preempt count();

4) 0.582 us | }

4) 1.105 us | }

4) 0.088 us | sub_preempt count();

4) ! 100.066 us | }

3) | sys ioctl() {

3) 0.083 us | fget light();

3) | security file ioctl() {

3) 0.066 us | cap_file ioctl();

3) 0.562 us | }

3) | do vfs ioctl() {

3) | drm_ioctl() {

3) 0.075 us | drm_ut debug printk();

3) | i915 gem pwrite ioctl() {

3) | 1915 mutex lock interruptible() {
3) 0.070 us | mutex_lock interruptible();

3) 0.570 us | }

3) | drm_gem object lookup() {

3) | ~raw _spin_ lock() {

3) 0.080 us | add _preempt _count();

3) 0.620 us | }

3) | ~raw_spin_unlock() {

3) 0.085 us | sub_preempt count();

3) 0.562 us | }

3) 2.149 us | }

3) 0.133 us | 1915 gem _object pin();

3) | 1915 gem object set to gtt domain() {
3) 0.065 us | 1915 gem object flush gpu write domain();
3) 0.065 us | 1915 gem object wait rendering();
3) 0.062 us | 1915 gem object flush cpu write domain();
3) 1.612 us | }

3) | 1915 gem object put fence() {

3) 0.097 us | 1915 gem object flush fence.constprop.36();
3) 0.645 us | }

3) 0.070 us | add _preempt_count();

3) 0.070 us | sub_preempt count();

3) 0.073 us | 1915 gem _object unpin();

3) 0.068 us | mutex_unlock();

3) 9.924 us | }

3) + 11.236 us | }

3) + 11.770 us | }

3) + 13.784 us | 3}
3) | sys ioctl() {

As you can see, the function_graph display is much easier to follow. Also note that in addition to the
function calls and associated braces, other events such as scheduler events are displayed in context.
In fact, you can freely include any tracepoint available in the trace events subsystem described in
the next section by simply enabling those events, and they'll appear in context in the function graph
display. Quite a powerful tool for understanding kernel dynamics.

Also notice that there are various annotations on the left hand side of the display. For example if
the total time it took for a given function to execute is above a certain threshold, an exclamation
point or plus sign appears on the left hand side. Please see the ftrace documentation for details on
all these fields.

3.2.3. The 'trace events' Subsystem

One especially important directory contained within the /sys/kernel/debug/tracing directory is the
‘events' subdirectory, which contains representations of every tracepoint in the system. Listing out
the contents of the 'events' subdirectory, we see mainly another set of subdirectories:

root@sugarbay:/sys/kernel/debug/tracing# cd events
root@sugarbay:/sys/kernel/debug/tracing/events# ls -al

drwxr-xr-x 38 root root 0 Nov 14 23:19 .
drwxr-xr-x 5 root root 0 Nov 14 23:19 ..
drwxr-xr-x 19 root root 0 Nov 14 23:19 block
drwxr-xr-x 32 root root 0 Nov 14 23:19 btrfs
drwxr-xr-x 5 root root 0 Nov 14 23:19 drm
-rw-r--r-- 1 root root 0 Nov 14 23:19 enable
drwxr-xr-x 40 root root 0 Nov 14 23:19 ext3
drwxr-xr-x 79 root root 0 Nov 14 23:19 ext4
drwxr-xr-x 14 root root 0 Nov 14 23:19 ftrace
drwxr-xr-x 8 root root 0 Nov 14 23:19 hda
-r--r--r-- 1 root root 0 Nov 14 23:19 header event
-r--r--r-- 1 root root 0 Nov 14 23:19 header_page
drwxr-xr-x 25 root root 0 Nov 14 23:19 1915
drwxr-xr-x 7 root root 0 Nov 14 23:19 irq
drwxr-xr-x 12 root root 0 Nov 14 23:19 jbd
drwxr-xr-x 14 root root 0 Nov 14 23:19 jbd2
drwxr-xr-x 14 root root 0 Nov 14 23:19 kmem
drwxr-xr-x 7 root root 0 Nov 14 23:19 module
drwxr-xr-x 3 root root 0 Nov 14 23:19 napi
drwxr-xr-x 6 root root 0 Nov 14 23:19 net
drwxr-xr-x 3 root root 0 Nov 14 23:19 oom
drwxr-xr-x 12 root root 0 Nov 14 23:19 power
drwxr-xr-x 3 root root 0 Nov 14 23:19 printk
drwxr-xr-x 8 root root 0 Nov 14 23:19 random
drwxr-xr-x 4 root root 0 Nov 14 23:19 raw_syscalls
drwxr-xr-x 3 root root 0 Nov 14 23:19 rcu
drwxr-xr-x 6 root root 0 Nov 14 23:19 rpm
drwxr-xr-x 20 root root 0 Nov 14 23:19 sched
drwxr-xr-x 7 root root 0 Nov 14 23:19 scsi
drwxr-xr-x 4 root root 0 Nov 14 23:19 signal
drwxr-xr-x 5 root root 0 Nov 14 23:19 skb
drwxr-xr-x 4 root root 0 Nov 14 23:19 sock
drwxr-xr-x 10 root root 0 Nov 14 23:19 sunrpc
drwxr-xr-x 538 root root 0 Nov 14 23:19 syscalls
drwxr-xr-x 4 root root 0 Nov 14 23:19 task
drwxr-xr-x 14 root root 0 Nov 14 23:19 timer
drwxr-xr-x 3 root root 0 Nov 14 23:19 udp
drwxr-xr-x 21 root root 0 Nov 14 23:19 vmscan
drwxr-xr-x 3 root root 0 Nov 14 23:19 vsyscall
drwxr-xr-x 6 root root 0 Nov 14 23:19 workqueue
0

drwxr-xr-x 26 root root Nov 14 23:19 writeback

Each one of these subdirectories corresponds to a 'subsystem' and contains yet again more
subdirectories, each one of those finally corresponding to a tracepoint. For example, here are the

contents of the 'kmem' subsystem:

root@sugarbay:/sys/kernel/debug/tracing/events# cd kmem

root@sugarbay:/sys/kernel/debug/tracing/events/kmem# 1ls -al

enable

filter

kfree

kmalloc

kmalloc node

kmem cache _alloc

kmem cache_alloc node
kmem cache free
mm_page_alloc

mm_page _alloc extfrag
mm_page_alloc zone locked
mm_page free
mm_page_ free batched

drwxr-xr-x 14 root root 0 Nov 14 23:19 .
drwxr-xr-x 38 root root 0 Nov 14 23:19
-rw-r--r-- 1 root root 0 Nov 14 23:19
-rw-r--r-- 1 root root 0 Nov 14 23:19
drwxr-xr-x 2 root root 0 Nov 14 23:19
drwxr-xr-x 2 root root 0 Nov 14 23:19
drwxr-xr-x 2 root root 0 Nov 14 23:19
drwxr-xr-x 2 root root 0 Nov 14 23:19
drwxr-xr-x 2 root root 0 Nov 14 23:19
drwxr-xr-x 2 root root 0 Nov 14 23:19
drwxr-xr-x 2 root root 0 Nov 14 23:19
drwxr-xr-x 2 root root 0 Nov 14 23:19
drwxr-xr-x 2 root root 0 Nov 14 23:19
drwxr-xr-x 2 root root 0 Nov 14 23:19
drwxr-xr-x 2 root root 0 Nov 14 23:19
drwxr-xr-x 2 root root 0 Nov 14 23:19

mm_page_pcpu_drain

Let's see what's inside the subdirectory for a specific tracepoint, in this case the one for kmalloc:

root@sugarbay:/sys/kernel/debug/tracing/events/kmem# cd kmalloc
root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# 1s -al

enable
filter
format

drwxr-xr-x 2 root root 0 Nov 14 23:19 .
drwxr-xr-x 14 root root 0 Nov 14 23:19
-rw-r--r-- 1 root root 0 Nov 14 23:19
-rw-r--r-- 1 root root 0 Nov 14 23:19
-r--r--r-- 1 root root 0 Nov 14 23:19
-r--r--r-- 1 root root 0 Nov 14 23:19

id

The 'format’ file for the tracepoint describes the event in memory, which is used by the various tracing
tools that now make use of these tracepoint to parse the event and make sense of it, along with a
'print fmt' field that allows tools like ftrace to display the event as text. Here's what the format of

the kmalloc event looks like:

root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# cat format

name: kmalloc
ID: 313
format:

field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt count; offset:3; size:1; signed:0;

field:int common_pid; offset:4; size:4; signed:1;
field:int common _padding; offset:8; size:4; signed:1;

field:unsigned long call site; offset:16; size:8; signed:0;

field:const void * ptr; offset:24; size:8; signed:0;
field:size t bytes req; offset:32; size:8; signed:0;
field:size t bytes alloc; offset:40; size:8; signed:0;
field:gfp_t gfp flags; offset:48; size:4; signed:0;

print fmt: "call site=%lx ptr=%p bytes req=%zu bytes alloc=%zu gfp flags=%s", REC->call site
(REC->gfp flags) ? _ print flags(REC->gfp flags, "|", {(unsigned long) ((((gfp_t)0x10u) | (|
gfp t)0x20000u) | ((gfp t)Ox02u) | ((gfp t)Ox08u)) | ((gfp t)Ox4000u) | ((gfp t)Ox10OOOL

gfp_t)0x400000u)), "GFP_TRANSHUGE"}, {(unsigned long) (((gfp_t)0x10u) |

gfp_t)Ox02u) | ((gfp_t)OxO8u)), "GFP_HIGHUSER MOVABLE"}, {(unsigned long) (((gfp_t)0x10u)
gfp _t)0x20000u) | ((gfp_t)Ox02u)), "GFP_HIGHUSER"}, {(unsigned long) (((gfp_t)0x10u) | ((¢
gfp_t)0x20000u)), "GFP_USER"}, {(unsigned long) (((gfp t)0x10u) | ((gfp t)0x40u) | ((gfp_f
{(unsigned long) (((gfp t)0x10u) | ((gfp t)6x40u) | ((gfp _t)Ox80u)), "GFP_KERNEL"}, {(unsi
"GFP_NOFS"}, {(unsigned long) (((gfp t)0x20u)), "GFP_ATOMIC"}, {(unsigned long) (((gfp_t)Ox!
gfp_t)0x20u), "GFP_HIGH"}, {(unsigned long)((gfp_t)0x10u), "GFP_WAIT"}, {(unsigned long) ((
gfp_t)0x100u), "GFP_COLD"}, {(unsigned long)((gfp_t)0x200u), "GFP_NOWARN"}, {(unsigned lonc
long) ((gfp_t)Ox800u), "GFP_NOFAIL"}, {(unsigned long)((gfp_ t)0x1000u), "GFP_NORETRY"},
{(unsigned long) ((gfp_t)0x8000u), "GFP_ZER0"}, {(unsigned long) ((gfp t)0x10000u), "GFP_NOI
"GFP_HARDWALL"}, {(unsigned long) ((gfp_t)0x40000u), "GFP_THISNODE"}, {(unsigned long) ((gfy
long) ((gfp_t)Ox08u), "GFP_MOVABLE"}, {(unsigned long) ((gfp t)0), "GFP_NOTRACK"}, {(unsigne

((gfp_t)Ox40u) | (¢
|

{(unsigned long) ((gfp_ t)0x800000u), "GFP_OTHER NODE"})

"GFP_NOWAIT"

The 'enable’ file in the tracepoint directory is what allows the user (or tools such as trace-cmd)
to actually turn the tracepoint on and off. When enabled, the corresponding tracepoint will start
appearing in the ftrace 'trace' file described previously. For example, this turns on the kmalloc

tracepoint

root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 1 > enable

At the moment, we're not interested in the function tracer or some other tracer that might be in
effect, so we first turn it off, but if we do that, we still need to turn tracing on in order to see the

events in the output buffer:

root@sugarbay:/sys/kernel/debug/tracing# echo nop > current_tracer
root@sugarbay:/sys/kernel/debug/tracing# echo 1 > tracing on

Now, if we look at the the 'trace’ file, we see nothing but the kmalloc events we just turned on:

root@sugarbay:/sys/kernel/debug/tracing# cat trace | less

tracer: nop
#
entries-in-buffer/entries-written: 1897/1897 #P:8
#
_-----=> irqgs-off
/ _----=> need-resched
| / ---=> hardirqg/softirq
|| / --=> preempt-depth
[7 delay
TASK-PID CPU# ||| TIMESTAMP FUNCTION
|| | I | |
dropbear-1465 [000] ...1 18154.620753: kmalloc: call site=ffffffff816650d4 ptr=ffffe
<idle>-0 [000] ..s3 18154.621640: kmalloc: call site=ffffffff81619b36 ptr=Fffffe
<idle>-0 [000] ..s3 18154.621656: kmalloc: call site=ffffffff81619b36 ptr=Fffffe
matchbox-termin-1361 [001] ...1 18154.755472: kmalloc: call site=ffffffff81614050 ptr=Fffffe
Xorg-1264 [002] ...1 18154.755581: kmalloc: call site=ffffffff81l4labe8 ptr=ffff¢
Xorg-1264 [002] ...1 18154.755583: kmalloc: call site=ffffffff814192a3 ptr=ffff¢
Xorg-1264 [002] ...1 18154.755589: kmalloc: call site=ffffffff81419edb ptr=ffff¢
matchbox-termin-1361 [001] ...1 18155.354594: kmalloc: call site=ffffffff81614050 ptr=Fffffe
Xorg-1264 [002] ...1 18155.354703: kmalloc: call site=ffffffff81l41labe8 ptr=ffff¢
Xorg-1264 [002] ...1 18155.354705: kmalloc: call site=ffffffff814192a3 ptr=ffff¢
Xorg-1264 [002] ...1 18155.354711: kmalloc: call site=ffffffff81419edb ptr=ffff¢
<idle>-0 [000] ..s3 18155.673319: kmalloc: call site=ffffffff81619b36 ptr=Fffffe
dropbear-1465 [000] ...1 18155.673525: kmalloc: call site=ffffffff816650d4 ptr=ffffe
<idle>-0 [000] ..s3 18155.674821: kmalloc: call site=ffffffff81619b36 ptr=Fffffe
<idle>-0 [000] ..s3 18155.793014: kmalloc: call site=ffffffff81619b36 ptr=Fffffe
dropbear-1465 [000] ...1 18155.793219: kmalloc: call site=ffffffff816650d4 ptr=ffffe
<idle>-0 [000] ..s3 18155.794147: kmalloc: call site=ffffffff81619b36 ptr=Fffffe

<idle>-0 [000] ..s3 18155.936705: kmalloc: call site=ffffffff81619b36
dropbear-1465 [000] .1 18155.936910: kmalloc: call site=ffffffff816650d4
<idle>-0 [000] ..s3 18155.937869: kmalloc: call site=ffffffff81619b36
matchbox-termin-1361 [001] .1 18155.953667: kmalloc: call site=ffffffff81614050
Xorg-1264 [002] .1 18155.953775: kmalloc: call site=ffffffff81l4labe8

Xorg-1264 [002] .1 18155.953777: kmalloc: call site=ffffffff814192a3

Xorg-1264 [002] .1 18155.953783: kmalloc: call site=ffffffff81419edb

<idle>-0 [000] ..s3 18156.176053: kmalloc: call site=ffffffff81619b36
dropbear-1465 [000] .1 18156.176257: kmalloc: call site=ffffffff816650d4
<idle>-0 [000] ..s3 18156.177717: kmalloc: call site=ffffffff81619b36

<idle>-0 [000] ..s3 18156.399229: kmalloc: call site=ffffffff81619b36
dropbear-1465 [000] .1 18156.399434: kmalloc: call site=ffffffff816650d4
<idle>-0 [000] ..s3 18156.400660: kmalloc: call site=ffffffff81619b36
matchbox-termin-1361 [001] .1 18156.552800: kmalloc: call site=ffffffff81614050

To again disable the kmalloc event, we need to send 0 to the enable file:
root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 0 > enable

You can enable any number of events or complete subsystems (by using the 'enable' file in the
subsystem directory) and get an arbitrarily fine-grained idea of what's going on in the system by
enabling as many of the appropriate tracepoints as applicable.

A number of the tools described in this HOWTO do just that, including trace-cmd and kernelshark in
the next section.

Tying it Together: These tracepoints and their representation are used not only by ftrace, but by many
of the other tools covered in this document and they form a central point of integration for the various
tracers available in Linux. They form a central part of the instrumentation for the following tools: perf,
Ittng, ftrace, blktrace and SystemTap

Tying it Together: Eventually all the special-purpose tracers currently available in /sys/kernel/debug/
tracing will be removed and replaced with equivalent tracers based on the 'trace events' subsystem.

3.2.4. trace-cmd/kernelshark

trace-cmd is essentially an extensive command-line 'wrapper' interface that hides the details of all
the individual files in /sys/kernel/debug/tracing, allowing users to specify specific particular events
within the /sys/kernel/debug/tracing/events/ subdirectory and to collect traces and avoid having to
deal with those details directly.

As yet another layer on top of that, kernelshark provides a GUI that allows users to start and stop
traces and specify sets of events using an intuitive interface, and view the output as both trace events
and as a per-CPU graphical display. It directly uses 'trace-cmd' as the plumbing that accomplishes all
that underneath the covers (and actually displays the trace-cmd command it uses, as we'll see).

To start a trace using kernelshark, first start kernelshark:
root@sugarbay:~# kernelshark

Then bring up the 'Capture' dialog by choosing from the kernelshark menu:
Capture | Record

That will display the following dialog, which allows you to choose one or more events (or even one
or more complete subsystems) to trace:

ptr=ffffe
ptr=ffffe
ptr=ffffe
ptr=ffffe
ptr=ffffe
ptr=ffffe
ptr=ffffe
ptr=ffffe
ptr=ffffe
ptr=ffffe
ptr=ffffe
ptr=ffffe
ptr=ffffe
ptr=ffffe

Capture (on sugarbay)
Qutput Display:

Settings
Save Settings Import Settings| Export Settings
Available Settings: Current v
Events |Z|

- drm

drm_vblank_event
drm_vblank_event_delivered
drm_vblank_event_qgueued

Oext3

[ext4

[ftrace

[hda

1915

1915_flip_complete

4 = = = =

1915_flip_request
1915_gem_evict

1915 _gem_evict_everything
1915_gem_object_bind

1915 _gem_object_change_domain
1915_gem_object_clflush
1915_gem_object_create
1915_gem_object_destroy
1915_gem_object_fault
1915_gem_object_pread

TEREREAEEEEEREEA®

1915 aem nhiect nwrite =]
Execute
Plugin: TNONE M
Command : |
Qutput file: |trace.dat Browse - :
Max # of characters in output display

Run Close

Note that these are exactly the same sets of events described in the previous trace events subsystem
section, and in fact is where trace-cmd gets them for kernelshark.

In the above screenshot, we've decided to explore the graphics subsystem a bit and so have chosen
to trace all the tracepoints contained within the 'i915' and 'drm' subsystems.

After doing that, we can start and stop the trace using the 'Run' and 'Stop' button on the lower right
corner of the dialog (the same button will turn into the 'Stop' button after the trace has started):

Capture (on sugarbay)

Sefttings

Save Settings Import Settings| Export Settings

Available Settings: Current

-

Qutput Display:

B /usr/bin/trace-cmd record -o trace.dat -e drm -e 1815
/sys/kernel/debug/tracing/events/i915/filter
/sys/kernel/debug/tracing/events/*/1915/filter
/sys/kernel/debug/tracing/events/drm/filter
/sys/kernel/debug/tracing/events/*/drm/filter
/sys/kernel/debug/tracing/events/1915/f1lter
/sys/kernel/debug/tracing/events/*/1915/filter
/sys/kernel/debug/tracing/events/drm/filter
/sys/kernel/debug/tracing/events/*/drm/filter
/sys/kernel/debug/tracing/events/i915/filter
/sys/kernel/debug/tracing/events/*/i915/filter
/sys/kernel/debug/tracing/events/drm/filter
/sys/kernel/debug/tracing/events/*/drm/filter
/sys/kernel/debug/tracing/events/1915/f1lter
/sys/kernel/debug/tracing/events/*/i915/filter
/sys/kernel/debug/tracing/events/drm/filter
/sys/kernel/debug/tracing/events/*/drm/fTilter
/sys/kernel/debug/tracing/events/1915/filter
/sys/kernel/debug/tracing/events/*/i915/filter
/sys/kernel/debug/tracing/events/drm/filter
/sys/kernel/debug/tracing/events/*/drm/filter
/sys/kernel/debug/tracing/events/i915/filter
/sys/kernel/debug/tracing/events/*/1915/filter
/sys/kernel/debug/tracing/events/drm/filter
/sys/kernel/debug/tracing/events/*/drm/filter
/sys/kernel/debug/tracing/events/1915/f1lter
/sys/kernel/debug/tracing/events/*/1915/filter
/sys/kernel/debug/tracing/events/drm/filter
/sys/kernel/debug/tracing/events/*/drm/filter
/sys/kernel/debug/tracing/events/i915/filter
/sys/kernel/debug/tracing/events/*/i915/filter
/sys/kernel/debug/tracing/events/drm/filter
/sys/kernel/debug/tracing/events/*/drm/filter

CPUG data recorded at offset=0x2830008

20480 bytes in size
CPUL data recorded at offset=0x238000

12288 bytes 1n size
CPUZ data recorded at offset=0x23b000

8192 bytes in size
CPU3 data recorded at offset=0x28d008

4096 bytes in size
CPU4 data recorded at offset=0x28e000

0 bytes 1n size
CPUS data recorded at offset=0x28e000

0 bytes in size
CPUS data recorded at offset=0x28e000

0 bytes in size
CPU7 data recorded at offset=0x28e000

0 bytes in size
/sys/kernel/debug/tracing/events/i915/filter
/sys/kernel/debug/tracing/events/*/1915/filter
/sys/kernel/debug/tracing/events/drm/filter
/sys/kernel/debug/tracing/events/*/drm/filter
Hit CtrlnC to stop recording
Kernel buffer statistics:

Note: "entries" are the entries left in the kernel rin
recorded in the trace data. They should all be =z

Events =
< [Fdrm
[drm_vblank_ewvent
[drm_vblank_event_delivered
[¥] drm_vblank_event_gueued
b [Jexts
b [Jextd
b [ftrace
b [hda
v [4] 1915
[¥] 1915_flip_complete
[¥] 1915_flip_request
[¥] 1915_gem_evict
[¥] 1915_gem_evict_everything
[¥] 1915_gem_object_bind
[¥] 1915_gem_object_change_domain
[¥] 1915_gem_object_clflush
[¥] 1915_gem_object_create [
[¥] 1915_gem_object_destroy
[¥] 1915_gem_object_fault
[¥]1 1915_gem_object_pread
[¥1 1915_gem_object_pwrite
[4] 1915_gem_object_unbind
[4] 1915_gem_request_add
[4]1 1915_gem_request_complete
[4]1 1915_gem_request_retire
[4] 1915_gem_request_wait_begin
[4] 1915_gem_request_wait_end
[¥] 1915 gem_ring_dispatch
[¥1 1915 _gem_ring_flush
[¥]1 1915 _reg_rw
[¥] 1915 _ring_wait_begin B
Execute
Plugin: NONE -
Command :
Qutput file: ‘trace.dat Browse

Notice that the right-hand pane shows the exact trace-cmd command-line that's used to run the

trace, along with the results of the trace-cmd

Once the 'Stop' button is pressed, the graphical view magically fills up with a colorful per-cpu display

o
Max # of characters in output display: |1000000

Run Close

run.

of the trace data, along with the detailed event listing below that:

Basic Usage (with examples) for each of the Yocto Tracing Tools

File Filter

kernelshark(trace.dat) (on sugarbay)
Flots Capture Help

Pointer: 19217 .639%98 Cursor: 0.000000 Marke rifi] 19215 ,344848 Marke rjgl] 19215.344848 A,B Delt:

Time Line

-

CFU ©

CPU 4

19215.3443848

T
19222 .531039

L] el e [|] [

™~

1
18229.717229

| |

CPU 1 w
arg-
i915_gem_ohject_pwrit
19215 . 342126 Xorg-1261
CPU 2

U | —

CFU 5

CPU 6

Pagell EI

Search:

Column:

[vl contains

-~

[Jgraph f

Stamp |Task |PID |Latency |E\rent |Im‘0 ﬂ
5.344848 Xorg 1261 1 1915_gem_object_pwrite obj=0xffff88001e fa7ac
5.344851 Xorg 1261 ...1 1915_gem_object_change_domain obj=0xffffs88001efa7sc
5.344857 Xorg 1261 .1 1915_gem_ring_flush dev=0, ring=2, invali
5.344858 Xorg 1261 ...1 1915_reg_rw write reg=0x22030, le
5.344859 Xorg 1261 ...1 1915_gem_ring_dispatch dev=0, ring=2, seqno-
5.344859 Xorg 1261 o4 1915 _reg_rw write reg=0x220a8, le
5.344859 Xorg 1261 o4 1915 _reg_rw write reg=0x44014, le
5.345095 Xorg 1261 1 1915_reg_rw write reg=0x22030, l¢
5.345096 Xorg 1261 1 1915_gem_object_change_domain obj=0xffff88001efa7ac
5.345097 Xorg 1261 ...1 1915_gem_object_change_domain obj=0xffff88006d&0cet
5.345098 Xorg 1261 ...1 1915_gem_object_change_domain obj=0xffffe8006dhosac
5.345098 Xorg 1261 ...1 1915_reg_rw write reg=0x22030, le
5.345099 Xorg 1261 1 1915 _reg_rw write reg=0x22030, le
5.345099 Xorg 1261 1 1915 clnem request add dev=0, ring=2, seqno=l7
A »
koerriding event (13) ftrace:blktrace with new print handler dﬁ

Here's another example, this time a display resulting from tracing 'all events':

43

kernelshark(trace.dat) (on sugarbay)

File Filter Plots Capture Help
Pointer: 290 .856356 Cursor: 291,.543512 Marke ri8i] 0.0 Marke rflj ©.© A,B Delta: 0.0

Time Line —
T 1
291 ,.543508 295,376533 299, 209559
CFU ©
CPU 1
CRU 2
CPU 3
CPU 4 | |
CPU 5 LI L]
CPU &
““““ ﬂ
Page[1 [+ Search: Column: # v‘contains v|| O graph f
‘Time Stamp ‘Task |PID |Latency |Event ‘Im‘o ﬂ
291 .544682 loop0 6§18 d..4 sched_stat_blocked comm=trace-cmd pid=135¢
201 .544682 loop@ 619 d..4 sched_wakeup trace-cmd:1356 [120] s
201.544685 <idle= o] N2 powe r_end cpu_1d=6
. 544685 1 kmem_cache_free (mempool_free_slab+0x1
201,5445686 <idle=> 0] N2 cpu_idle state=4294967295 cpu_ir
291 .544686 loop0 619 .2 rcu_utilization ffffffffelal34ca
291 .544686 loop0 619 L2 rcu_utilization ffffffffelal34df
291 .544688 loop0 6§18 d..3 sched_stat_runtime comm=loop® pid=619 runi
201.544688 <idle= o] dn. 3 hrtimer_cancel hrtimer=0xffff88010038¢
201.544690 <idle= o] dn. 3 hrtimer_start hrtimer=0xffff88010038¢
201,544891 <idle= 0] N2 rcu_utilization ffffffffelal34ca
201,544592 <idle=> 0] N2 rcu_utilization ffffffffelal34df
291.5448693 <idle=> o] dn. 3 sched_stat_walt comm=trace-cmd pld=135¢
291 .544694 <idle=> o] d..3 sched_switch swapper/6:0 [120] ==:|~|
4] | 0|
I 0

The tool is pretty self-explanatory, but for more detailed information on navigating through the data,
see the kernelshark website [http://rostedt.homelinux.com/kernelshark/].

3.2.5. Documentation

The documentation for ftrace can be found in the kernel Documentation directory:
Documentation/trace/ftrace.txt

The documentation for the trace event subsystem can also be found in the kernel Documentation
directory:

Documentation/trace/events. txt

http://rostedt.homelinux.com/kernelshark/
http://rostedt.homelinux.com/kernelshark/

There is a nice series of articles on using ftrace and trace-cmd at LWN:

» Debugging the kernel using Ftrace - part 1 [http://lwn.net/Articles/365835/]
* Debugging the kernel using Ftrace - part 2 [http://lwn.net/Articles/366796/]
» Secrets of the Ftrace function tracer [http://lwn.net/Articles/370423/]

* trace-cmd: A front-end for Ftrace [https://lwn.net/Articles/410200/]

There's more detailed documentation kernelshark usage here: KernelShark [http://
rostedt.homelinux.com/kernelshark/]

An amusing yet useful README (a tracing mini-HOWTO) can be found in /sys/kernel/debug/tracing/
README.

3.3. systemtap

SystemTap is a system-wide script-based tracing and profiling tool.

SystemTap scripts are C-like programs that are executed in the kernel to gather/print/aggregate data
extracted from the context they end up being invoked under.

For example, this probe from the SystemTap tutorial [http://sourceware.org/systemtap/tutorial/]
simply prints a line every time any process on the system open()s a file. For each line, it prints the
executable name of the program that opened the file, along with its PID, and the name of the file it
opened (or tried to open), which it extracts from the open syscall's argstr.

probe syscall.open

{
printf ("%s(%d) open (%s)\n", execname(), pid(), argstr)
}
probe timer.ms(4000) # after 4 seconds
{
exit ()
}

Normally, to execute this probe, you'd simply install systemtap on the system you want to probe,
and directly run the probe on that system e.g. assuming the name of the file containing the above
text is trace_open.stp:

stap trace open.stp

What systemtap does under the covers to run this probe is 1) parse and convert the probe to an
equivalent 'C' form, 2) compile the 'C' form into a kernel module, 3) insert the module into the kernel,
which arms it, and 4) collect the data generated by the probe and display it to the user.

In order to accomplish steps 1 and 2, the 'stap' program needs access to the kernel build system that
produced the kernel that the probed system is running. In the case of a typical embedded system
(the 'target'), the kernel build system unfortunately isn't typically part of the image running on the
target. It is normally available on the 'host' system that produced the target image however; in such
cases, steps 1 and 2 are executed on the host system, and steps 3 and 4 are executed on the target
system, using only the systemtap 'runtime’.

The systemtap support in Yocto assumes that only steps 3 and 4 are run on the target; it is possible
to do everything on the target, but this section assumes only the typical embedded use-case.

So basically what you need to do in order to run a systemtap script on the target is to 1) on the host
system, compile the probe into a kernel module that makes sense to the target, 2) copy the module
onto the target system and 3) insert the module into the target kernel, which arms it, and 4) collect
the data generated by the probe and display it to the user.

http://lwn.net/Articles/365835/
http://lwn.net/Articles/365835/
http://lwn.net/Articles/366796/
http://lwn.net/Articles/366796/
http://lwn.net/Articles/370423/
http://lwn.net/Articles/370423/
https://lwn.net/Articles/410200/
https://lwn.net/Articles/410200/
http://rostedt.homelinux.com/kernelshark/
http://rostedt.homelinux.com/kernelshark/
http://rostedt.homelinux.com/kernelshark/
http://sourceware.org/systemtap/tutorial/
http://sourceware.org/systemtap/tutorial/

3.3.1. Setup

Those are a lot of steps and a lot of details, but fortunately Yocto includes a script called 'crosstap’
that will take care of those details, allowing you to simply execute a systemtap script on the remote
target, with arguments if necessary.

In order to do this from a remote host, however, you need to have access to the build for the image
you booted. The 'crosstap' script provides details on how to do this if you run the script on the host
without having done a build:

Note

SystemTap, which uses 'crosstap', assumes you can establish an ssh connection to the remote
target. Please refer to the crosstap wiki page for details on verifying ssh connections at https://
wiki.yoctoproject.org/wiki/Tracing_and_Profiling#systemtap. Also, the ability to ssh into the
target system is not enabled by default in *-minimal images.

$ crosstap root@l192.168.1.88 trace open.stp

Error: No target kernel build found.
Did you forget to create a local build of your image?

‘crosstap' requires a local sdk build of the target system
(or a build that includes 'tools-profile') in order to build
kernel modules that can probe the target system.

Practically speaking, that means you need to do the following:
- If you're running a pre-built image, download the release
and/or BSP tarballs used to build the image.
- If you're working from git sources, just clone the metadata
and BSP layers needed to build the image you'll be booting.
- Make sure you're properly set up to build a new image (see
the BSP README and/or the widely available basic documentation
that discusses how to build images).
- Build an -sdk version of the image e.g.:
$ bitbake core-image-sato-sdk
OR
- Build a non-sdk image but include the profiling tools:
[edit local.conf and add 'tools-profile' to the end of
the EXTRA IMAGE FEATURES variable]
$ bitbake core-image-sato

Once you've build the image on the host system, you're ready to
boot it (or the equivalent pre-built image) and use 'crosstap'
to probe it (you need to source the environment as usual first):

$ source oe-init-build-env
$ cd ~/my/systemtap/scripts
$ crosstap root@l92.168.1.xxx myscript.stp

So essentially what you need to do is build an SDK image or image with 'tools-profile' as detailed in
the "General Setup" section of this manual, and boot the resulting target image.

Note

If you have a build directory containing multiple machines, you need to have the MACHINE
you're connecting to selected in local.conf, and the kernel in that machine's build directory
must match the kernel on the booted system exactly, or you'll get the above 'crosstap'
message when you try to invoke a script.

3.3.2. Running a Script on a Target

Once you've done that, you should be able to run a systemtap script on the target:

https://wiki.yoctoproject.org/wiki/Tracing_and_Profiling#systemtap
https://wiki.yoctoproject.org/wiki/Tracing_and_Profiling#systemtap

$ cd /path/to/yocto
$ source oe-init-build-env

Shell environment set up for builds.
You can now run ‘'bitbake target’

Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
adt-installer
meta-ide-support

You can also run generated gemu images with a command like 'rungemu gemux86'

Once you've done that, you can cd to whatever directory contains your scripts and use 'crosstap'
to run the script:

$ cd /path/to/my/systemap/script
$ crosstap root@l92.168.7.2 trace open.stp

If you get an error connecting to the target e.g.:

$ crosstap root@l192.168.7.2 trace open.stp
error establishing ssh connection on remote 'root@192.168.7.2'

Try ssh'ing to the target and see what happens:
$ ssh root@l92.168.7.2

A lot of the time, connection problems are due specifying a wrong IP address or having a 'host key
verification error'.

If everything worked as planned, you should see something like this (enter the password when
prompted, or press enter if it's set up to use no password):

$ crosstap root@l192.168.7.2 trace open.stp

root@192.168.7.2"'s password:

matchbox-termin(1036) open ("/tmp/vte3FS2LW", O RDWR|O CREAT|0 EXCL|O LARGEFILE, 0600)
matchbox-termin(1036) open ("/tmp/vteJMC7LW", O RDWR|O CREAT|O EXCL|O LARGEFILE, 0600)

3.3.3. Documentation

The SystemTap language reference can be found here: SystemTap Language Reference [http://
sourceware.org/systemtap/langref/]

Links to other SystemTap documents, tutorials, and examples can be found here: SystemTap
documentation page [http://sourceware.org/systemtap/documentation.htmi]

3.4. oprofile
oprofile itself is a command-line application that runs on the target system.

3.4.1. Setup

For this section, we'll assume you've already performed the basic setup outlined in the "General
Setup" section.

http://sourceware.org/systemtap/langref/
http://sourceware.org/systemtap/langref/
http://sourceware.org/systemtap/langref/
http://sourceware.org/systemtap/documentation.html
http://sourceware.org/systemtap/documentation.html
http://sourceware.org/systemtap/documentation.html

For the section that deals with running oprofile from the command-line, we assume you've ssh'ed to
the host and will be running oprofile on the target.

oprofileui (oprofile-viewer) is a GUl-based program that runs on the host and interacts remotely with
the target. See the oprofileui section for the exact steps needed to install oprofileui on the host.

3.4.2. Basic Usage

Oprofile as configured in Yocto is a system-wide profiler (i.e. the version in Yocto doesn't yet make
use of the perf_events interface which would allow it to profile specific processes and workloads). It
relies on hardware counter support in the hardware (but can fall back to a timer-based mode), which
means that it doesn't take advantage of tracepoints or other event sources for example.

It consists of a kernel module that collects samples and a userspace daemon that writes the sample
data to disk.

The 'opcontrol' shell script is used for transparently managing these components and starting and
stopping profiles, and the 'opreport' command is used to display the results.

The oprofile daemon should already be running, but before you start profiling, you may need to
change some settings and some of these settings may require the daemon to not be running. One
of these settings is the path to the vmlinux file, which you'll want to set using the --vmlinux option
if you want the kernel profiled:

root@crownbay:~# opcontrol --vmlinux=/boot/vmlinux- uname -r’
The profiling daemon is currently active, so changes to the configuration
will be used the next time you restart oprofile after a --shutdown or --deinit.

You can check if vmlinux file: is set using opcontrol --status:

root@crownbay:~# opcontrol --status
Daemon paused: pid 1334

Separate options: library

vmlinux file: none

Image filter: none

Call-graph depth: 6

If it's not, you need to shutdown the daemon, add the setting and restart the daemon:

root@crownbay:~# opcontrol --shutdown
Killing daemon.

root@crownbay:~# opcontrol --vmlinux=/boot/vmlinux- uname -r’
root@crownbay:~# opcontrol --start-daemon

Using default event: CPU CLK UNHALTED:100000:0:1:1

Using 2.6+ OProfile kernel interface.

Reading module info.

Using log file /var/lib/oprofile/samples/oprofiled.log
Daemon started.

If we check the status again we now see our updated settings:

root@crownbay:~# opcontrol --status

Daemon paused: pid 1649

Separate options: library

vmlinux file: /boot/vmlinux-3.4.11-yocto-standard
Image filter: none

Call-graph depth: 6

We're now in a position to run a profile. For that we use 'opcontrol --start":

root@crownbay:~# opcontrol --start
Profiler running.

In another window, run our wget workload:

root@crownbay:~# rm linux-2.6.19.2.tar.bz2; wget http://downloads.yoctoproject.org/mirror/sc
Connecting to downloads.yoctoproject.org (140.211.169.59:80)
1inux-2.6.19.2.tar.b 100% |**xifkokkstorsoiokokkfokrokokololkokkxx | 41727k 0:00:00 ETA

To stop the profile we use 'opcontrol --shutdown', which not only stops the profile but shuts down
the daemon as well:

root@crownbay:~# opcontrol --shutdown
Stopping profiling.
Killing daemon.

Oprofile writes sample data to /var/lib/oprofile/samples, which you can look at if you're interested in
seeing how the samples are structured. This is also interesting because it's related to how you dive
down to get further details about specific executables in OProfile.

To see the default display output for a profile, simply type 'opreport', which will show the results using
the data in /var/lib/oprofile/samples:

root@crownbay:~# opreport

WARNING! The OProfile kernel driver reports sample buffer overflows.
Such overflows can result in incorrect sample attribution, invalid sample
files and other symptoms. See the oprofiled.log for details.
You should adjust your sampling frequency to eliminate (or at least minimize)
these overflows.
CPU: Intel Architectural Perfmon, speed 1.3e+06 MHz (estimated)
Counted CPU_CLK UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00 (No
CPU CLK UNHALT...|
samples| % |
464365 79.8156 vmlinux-3.4.11-yocto-standard
65108 11.1908 oprofiled
CPU CLK UNHALT...|
samples| % |
64416 98.9372 oprofiled
692 1.0628 libc-2.16.s0
36959 6.3526 no-vmlinux
4378 0.7525 busybox
CPU CLK UNHALT...|
samples| % |
2844 64.9612 1libc-2.16.s0
1337 30.5391 busybox
193 4.4084 1d-2.16.s0
2 0.0457 libnss compat-2.16.s0
1 0.0228 libnsl-2.16.s0
1 0.0228 libnss files-2.16.s0
4344 0.7467 bash
CPU CLK UNHALT...|
samples| % |
2657 61.1648 bash
1665 38.3287 libc-2.16.s0

http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2

18 0.4144 1d-2.16.so0
3 0.0691 libtinfo.so0.5.9
1 0.0230 libdl-2.16.so0
3118 0.5359 nf_conntrack
686 0.1179 matchbox-terminal
CPU CLK UNHALT...|
samples| %|
214 31.1953 libglib-2.0.50.0.3200.4
114 16.6181 libc-2.16.so
79 11.5160 libcairo.s0.2.11200.2
78 11.3703 libgdk-x11-2.0.50.0.2400.8
51 7.4344 libpthread-2.16.s0
6.5598 libgobject-2.0.50.0.3200.4
4.2274 libvte.s0.9.2800.2
25 3.6443 1ibX11l.s0.6.3.0
2.7697 libxcb.so0.1.1.0
2.4781 libgtk-x11-2.0.50.0.2400.8
1.7493 1librt-2.16.so0
3 0.4373 libXrender.so0.1.3.0

671 0.1153 emgd
411 0.0706 nf_conntrack ipv4
391 0.0672 iptable nat
378 0.0650 nf nat
263 0.0452 Xorg
CPU_CLK UNHALT... |
samples| % |

106 40.3042 Xorg

53 20.1521 libc-2.16.s0

31 11.7871 libpixman-1.50.0.27.2
.8859 emgd drv.so

.0837 libemgdsrv_um.so0.1.5.15.3226
.1825 1ibEMGD2d.s0.1.5.15.3226
.4221 1libfb.so
libpthread-2.16.s0

.3802 libudev.s0.0.9.3

.3802 libdrm.s0.2.4.0

.3802 libextmod.so

.3802 mouse_drv.so

OCOOONW,A~OLO
[e)]
(o]
=
(o]

9 0.0015 connmand
CPU CLK UNHALT...]|
samples| %|
4 44.4444 1ibglib-2.0.50.0.3200.4
2 22.2222 libpthread-2.16.s0
1 11.1111 connmand
1 11.1111 libc-2.16.s0
1 11.1111 librt-2.16.s0
6 0.0010 oprofile-server
CPU CLK UNHALT...]|
samples| %|
3 50.0000 libc-2.16.s0
1 16.6667 oprofile-server
1 16.6667 libpthread-2.16.s0
1 16.6667 libglib-2.0.s50.0.3200.4
5 8.6e-04 gconfd-2
CPU CLK UNHALT...]|
samples| % |

2 40.0000 libdbus-1.s0.3.7.2
2 40.0000 libglib-2.0.50.0.3200.4
1 20.0000 libc-2.16.s0

The output above shows the breakdown or samples by both number of samples and percentage for
each executable. Within an executable, the sample counts are broken down further into executable
and shared libraries (DSOs) used by the executable.

To get even more detailed breakdowns by function, we need to have the full paths to the DSOs, which
we can get by using -f with opreport:

root@crownbay:~# opreport -f

CPU: Intel Architectural Perfmon, speed 1.3e+06 MHz (estimated)

Counted CPU CLK UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00 (No
CPU CLK UNHALT...|

samples| % |

464365 79.8156 /boot/vmlinux-3.4.11-yocto-standard
65108 11.1908 /usr/bin/oprofiled
CPU_CLK UNHALT...|
samples| % |
64416 98.9372 /usr/bin/oprofiled
692 1.0628 /lib/libc-2.16.s0
36959 6.3526 /no-vmlinux
4378 0.7525 /bin/busybox
CPU_CLK UNHALT...|
samples| % |
2844 64.9612 /1ib/1libc-2.16.s0
1337 30.5391 /bin/busybox
193 4.4084 /1ib/1d-2.16.so0
2 0.0457 /lib/libnss_compat-2.16.s0
1 0.0228 /lib/libns1l-2.16.s0
1 0.0228 /lib/libnss files-2.16.s0
4344 0.7467 /bin/bash
CPU_CLK UNHALT...|
samples| % |
2657 61.1648 /bin/bash
1665 38.3287 /lib/libc-2.16.s0
18 0.4144 /1ib/1d-2.16.so0
3 0.0691 /lib/libtinfo.s0.5.9
1 0.0230 /lib/libdl-2.16.s0

Using the paths shown in the above output and the -I option to opreport, we can see all the functions
that have hits in the profile and their sample counts and percentages. Here's a portion of what we
get for the kernel:

root@crownbay:~# opreport -1 /boot/vmlinux-3.4.11-yocto-standard

CPU: Intel Architectural Perfmon, speed 1.3e+06 MHz (estimated)
Counted CPU_CLK UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00 (No

samples % symbol name
233981 50.3873 intel idle
15437 3.3243 rb_get reader_page

14503 3.1232 ring_buffer_consume

14092 3.0347 mutex spin_on owner
13024 2.8047 read hpet

8039 1.7312 sub preempt count

7096 1.5281 ioread32

6997 1.5068 add preempt count

3985 0.8582 rb_advance reader

3488 0.7511 add event entry

3303 0.7113 get parent_ip

3104 0.6684 rb _buffer peek

2960 0.6374 op_cpu_buffer_read entry
2614 0.5629 sync buffer

2545 0.5481 debug smp processor_id
2456 0.5289 ohci irq

2397 0.5162 memset

2349 0.5059 copy_to user_ 11

2185 0.4705 ring buffer event length
1918 0.4130 1in lock functions

1850 0.3984 schedule

1767 0.3805 copy from user 1l nozero
1575 0.3392 rb _event data length
1256 0.2705 memcpy

1233 0.2655 system call

1213 0.2612 menu_select

Notice that above we see an entry for the __copy_to_user_II() function that we've looked at with other
profilers as well.

Here's what we get when we do the same thing for the busybox executable:

CPU: Intel Architectural Perfmon, speed 1.3e+06 MHz (estimated)
Counted CPU_CLK UNHALTED events (Clock cycles when not halted) with a unit mask of 0x00 (No

samples % image name symbol name

349 8.4198 busybox retrieve file data
308 7.4306 1libc-2.16.s0 _I0 file xsgetn

283 6.8275 1libc-2.16.s0 __read_nocancel

235 5.6695 1libc-2.16.s0 syscall

233 5.6212 1libc-2.16.s0 clearerr

215 5.1870 1libc-2.16.s0 fread

181 4.3667 1libc-2.16.s0 __write nocancel

158 3.8118 1libc-2.16.s0 __underflow

151 3.6429 1libc-2.16.s0 _dl_addr

150 3.6188 busybox progress_meter

150 3.6188 1libc-2.16.s0 __poll nocancel

148 3.5706 libc-2.16.s0 ~I0 file underflow@@GLIBC 2.1
137 3.3052 busybox safe poll

125 3.0157 busybox bb progress update
122 2.9433 1libc-2.16.s0 __x86.get _pc_thunk.bx
95 2.2919 busybox full write

81 1.9542 Dbusybox safe write

77 1.8577 busybox xwrite

72 1.7370 1libc-2.16.so _I0 file read

71 1.7129 1libc-2.16.s0 _I0 sgetn

67 1.6164 1libc-2.16.so0 poll

52 1.2545 1ibc-2.16.s0 _I0 switch to get mode
45 1.0856 1libc-2.16.so0 read

34 0.8203 1libc-2.16.s0 write

32 0.7720 busybox monotonic_sec

25 0.6031 1libc-2.16.s0 vfprintf

22 0.5308 busybox get _mono

14 0.3378 1d-2.16.s0 strcmp

14 0.3378 1libc-2.16.s0 __x86.get _pc_thunk.cx

Since we recorded the profile with a callchain depth of 6, we should be able to see our
__copy_to_user_ll() callchains in the output, and indeed we can if we search around a bit in the

'opreport --callgraph' output:

root@crownbay:~# opreport --callgraph /boot/vmlinux-3.4.11-yocto-standard

392 6.9639
736 13.0751
3255 57.8255
785 0.1690
1790 31.7940
1238 21.9893
992 17.6199
785 13.9432
525 9.3250
112 1.9893
72 1.2789
170 0.0366
1491 73.3038
327 16.0767
170 8.3579
20 0.9833
2588 98.2909
2349 0.5059
2349 89.2138
166 6.3046

vmlinux-3.
vmlinux-3.
vmlinux-3.
vmlinux-3.4.
vmlinux-3.
vmlinux-3.
vmlinux-3.
vmlinux-3.
vmlinux-3.
vmlinux-3.
vmlinux-3.

vmlinux-3.4.
vmlinux-3.
vmlinux-3.
vmlinux-3.
vmlinux-3.

vmlinux-3.
vmlinux-3.4.
vmlinux-3.
vmlinux-3.

4.11-yocto-standard sock aio_read
4.11-yocto-standard _ generic file aio write
4.11-yocto-standard inet_recvmsg
11-yocto-standard tcp_recvmsg
.11-yocto-standard local bh enable
.11-yocto-standard __kfree skb
.11-yocto-standard lock sock nested
.11-yocto-standard tcp recvmsg [self]
.11-yocto-standard release sock
.11-yocto-standard tcp_cleanup_ rbuf
.11-yocto-standard skb_copy datagram_iovec

B

11-yocto-standard skb_copy datagram iovec
4.11-yocto-standard memcpy toiovec
4.11-yocto-standard skb_copy datagram_ iovec
4.11-yocto-standard skb _copy datagram iovec [self]
4.11-yocto-standard copy to_user

4.11-yocto-standard copy to_user
11-yocto-standard _ copy to user 11
4.11-yocto-standard _ copy to user 11 [self]
4.11-yocto-standard do_page fault

Remember that by default OProfile sessions are cumulative i.e. if you start and stop a profiling session,
then start a new one, the new one will not erase the previous run(s) but will build on it. If you want
to restart a profile from scratch, you need to reset:

root@crownbay:~# opcontrol --reset

3.4.3. OProfileUl - A GUI for OProfile

Yocto also supports a graphical Ul for controlling and viewing OProfile traces, called OProfileUl. To use
it, you first need to clone the oprofileui git repo, then configure, build, and install it:

[trz@empanada
[trz@empanada
[trz@empanada
[trz@empanada

tmpl$ git clone git://git.yoctoproject.org/oprofileui
tmpl$ cd oprofileui

oprofileui]$./autogen.sh

oprofileuil$ sudo make install

OprofileUl replaces the 'opreport' functionality with a GUI, and normally doesn't require the user to
use 'opcontrol' either. If you want to profile the kernel, however, you need to either use the Ul to
specify a vmlinux or use 'opcontrol' to specify it on the target:

First, on the target, check if vmlinux file: is set:

root@crownbay:~# opcontrol --status

If not:

root@crownbay:~# opcontrol --shutdown
root@crownbay:~# opcontrol --vmlinux=/boot/vmlinux- uname -r’
root@crownbay:~# opcontrol --start-daemon

Now, start the oprofile Ul on the host system:
[trz@empanada oprofileuil$ oprofile-viewer
To run a profile on the remote system, first connect to the remote system by pressing the 'Connect'
button and supplying the IP address and port of the remote system (the default port is 4224).
The oprofile server should automatically be started already. If not, the connection will fail and you
either typed in the wrong IP address and port (see below), or you need to start the server yourself:
root@crownbay:~# oprofile-server
Or, to specify a specific port:
root@crownbay:~# oprofile-server --port 8888

Once connected, press the 'Start' button and then run the wget workload on the remote system:

root@crownbay:~# rm linux-2.6.19.2.tar.bz2; wget http://downloads.yoctoproject.org/mirror/sc
Connecting to downloads.yoctoproject.org (140.211.169.59:80)
linux-2.6.19.2.tar.b 100% |**¥rdkkktdkrsoobofoffokkktotofofkkkxx | 41727k 0:00:00 ETA

Once the workload completes, press the 'Stop' button. At that point the OProfile viewer will download
the profile files it's collected (this may take some time, especially if the kernel was profiled). While it
downloads the files, you should see something like the following:

http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2

Basic Usage (with examples) for each of the Yocto Tracing Tools

OProfile Viewer

File Control View Help

Connect Disconnect Start Stop Download Reset Save Open
Search: [

Downloading archive Hl;‘

Downloading archive

Retrieving the data from the remote host.

| Downloading file 4 of 280

Downloading files (280 in total)

Once the profile files have been retrieved, you should see a list of the processes that were profiled:

55

Basic Usage (with examples) for each of the Yocto Tracing Tools

OProfile Viewer | - l o x
File Control View Help
< é o = g a4 8 %
Connect Disconnect Start Stop Download Reset Save Open Compare
Search: l l lCLearl
~ Name Count
/boot/vmlinux-3.4.11-yocto-standard 225716
[usr/bin/oprofiled 27179
/bin/busybox 1900
/nf_conntrack 1584
/bin/bash 875
/emgd 320
b 0.082806 Inf_nat 214
P 0.073133 f/iptable_nat 189
P 0.071198 /nf_conntrack_ipv4 184
P 0.037534 fusr/bin/matchbox-terminal 97
P 0.034825 /nf_defrag_ipv4 90
P 0.015865 [usr/sbin/dropbearmulti 41
P 0.006965 fusr/bin/matchbox-panel 18
P 0.006191 /bin/grep.grep 16
P 0.001548 Jusr/bin/Xorg 4
b 0.001161 [usr/bin/opjitconv 3
P 0.000387 fusr/sbin/connmand 1
b 0.000387 /sbin/init.sysvinit 1
P 0.000387 {usr/bin/ophelp 1
P 0.000387 fusr/binfoprofile-server 1
P 0.000000 fusr/sbinfavahi-daemon 0
P 0.000000 Jusr/libexec/gconfd-2 0

If you select one of them, you should see all the symbols that were hit during the profile. Selecting
one of them will show a list of callers and callees of the chosen function in two panes below the top
pane. For example, here's what we see when we select __copy_to_user_lI():

56

Basic Usage (with examples) for each of the Yocto Tracing Tools

OProfile Viewer H-:J..J

File Control View Help
<l | = v 2 7 | B 8 | %
Connect Disconnect Start Stop Download Reset Save Open Compare
Search: ’] lCLearl
A MName Count
sync_buffer 1266 ‘
ohci_irg 1231
debug_smp_processor_id 1203
op o (= &
memset 1107
ring_buffer_event_length 1041
in_Llock_functions 933
__copy_from_user_Ll_nozero 895
__schedule 894
rb_event_data_length 755
memcpy 585
system_call 577
menu_select 570]
Overview‘ Instan:es‘ Call-graph ‘
Vlf_'allers]

| Name

0.077942 memcpy_toiovec

handle_irg_event_percpu

Name Count
do_page_fault 76

apic_timer_interrupt 24

common_interrupt 14

get_group

oprofile_add_sample

pch_gbe_intr

5
5
smp_apic_timer_interrupt 3
2
1

__do_softirg

As another example, we can look at the busybox process and see that the progress meter made a
system call:

57

Basic Usage (with examples) for each of the Yocto Tracing Tools

OProfile Viewer - l o x
File Control View Help
< & v g f & (=1 %
Connect Disconnect Start Stop Download Reset Save Open Compare
Search: l l lCLearl
~ Name Count .
/boot/vmlinux-3.4.11-yocto-standard 225716
[usr/bin/oprofiled 27179
/bin/busybox 1900
/lib/libc-2.16.s50 1301
_10_file_xsgetn 151
__read_nocancel 144
S 6574 - 0
clearerr 107
fread 107
_1O_file_underflow@@GLIBC_2.1 &9
__write_nocancel 29
—_underflow 84
——poll_nocancel 62
__x8&6.get_pc_thunk.bx 52
_IO_file_read 39
poll 27
_dl_addr 35
~1O_switch_to_get_mode 30
raad 27 &
Overview‘ Instances ‘ Call-graph ‘
~ Callers
Name Count
progress_meter 120
57 Callees
Name Count
syscall [self] 120

3.4.4. Documentation

Yocto already has some information on setting up and using OProfile and oprofileui. As this document
doesn't cover everything in detail, it may be worth taking a look at the "Profiling with OProfile [http://
www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-oprofile]" section in the Yocto
Project Development Manual

The OProfile manual can be found here: OProfile manual [http://oprofile.sourceforge.net/doc/
index.html]

The OProfile website contains links to the above manual and bunch of other items including an
extensive set of examples: About OProfile [http://oprofile.sourceforge.net/about/]

58

http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-oprofile
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-oprofile
http://www.yoctoproject.org/docs/1.8/dev-manual/dev-manual.html#platdev-oprofile
http://oprofile.sourceforge.net/doc/index.html
http://oprofile.sourceforge.net/doc/index.html
http://oprofile.sourceforge.net/doc/index.html
http://oprofile.sourceforge.net/about/
http://oprofile.sourceforge.net/about/

3.5. Sysprof

Sysprof is a very easy to use system-wide profiler that consists of a single window with three panes
and a few buttons which allow you to start, stop, and view the profile from one place.

3.5.1. Setup

For this section, we'll assume you've already performed the basic setup outlined in the General Setup
section.

Sysprof is a GUl-based application that runs on the target system. For the rest of this document we

assume you've ssh'ed to the host and will be running Sysprof on the target (you can use the '-X' option
to ssh and have the Sysprof GUI run on the target but display remotely on the host if you want).

3.5.2. Basic Usage

To start profiling the system, you simply press the 'Start' button. To stop profiling and to start viewing
the profile data in one easy step, press the 'Profile' button.

Once you've pressed the profile button, the three panes will fill up with profiling data:

System Profiler (on crownbay)

Profiler view Help

[> start Profile % Hsave As Samples: 3888
Functions |Self ‘Tutal - ‘ﬂ Descendants |Self |CumulatiVEA —
[Everything] 0.00 % 100,00 % < sys_read .48 % 13 .11 %

- kernel - - 0.00% B88.71% < vfs_read Q.46 % 12.09 %
[wget] 0.00% 79.94% = do_sync_read 0.23 % 18.49 %
__do_softirg 2.19% 41.68 % ~ sock_alo_read 0.39 % 9,90 %
syscall _call 0.05% 39.88 % = inet_recvmsg 0.13 % 8.92 %
_raw_spin_unlock_irqrestore 38.36% 38.83% = tcp_recvmsg 1.05% 8.23%
run_timer_softirg 0.33% 36.87 % v skb_copy_datagram_iov.. ©.41 % 2.98 %
__queue_work 0.15% 34.92% = memcpy_toiovec 0.28 % 2.47 %
delayed_work_timer_fn 0.08% 34.92 % ~ copy_to_user 0.13 % 2.16 %
__write_nocancel 0.13% 30.83 % __copy_to_user_11 2. 2. %
__read_nocancel 0.67% 21.88% __copy_to_user_11 Q. 0.03 %
__poll_nocancel 0.49% 20.75 % copy_fto_user 0.10 % 0.10 %

b _ kfree_skb 0.03 % 1.83 %
sys_write 0.93% 12.99% | ‘' b lock_sock_nested 0.15 % 0.93 %
vfs_write 0.03% 12.86 % E b release_sock 0.13 % 0.82 %
svs poll 0.10% 12 57 % =/ tep_cleanup_rbuf 0.18 % 0.18 %
Ccallers ‘Self |TntalA ‘ tcp_rcv_space_adjust 0.10 % 0.10 % [
syscall_call 0.21% 12.86 % memcpy_toiovec 0.08 % 0.08 %

- kernel - - 0.26% 0.26% local _bh_enable 0.08 % 0.08 %
skb_release_data 0.05 % 0.05 %
kmem_cache_free 0.05 % 0.05 %
_raw_spin_lock_bh 0.03 % 0.03 %
skb_release_head_state 0.03 % 0.03 %
_raw_spin_unlock 0.03 % 0.03 %

tcp_rcv_space_adjust 0.13 % 0.13 %

tep_cleanup_rbuf 0.10 % 0.10 %
skb_copy_datagram_iovec ©0.10 % 0.10 %

_ kfree_skb 0.08 % 0.08 %

. . . pewv| |~ |

The left pane shows a list of functions and processes. Selecting one of those expands that function in
the right pane, showing all its callees. Note that this caller-oriented display is essentially the inverse
of perf's default callee-oriented callchain display.

In the screenshot above, we're focusing on __copy_to_user_lI() and looking up the callchain we can
see that one of the callers of __copy_to_user _Ilis sys_read() and the complete callpath between them.
Notice that this is essentially a portion of the same information we saw in the perf display shown in
the perf section of this page.

Basic Usage (with examples) for each of the Yocto Tracing Tools

System Profiler (on crownbay) - | o

Profiler wview Help

|'j= Start DProflle % I Save As Samples: 3880
Functions |Self |Tutal Alﬂ Descendants |Self |CumulatJ.VEA =
[Everything] 0.00 % 100.00 % v sys_write 0.03 % 12.99 %
- - kernel - - 0.00% 88.71% < vfs_write 0.03 % 12.86 %
[wget] 0.00% 79.94% = do_sync_write 0.21% 12.50 %
_ do_softirg 2.19% 41.68 % ~ ext4_file_ write 0.18 % 11.98 %
syscall call 0.05% 39.88% = generic_file_ aio_write 0.03 % 11.67 %
_raw_spin_unlock_irgrestore 38.36% 38.83% w __generic_file_aio_write 0.15 % 11.44 %
run_timer_softirqg 0.33% 36.87 % = generic_file_buffered_write 0.08 % 9.13 %
__queue_work 0.15% 34.92% b extd_da_write_end 0.33 % 4.27 %
delayed_work_timer_fn 0.08% 34.92% b ext4_da_write_begin 0.08 % 3.00 %
__write_nocancel 0.13% 30.83% < lov_iter_copy_from_user_atomic 0.05% 1.03%
__read_nocancel 0.67% 21.88%
__poll_nocancel 0.49% 20.75% b kmap_atomic Q.03 % 0.15 %
sys_read 0.46% 13.11 % b _ kunmap_atomic 0.08 % 0.10 %
sys_write 0. b balance_dirty_pages_ratelimite.. ©.08 % 0.18 %
vfs_write 0.03% 12.86% i _ copy_from_user_11_nozero 0.10 % 0.10 % r
svs noll n.10% 12.57% (= add_preempt_count 9.05 % 9.05 %
callers [self [Totala] __kunmap_atomic 9.05% .05 %
syscall call 0.03% 12.99% kmap_atomic 0.05 % 0.05%
sub_preempt_count 0.05 % 0.05 %

b mark_page_accessed 0.03 % 0.05 %
ilov_iter_advance 0.03 % 0.03 %
grab_cache_page_write_begin 0.03 % 0.03 %
generic_write_end 0.03 % 0.03 %

_ block_write_begin 0.03 % 0.03 %

b preempt_schedule 0.00 % 0.03 %

b file update_time 0.10 % 1.85 %
mark_page_accessed Q.05 % 0.05 %

ext4 _da_write_end 0.05 % 0.05 % ol

Similarly, the above is a snapshot of the Sysprof display of a copy-from-user callchain.

Finally, looking at the third Sysprof pane in the lower left, we can see a list of all the callers of a
particular function selected in the top left pane. In this case, the lower pane is showing all the callers
of _mark_inode_dirty:

System Profiler (on crownbay) - | o

Profiler Vview Help

[~ start DPrufile % I [

Save As Samples: 3888

Functions |Self |Tntal ‘|Z| Descendants |Self |Cumulat1VEA

18157 R e 7L % | || _mark_inode_dirty 0.08 % 4.40 %
[sysprof] 0.00 » SLugl: - ext4_dirty_inode 0.08 % 4.06 %
inet_recvmsg 031 x R < ext4_mark_inode_dirty 0.08 % 3.11%
generic_file_buffered_write 0.08% 9.13% e .10 % 2.34 %
tep_recvmsg 126 b __extd_journal_get_write_access 0.03 % 1.16 %
—raw_spin_unlock_irg 7.07 % RERERERE b ext4_get_inode_loc 0.00 % 0.95%
poll_schedule_timeout 9700 I jbd2_journal_get_write_access 0.08% 0.08 %
schedule_hrtimeout_range 0.08% 7.05% __ext4_get_inode_loc ©.05 % .05 %
schedule_hrtimeout_range_clock 0.23% 6.92% b extd_mark_iloc_dirty 0.36 % 0.62 %
_ schedule 9.33 x REHELRE __ext4 _handle_dirty metadata 0.03% 0.03 %
schedule 2ol G ext4_get_inode_flags 0.03 % 0.03 %
kthread 9.00 x EESPS __ext4 journal _get write_access 0.03 % 0.03 %
kernel thread_helper 0.00 x R b extd_journal_start_sh 0.08 % 0.46 %
finish_task_switch 0.10% 5.27% b __ext4_journal_stop 0.05 % 0.18 %
_ mark_inode_dirty 4.40 ibdz_journal_stop 0.08 % 0.08 %
extd_dawriteend 0.39 % 4.32 %[5 extd_reserve_inode_write 0.05 % 0.05 %
callers self |Total a extd_mark_iloc_dirty 8.05% 0.05 %
generic_write_end 0.00% 2.88% jbd2_journal start 3),(85) &5 o[855
file_update_time 0.03% 1.44% __ext4_journal_stop 0.10% Bodl?)
extd_da_update_reserve_space 0.80% 0.03% ext4_mark_inode_dirty 0.08 % Yoot
__generic_file aio write 0.03% 0.03% ext4_journal start_sb 0.08 % 3oleli] o
extd_da_write_end 0.03% 0.03%

Double-clicking on one of those functions will in turn change the focus to the selected function, and
so on.

60

Tying it Together: If you like sysprof's 'caller-oriented' display, you may be able to approximate it in
other tools as well. For example, 'perf report’ has the -g (--call-graph) option that you can experiment
with; one of the options is 'caller' for an inverted caller-based callgraph display.

3.5.3. Documentation

There doesn't seem to be any documentation for Sysprof, but maybe that's because it's pretty self-
explanatory. The Sysprof website, however, is here: Sysprof, System-wide Performance Profiler for
Linux [http://sysprof.com/]

3.6. LTTng (Linux Trace Toolkit, next generation)
3.6.1. Setup

For this section, we'll assume you've already performed the basic setup outlined in the General Setup
section.

LTTng is run on the target system by ssh'ing to it. However, if you want to see the traces graphically,
install Eclipse as described in section "Manually copying a trace to the host and viewing it in Eclipse
(i.e. using Eclipse without network support)" and follow the directions to manually copy traces to the
host and view them in Eclipse (i.e. using Eclipse without network support).

Note

Be sure to download and install/run the 'SR1' or Ilater Juno release
of eclipse e.g.: http://www.eclipse.org/downloads/download.php?file=/technology/epp/
downloads/release/juno/SR1/eclipse-cpp-juno-SR1-linux-gtk-x86_64.tar.gz

3.6.2. Collecting and Viewing Traces

Once you've applied the above commits and built and booted your image (you need to build the
core-image-sato-sdk image or use one of the other methods described in the General Setup section),
you're ready to start tracing.

3.6.2.1. Collecting and viewing a trace on the target (inside a shell)

First, from the host, ssh to the target:

$ ssh -1 root 192.168.1.47

The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
root@192.168.1.47's password:

Once on the target, use these steps to create a trace:

root@crownbay:~# lttng create

Spawning a session daemon

Session auto-20121015-232120 created.

Traces will be written in /home/root/lttng-traces/auto-20121015-232120

Enable the events you want to trace (in this case all kernel events):

root@crownbay:~# lttng enable-event --kernel --all
All kernel events are enabled in channel channel®

http://sysprof.com/
http://sysprof.com/
http://sysprof.com/
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/juno/SR1/eclipse-cpp-juno-SR1-linux-gtk-x86_64.tar.gz
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/juno/SR1/eclipse-cpp-juno-SR1-linux-gtk-x86_64.tar.gz

Start the trace:

root@crownbay:~# lttng start

Tracing started for session auto-20121015-232120

And then stop the trace after awhile or after running a particular workload that you want to trace:

root@crownbay:~# lttng stop

Tracing stopped for session auto-20121015-232120

You can now view the trace in text form on the target:

root@crownbay:~# lttng view
21:

[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:
[23:

You can now safely destroy the trace session (note that this doesn't delete the trace -
in ~/Ittng-traces):

21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:
21:

.989270399]
.989278081]
.989286043]
.989321802]
.989329345]
.989351694]
.989432989]
.989477129]
9894866971
.989508418]
.989770462]
.989771580]
.989776957]
.989778145]
.989791695]
.989795396]
.989800635]
.989807130]
.989809993]
.989818514]
.989819631]
.989821866]
.989822984]
.989832762]
.989833879]
.989838069]
.989839187]
.989841492]
.989842819]
.989854831]
.989855949]
.989861257]
.989862374]
.989868241]
.989869358]
.989877460]
.989878577]

(+2.722777277

)
.000007682)
.000007962)
.000035759)
.000007543)
.000022349)
.000081295)
.000044140)
.000009568)
.000021721)
.000262044)
.000001118)
.000005377)
.000001188)
.000013550)
.000003701)
.000005239)
.000006495)
.000002863)
.000008521)
.000001117)
.000002235)
.000001118)
.000009778)
.000001117)
.000004190)
.000001118)
.000002305)
.000001327)
.000012012)
.000001118)
.000005308)
.000001117)
.000005867)
.000001117)
.000008102)
.000001117)

root@crownbay:~# lttng destroy

sys geteuid: {1}, {1}

exit syscall: {1}, { ret =0}
sys pipe: { 1 }, { fildes = OxB77B9E8C }
exit syscall: {1}, { ret =0}

sys_mmap_pgoff: { 1 }, { addr = 0x0, len =
exit syscall: {1}, { ret = -1247805440 }
sys clone: { 1 }, { clone flags = 0x41l1l, newsp = OxB5EFF
sched stat runtime: { 1 }, { comm = "lttng-consumerd", f
sched migrate task: { 1 }, { comm = "lttng-consumerd", 1
hrtimer init: { 1 }, { hrtimer = 3970832076, clockid = 1
hrtimer cancel: { 1 }, { hrtimer = 3993865440 }

hrtimer cancel: { 0 }, { hrtimer = 3993812192 }

10485760, prc

hrtimer expire entry: { 1 }, { hrtimer = 3993865440, nov
hrtimer expire entry: { 0 }, { hrtimer = 3993812192, nov
softirq raise: { 1}, { vec =11}
softirq raise: { 0@ }, { vec =1}
softirq raise: { 0@ }, { vec =9 }
sched stat runtime: { 1 }, { comm = "lttng-consumerd", f
sched stat runtime: { 0 }, { comm = "lttng-sessiond", ti

hrtimer expire exit:
hrtimer expire exit:
hrtimer start: { 0 }

{0}, { hrtimer = 3993812192 }
{13}, { hrtimer = 3993865440 }
{ hrtimer = 3993812192, function

hrtimer start: { 1 }, { hrtlmer = 3993865440, function
softirg entry: { 1}, { vec =11}
softirg entry: { 0 }, { vec =1}

timer _cancel: { 1 }, { timer = 3993871956 }
timer _cancel: { 0 }, { timer = 3993818708 }
1}, { timer = 3993871956, now
0}, { timer = 3993818708, now
13}, { comm = "lttng-consumerd",
0}, { conm = "lttng-sessiond",

timer_expire_entry: {
timer_expire_entry: {
sched stat runtime: {
sched stat runtime: {

+
N ONDY Ly ek wll w1

sched stat sleep: { 1 }, { comm = "kworker/1:1", tid =
sched stat sleep: { 0 }, { comm = "kworker/0:0", tid =
sched wakeup: { 0 }, { comm = "kworker/0:0", tid = 4, p1
sched wakeup: { 1 }, { comm = "kworker/1:1", tid = 21, g
timer expire exit: { 1 }, { timer = 3993871956 }

timer _expire exit: { 0 }, { timer = 3993818708 }

it's still there

Session auto-20121015-232120 destroyed at /home/root

Note that the trace is saved in a directory of the same name as returned by 'lttng create', under the
~/Ittng-traces directory (note that you can change this by supplying your own name to 'lttng create'):

root@crownbay:~# 1ls -al ~/lttng-traces

drwxrwx- - - 3 root root 1024 Oct 15 23:21 .
drwxr-xr-x 5 root root 1024 Oct 15 23:57 ..
drwxrwx- - - 3 root root 1024 Oct 15 23:21 auto-20121015-232120

3.6.2.2. Collecting and viewing a userspace trace on the target
(inside a shell)

For LTTng userspace tracing, you need to have a properly instrumented userspace program. For this
example, we'll use the 'hello’ test program generated by the Ittng-ust build.

The 'hello' test program isn't installed on the rootfs by the Ittng-ust build, so we need to copy it over
manually. First cd into the build directory that contains the hello executable:

$ cd build/tmp/work/core2 32-poky-linux/lttng-ust/2.0.5-r0/git/tests/hello/.libs
Copy that over to the target machine:

$ scp hello root@l92.168.1.20:

You now have the instrumented Ittng 'hello world' test program on the target, ready to test.
First, from the host, ssh to the target:
$ ssh -1 root 192.168.1.47
The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
root@192.168.1.47's password:

Once on the target, use these steps to create a trace:

root@crownbay:~# lttng create
Session auto-20190303-021943 created.
Traces will be written in /home/root/lttng-traces/auto-20190303-021943

Enable the events you want to trace (in this case all userspace events):

root@crownbay:~# lttng enable-event --userspace --all
All UST events are enabled in channel channel@

Start the trace:

root@crownbay:~# lttng start

Tracing started for session auto-20190303-021943

Run the instrumented hello world program:

root@crownbay:~# ./hello
Hello, World!
Tracing... done.

And then stop the trace after awhile or after running a particular workload that you want to trace:

root@crownbay:~# lttng stop

Tracing stopped for session auto-20190303-021943

You can now view the trace in text form on the target:

root@crownbay:~# lttng view

[02:31:14.906146544] (+?.?22772272727)
[02:31:14.906170360] (+0.000023816)
[02:31:14.906183140] (+0.000012780)
[02:31:14.906194385] (+0.000011245)

11424
11424
11424
11424

ust tests hello:tptest:
ust tests hello:tptest:
ust _tests hello:tptest:
ust tests hello:tptest:

A

cpu_id
cpu_id
cpu_id
cpu_id

You can now safely destroy the trace session (note that this doesn't delete the trace - it's still there

in ~/Ittng-traces):

root@crownbay:~# lttng destroy

Session auto-20190303-021943 destroyed at /home/root

3.6.2.3. Manually copying a trace to the host and viewing it in

Eclipse (i.e. using Eclipse without network support)

If you already have an LTTng trace on a remote target and would like to view it in Eclipse on the host,
you can easily copy it from the target to the host and import it into Eclipse to view it using the LTTng
Eclipse plug-in already bundled in the Eclipse (Juno SR1 or greater).

Using the trace we created in the previous section, archive it and copy it to your host system:

root@crownbay:~/lttng-traces# tar zcvf auto-20121015-232120.tar.gz auto-20121015-232120

auto-20121015-232120/
auto-20121015-232120/kernel/
auto-20121015-232120/kernel/metadata

auto-20121015-232120/kernel/channel0d 1
auto-20121015-232120/kernel/channel® 0

$ scp root@192.168.1.47:1ttng-traces/auto-20121015-232120.tar.gz .

root@192.168.1.47's password:
auto-20121015-232120.tar.gz

Unarchive it on the host:

100%

e

e o

1566KB

A

int
int
int
int

1.5MB;

$ gunzip -c auto-20121015-232120.tar.gz | tar xvf -
auto-20121015-232120/

auto-20121015-232120/kernel/
auto-20121015-232120/kernel/metadata
auto-20121015-232120/kernel/channelo 1
auto-20121015-232120/kernel/channel® 0

We can now import the trace into Eclipse and view it:

1.

9.

First, start eclipse and open the 'LTTng Kernel' perspective by selecting the following menu item:

Window | Open Perspective | Other...

. In the dialog box that opens, select 'LTTng Kernel' from the list.

. Back at the main menu, select the following menu item:

File | New | Project...

. In the dialog box that opens, select the "Tracing | Tracing Project' wizard and press 'Next>'.
. Give the project a name and press 'Finish'.

. In the 'Project Explorer' pane under the project you created, right click on the 'Traces' item.
. Select 'Import..." and in the dialog that's displayed:

. Browse the filesystem and find the select the 'kernel' directory containing the trace you copied

from the target e.g. auto-20121015-232120/kernel

'Checkmark' the directory in the tree that's displayed for the trace

10Below that, select 'Common Trace Format: Kernel Trace' for the '"Trace Type'

11Press 'Finish' to close the dialog

12Back in the 'Project Explorer' pane, double-click on the 'kernel' item for the trace you just imported

under 'Traces’

You should now see your trace data displayed graphically in several different views in Eclipse:

Basic Usage (with examples) for each of the Yocto Tracing Tools

LTTng Kernel - Eclipse - |8 | x
File Edit Navigate Search Project Run Window Help
il SEL WS- S A ai
Q Quick A i) c/c++ [Tracing
[Hpr 2 = H =t Control Flow 2 Resources Statistics i= =R 4 4 E 8 = 3
B & Process TID | PTID Birth time 18:21:57.000 18:21:57.050 &
e init 1 18:21:59.32993788. 3
- &Timporttest ksoftirqd/0 o 18:22:00.25531114: o . |
&3 Experiment kworker/0:0 4 18:21:56.98996154¢ [[T 1T T [[[[[
v @ Traces [1] migration/0 6 18:22:03.91801462:
E migration/1 7 18:22:00.25306323:
ksoftirgd/1 9 18:22:00.29004698!
sync_supers 15 18:21:57.00986701¢ |
kworker/1:1 21 18:21:56.99041886¢ [| [I
@ I [>) (< T [2]
i= Events - kernel 23 = g
Timestamp Channel Event Type Content [
A <srch> <sreh> <srch> <sreh> j
18:21:56.9892703" channel0_1 sys_geteuid
18:21:56.9892780¢ channelO_1 exit_syscall ret=0
18:21:56.9892860¢ channelO_1 sys_pipe fildes=3078332044
18:21:56.9893218(channelO_1 exit_syscall ret=0
m >] [BIE
BECo % = O Il Histogram &2 Properties [l Bookmarks = B
~Current Event (sec) ‘Window Span (sec) 1o8
(1250343316 985270399]‘ [0:200000000]‘ 0 A A
1350343316,989270399 1350343317.089268590
1031 | |
|
o
1350343316.989270399 1350343323.929448826
% kernel

You can access extensive help information on how to use the LTTng plug-in to search and analyze
captured traces via the Eclipse help system:

Help | Help Contents | LTTng Plug-in User Guide

3.6.2.4. Collecting and viewing a trace in Eclipse

Note

This section on collecting traces remotely doesn't currently work because of Eclipse 'RSE'
connectivity problems. Manually tracing on the target, copying the trace files to the host, and
viewing the trace in Eclipse on the host as outlined in previous steps does work however -
please use the manual steps outlined above to view traces in Eclipse.

In order to trace a remote target, you also need to add a 'tracing' group on the target and connect
as a user who's part of that group e.g:

adduser tomz
groupadd -r tracing
usermod -a -G tracing tomz

66

1. First, start eclipse and open the 'LTTng Kernel' perspective by selecting the following menu item:

Window | Open Perspective | Other...

2. In the dialog box that opens, select 'LTTng Kernel' from the list.

3. Back at the main menu, select the following menu item:

File | New | Project...

. In the dialog box that opens, select the 'Tracing | Tracing Project' wizard and press 'Next>'.
. Give the project a name and press 'Finish'. That should result in an entry in the 'Project' subwindow.
. In the 'Control' subwindow just below it, press 'New Connection'.

. Add a new connection, giving it the hostname or IP address of the target system.

0 N o u b

. Provide the username and password of a qualified user (a member of the 'tracing' group) or root
account on the target system.

9. Provide appropriate answers to whatever else is asked for e.g. 'secure storage password' can be
anything you want. If you get an 'RSE Error' it may be due to proxies. It may be possible to get
around the problem by changing the following setting:

Window | Preferences | Network Connections

Switch 'Active Provider' to 'Direct’

3.6.3. Documentation

You can find the primary LTTng Documentation on the LTTng Documentation [https://Ittng.org/docs/]
site. The documentation on this site is appropriate for intermediate to advanced software developers
who are working in a Linux environment and are interested in efficient software tracing.

For information on LTTng in general, visit the LTTng Project [http://Ittng.org/lttng2.0] site. You can find
a "Getting Started" link on this site that takes you to an LTTng Quick Start.

Finally, you can access extensive help information on how to use the LTTng plug-in to search and
analyze captured traces via the Eclipse help system:

Help | Help Contents | LTTng Plug-in User Guide

3.7. blktrace

blktrace is a tool for tracing and reporting low-level disk 1/O. blktrace provides the tracing half of the
equation; its output can be piped into the blkparse program, which renders the data in a human-
readable form and does some basic analysis:

3.7.1. Setup

For this section, we'll assume you've already performed the basic setup outlined in the "General
Setup" section.

blktrace is an application that runs on the target system. You can run the entire blktrace and blkparse
pipeline on the target, or you can run blktrace in 'listen' mode on the target and have blktrace and
blkparse collect and analyze the data on the host (see the "Using blktrace Remotely" section below).
For the rest of this section we assume you've ssh'ed to the host and will be running blkrace on the
target.

https://lttng.org/docs/
https://lttng.org/docs/
http://lttng.org/lttng2.0
http://lttng.org/lttng2.0

3.7.2. Basic Usage

To record a trace, simply run the 'blktrace' command, giving it the name of the block device you want
to trace activity on:

root@crownbay:~# blktrace /dev/sdc
In another shell, execute a workload you want to trace.

root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget http://downloads.yoctoproject.org;,
Connecting to downloads.yoctoproject.org (140.211.169.59:80)
linux-2.6.19.2.tar.b 100% |**¥ikkktkkaobffofokrrttortoffkxxrk | 41727k 0:00:00 ETA

Press Ctrl-C in the blktrace shell to stop the trace. It will display how many events were logged, along
with the per-cpu file sizes (blktrace records traces in per-cpu kernel buffers and simply dumps them
to userspace for blkparse to merge and sort later).

~C=== sdc ===

CPU O: 7082 events, 332 KiB data

CPU 1: 1578 events, 74 KiB data

Total: 8660 events (dropped 0), 406 KiB data

If you examine the files saved to disk, you see multiple files, one per CPU and with the device name
as the first part of the filename:

root@crownbay:~# 1s -al

drwxr-xr-x 6 root root 1024 Oct 27 22:39 .
drwxr-sr-x 4 root root 1024 Oct 26 18:24 ..
-rw-r--r-- 1 root root 339938 Oct 27 22:40 sdc.blktrace.0
-rw-r--r-- 1 root root 75753 Oct 27 22:40 sdc.blktrace.l1l

To view the trace events, simply invoke 'blkparse' in the directory containing the trace files, giving it
the device name that forms the first part of the filenames:

root@crownbay:~# blkparse sdc

8,32 1 1 0.000000000 1225 Q WS 3417048 + 8 [jbd2/sdc-8]
8,32 1 2 0.000025213 1225 G WS 3417048 + 8 [jbd2/sdc-8]
8,32 1 3 0.000033384 1225 P N [jbd2/sdc-8]

8,32 1 4 0.000043301 1225 I WS 3417048 + 8 [jbd2/sdc-8]
8,32 1 0 0.000057270 O m N cfql225 insert request

8,32 1 0 0.000064813 © m N cfql225 add to rr

8,32 1 5 0.000076336 1225 U N [jbd2/sdc-8] 1

8,32 1 0 0.000088559 © m N cfq workload slice:150

8,32 1 0 0.000097359 © m N cfql225 set active wl prio:0 wl type:l
8,32 1 0 0.000104063 © m N cfql225 Not idling. st->count:1
8,32 1 0 0.000112584 © m N cfql225 fifo= (null)

8,32 1 0 0.000118730 O m N cfgql225 dispatch_insert

8,32 1 0 0.000127390 O m N cfql225 dispatched a request
8,32 1 0 0.000133536 O m N cfql225 activate rq, drv=1
8,32 1 6 0.000136889 1225 D WS 3417048 + 8 [jbd2/sdc-8]
8,32 1 7 0.000360381 1225 Q WS 3417056 + 8 [jbd2/sdc-8]
8,32 1 8 0.000377422 1225 G WS 3417056 + 8 [jbd2/sdc-8]
8,32 1 9 0.000388876 1225 P N [jbd2/sdc-8]

8,32 1 10 0.000397886 1225 Q WS 3417064 + 8 [jbd2/sdc-8]
8,32 1 11 0.000404800 1225 M WS 3417064 + 8 [jbd2/sdc-8]
8,32 1 12 0.000412343 1225 Q WS 3417072 + 8 [jbd2/sdc-8]
8,32 1 13 0.000416533 1225 M WS 3417072 + 8 [jbd2/sdc-8]

http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2

8,32 1 14 0.000422121 1225 Q WS 3417080 + 8 [jbd2/sdc-8]

8,32 1 15 0.000425194 1225 M WS 3417080 + 8 [jbd2/sdc-8]

8,32 1 16 0.000431968 1225 Q WS 3417088 + 8 [jbd2/sdc-8]

8,32 1 17 0.000435251 1225 M WS 3417088 + 8 [jbd2/sdc-8]

8,32 1 18 0.000440279 1225 Q WS 3417096 + 8 [jbd2/sdc-8]

8,32 1 19 0.000443911 1225 M WS 3417096 + 8 [jbd2/sdc-8]

8,32 1 20 0.000450336 1225 Q WS 3417104 + 8 [jbd2/sdc-8]

8,32 1 21 0.000454038 1225 M WS 3417104 + 8 [jbd2/sdc-8]

8,32 1 22 0.000462070 1225 Q WS 3417112 + 8 [jbd2/sdc-8]

8,32 1 23 0.000465422 1225 M WS 3417112 + 8 [jbd2/sdc-8]

8,32 1 24 0.000474222 1225 I WS 3417056 + 64 [jbd2/sdc-8]

8,32 1 0 0.000483022 O m N cfgl225 insert request

8,32 1 25 0.000489727 1225 U N [jbd2/sdc-8] 1

8,32 1 0 0.000498457 ®© m N cfql225 Not idling. st->count:1l
8,32 1 0 0.000503765 O m N cfgql225 dispatch_insert

8,32 1 0 0.000512914 O m N cfql225 dispatched a request
8,32 1 0 0.000518851 O m N cfql225 activate rq, drv=2

8,32 0 0 58.515006138 © m N cfg3551 complete rgnoidle 1

8,32 0 2024 58.516603269 3 C WS 3156992 + 16 [0]

8,32 0 0 58.516626736 © m N cfg3551 complete rgnoidle 1

8,32 0 0 58.516634558 © m N cfg3551 arm_idle: 8 group idle: 0O
8,32 0 0 58.516636933 ®© m N cfg schedule dispatch

8,32 1 0 58.516971613 © m N cfg3551 slice expired t=0

8,32 1 0 58.516982089 ©® m N cfg3551 sl used=13 disp=6 charge=13 iops=0 ¢
8,32 1 0 58.516985511 © m N cfg3551 del from rr

8,32 1 0 58.516990819 O m N cfg3551 put_queue

CPUO (sdc):

Reads Queued: 0, 0KiB Writes Queued: 331, 26,284KiB
Read Dispatches: 0, 0KiB Write Dispatches: 485, 40,484KiB
Reads Requeued: 0 Writes Requeued: 0

Reads Completed: 0, 0KiB Writes Completed: 511, 41,000KiB
Read Merges: 0, 0KiB Write Merges: 13, 160KiB
Read depth: 0 Write depth: 2
I0 unplugs: 23 Timer unplugs: 0

CPU1 (sdc):

Reads Queued: 0, 0KiB Writes Queued: 249, 15,800KiB
Read Dispatches: 0, 0KiB Write Dispatches: 42, 1,600KiB
Reads Requeued: 0 Writes Requeued: 0

Reads Completed: 0, 0KiB Writes Completed: 16, 1,084KiB
Read Merges: 0, 0KiB Write Merges: 40, 276KiB
Read depth: 0 Write depth: 2
I0 unplugs: 30 Timer unplugs: 1

Total (sdc):

Reads Queued: 0, 0KiB Writes Queued: 580, 42,084KiB
Read Dispatches: 0, 0KiB Write Dispatches: 527, 42,084KiB
Reads Requeued: 0 Writes Requeued: 0

Reads Completed: 0, 0KiB Writes Completed: 527, 42,084KiB
Read Merges: 0, 0KiB Write Merges: 53, 436KiB
I0 unplugs: 53 Timer unplugs: 1

Throughput (R/W): OKiB/s / 719KiB/s

Events (sdc): 6,592 entries
Skips: 0 forward (0 - 0.0%)

Input file sdc.blktrace.0 added
Input file sdc.blktrace.l added

The report shows each event that was found in the blktrace data, along with a summary of the overall
block 1/0 traffic during the run. You can look at the blkparse [http://linux.die.net/man/1/blkparse]
manpage to learn the meaning of each field displayed in the trace listing.

3.7.2.1. Live Mode

blktrace and blkparse are designed from the ground up to be able to operate togetherin a 'pipe mode'
where the stdout of blktrace can be fed directly into the stdin of blkparse:

root@crownbay:~# blktrace /dev/sdc -o - | blkparse -i -

This enables long-lived tracing sessions to run without writing anything to disk, and allows the user
to look for certain conditions in the trace data in 'real-time' by viewing the trace output as it scrolls
by on the screen or by passing it along to yet another program in the pipeline such as grep which
can be used to identify and capture conditions of interest.

There's actually another blktrace command that implements the above pipeline as a single command,
so the user doesn't have to bother typing in the above command sequence:

root@crownbay:~# btrace /dev/sdc

3.7.2.2. Using blktrace Remotely

Because blktrace traces block I/0O and at the same time normally writes its trace data to a block
device, and in general because it's not really a great idea to make the device being traced the same
as the device the tracer writes to, blktrace provides a way to trace without perturbing the traced
device at all by providing native support for sending all trace data over the network.

To have blktrace operate in this mode, start blktrace on the target system being traced with the -I
option, along with the device to trace:

root@crownbay:~# blktrace -1 /dev/sdc
server: waiting for connections...

On the host system, use the -h option to connect to the target system, also passing it the device
to trace:

$ blktrace -d /dev/sdc -h 192.168.1.43
blktrace: connecting to 192.168.1.43
blktrace: connected!

On the target system, you should see this:
server: connection from 192.168.1.43
In another shell, execute a workload you want to trace.

root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget http://downloads.yoctoproject.org;,
Connecting to downloads.yoctoproject.org (140.211.169.59:80)
linux-2.6.19.2.tar.b 100% |*¥***kiiiiiflfoolollk | 41727k 0:00:00 ETA

When it's done, do a Ctrl-C on the host system to stop the trace:

AC::: Sdc ===

http://linux.die.net/man/1/blkparse
http://linux.die.net/man/1/blkparse
http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2

CPU 0O: 7691 events, 361 KiB data
CPU 1: 4109 events, 193 KiB data
Total: 11800 events (dropped 0), 554 KiB data

On the target system, you should also see a trace summary for the trace just ended:

server: end of run for 192.168.1.43:sdc

=== sd C ===

CPU ©: 7691 events, 361 KiB data

CPU 1: 4109 events, 193 KiB data

Total: 11800 events (dropped 0), 554 KiB data

The blktrace instance on the host will save the target output inside a hostname-timestamp directory:

$ 1s -al

drwxr-xr-x 10 root root 1024 Oct 28 02:40 .

drwxr-sr-x 4 root root 1024 Oct 26 18:24 ..

drwxr-xr-x 2 root root 1024 Oct 28 02:40 192.168.1.43-2012-10-28-02:40:56

cd into that directory to see the output files:

$ 1s -1
-rw-r--r-- 1 root root 369193 Oct 28 02:44 sdc.blktrace.0
-rw-r--r-- 1 root root 197278 Oct 28 02:44 sdc.blktrace.1l

And run blkparse on the host system using the device name:

$ blkparse sdc

8,32 1 1 0.000000000 1263 Q RM 6016 + 8 [ls]

8,32 1 0 0.000036038 © m N cfql263 alloced

8,32 1 2 0.000039390 1263 G RM 6016 + 8 [1ls]

8,32 1 3 0.000049168 1263 I RM 6016 + 8 [1ls]

8,32 1 0 0.000056152 O m N cfql263 insert request

8,32 1 0 0.000061600 © m N cfql263 add to rr

8,32 1 0 0.000075498 ©®© m N cfqg workload slice:300

8,32 0 0 177.266385696 © m N cfql267 arm_idle: 8 group idle: 0
8,32 0 0 177.266388140 ®© m N cfq schedule dispatch

8,32 1 0 177.266679239 © m N cfql267 slice expired t=0

8,32 1 0 177.266689297 © m N cfql267 sl used=9 disp=6 charge=9 iops=0 sec
8,32 1 0 177.266692649 © m N cfql267 del from rr

8,32 1 0 177.266696560 O m N cfql267 put_queue
CPUO (sdc):

Reads Queued: 0, 0KiB Writes Queued: 270, 21,708KiB
Read Dispatches: 59, 2,628KiB Write Dispatches: 495, 39,964KiB
Reads Requeued: 0 Writes Requeued: 0

Reads Completed: 90, 2,752KiB Writes Completed: 543, 41,596KiB
Read Merges: 0, 0KiB Write Merges: 9, 344KiB
Read depth: 2 Write depth: 2

I0 unplugs: 20 Timer unplugs: 1
CPU1 (sdc):

Reads Queued: 688, 2,752KiB Writes Queued: 381, 20,652KiB
Read Dispatches: 31, 124KiB Write Dispatches: 59, 2,396KiB

Reads Requeued: 0 Writes Requeued: 0

Reads Completed: 0,

Read Merges: 598,

Read depth: 2

I0 unplugs: 52
Total (sdc):

Reads Queued: 688,

Read Dispatches: 90,

Reads Requeued: 0

Reads Completed: 90,
Read Merges: 598,
I0 unplugs: 72

OKiB Writes Completed:

2,392KiB Write Merges:
Write depth:
Timer unplugs:

2,752KiB Writes Queued:

2,752KiB Write Dispatches:
Writes Requeued: 0
2,752KiB Writes Completed:

2,392KiB Write Merges:
Timer unplugs:

Throughput (R/W): 15KiB/s / 238KiB/s

Events (sdc): 9,301 entries
Skips: 0 forward (0 - 0.0%)

11, 764KiB
88, 448KiB
651, 42,360KiB
554, 42,360KiB
554, 42,360KiB
97, 792KiB

You should see the trace events and summary just as you would have if you'd run the same command

on the target.

3.7.2.3. Tracing Block I/O via 'ftrace'

It's also possible to trace block I/O using only trace events subsystem, which can be useful for casual
tracing if you don't want to bother dealing with the userspace tools.

To enable tracing for a given device, use /sys/block/xxx/trace/enable, where xxx is the device name.
This for example enables tracing for /dev/sdc:

root@crownbay:/sys/kernel/debug/tracing# echo 1 > /sys/block/sdc/trace/enable

Once you've selected the device(s) you want to trace, selecting the 'blk' tracer will turn the blk tracer

on:

root@crownbay:/sys/kernel/debug/tracing# cat available tracers
blk function _graph function nop

root@crownbay:/sys/kernel/debug/tracing# echo blk > current_tracer

Execute the workload you're interested in:

root@crownbay:/sys/kernel/debug/tracing# cat /media/sdc/testfile.txt

And look at the output (note here that we're using 'trace_pipe' instead of trace to capture this trace
- this allows us to wait around on the pipe for data to appear):

root@crownbay:/sys/kernel/debug/tracing# cat trace pipe

cat-3587 [001] d.
cat-3587 [001] d.
cat-3587 [001] d.
cat-3587 [001] d.
cat-3587 [001] d.
cat-3587 [001] d.
cat-3587 [001] d.
cat-3587 [001] d.
cat-3587 [001] d.
cat-3587 [001] d.
cat-3587 [001] d.
cat-3587 [001] d.

RPRHRERNRRNRERRBP

3023.276361: 8,32 Q
3023.276410: 8,32 m
3023.276415: 8,32 G
3023.276424: 8,32 P
3023.276432: 8,32 I
3023.276439: 8,32 m
3023.276445: 8,32 m
3023.276454: 8,32 U
3023.276464: 8,32 m
3023.276471: 8,32 m
3023.276478: 8,32 m
3023.276483: 8,32 m

222222230230 =2X

1699848
cfq3587
1699848
[cat]
1699848
cfq3587
cfq3587
[cat] 1
cfq workload slice:150
cfq3587 set _active wl prio:0 v
cfq3587 fifo= (null)

cfq3587 dispatch_insert

+ 8 [cat]
alloced
+ 8 [cat]

+ 8 [cat]
insert _request
add to rr

cat-3587 [001] d..1 3023.276490: 8,32 m N cfq3587 dispatched a request
cat-3587 [001] d..1 3023.276497: 8,32 m N cfq3587 activate rq, drv=1
cat-3587 [001] d..2 3023.276500: 8,32 D R 1699848 + 8 [cat]

And this turns off tracing for the specified device:

root@crownbay:/sys/kernel/debug/tracing# echo 0 > /sys/block/sdc/trace/enable

3.7.3. Documentation

Online versions of the man pages for the commands discussed in this section can be found here:

* http://linux.die.net/man/8/blktrace

* http://linux.die.net/man/1/blkparse

* http://linux.die.net/man/8/btrace

The above manpages, along with manpages for the other blktrace utilities (btt, blkiomon, etc) can

be found in the /doc directory of the blktrace tools git repo:

$ git clone git://git.kernel.dk/blktrace.git

http://linux.die.net/man/8/blktrace
http://linux.die.net/man/1/blkparse
http://linux.die.net/man/8/btrace

Chapter 4. Real-World Examples

This chapter contains real-world examples.

4.1. Slow Write Speed on Live Images

In one of our previous releases (denzil), users noticed that booting off of a live image and writing to
disk was noticeably slower. This included the boot itself, especially the first one, since first boots tend
to do a significant amount of writing due to certain post-install scripts.

The problem (and solution) was discovered by using the Yocto tracing tools, in this case 'perf stat’,
'perf script', 'perf record' and 'perf report'.

See all the unvarnished details of how this bug was diagnosed and solved here: Yocto Bug #3049

	Yocto Project Profiling and Tracing Manual
	Table of Contents
	Chapter 1. Yocto Project Profiling and Tracing Manual
	1.1. Introduction
	1.2. General Setup

	Chapter 2. Overall Architecture of the Linux Tracing and Profiling Tools
	2.1. Architecture of the Tracing and Profiling Tools

	Chapter 3. Basic Usage (with examples) for each of the Yocto Tracing Tools
	3.1. perf
	3.1.1. Setup
	3.1.2. Basic Usage
	3.1.2.1. Using perf to do Basic Profiling
	3.1.2.2. Using perf to do Basic Tracing
	3.1.2.3. System-Wide Tracing and Profiling
	3.1.2.3.1. Filtering

	3.1.2.4. Using Dynamic Tracepoints

	3.1.3. Documentation

	3.2. ftrace
	3.2.1. Setup
	3.2.2. Basic ftrace usage
	3.2.3. The 'trace events' Subsystem
	3.2.4. trace-cmd/kernelshark
	3.2.5. Documentation

	3.3. systemtap
	3.3.1. Setup
	3.3.2. Running a Script on a Target
	3.3.3. Documentation

	3.4. oprofile
	3.4.1. Setup
	3.4.2. Basic Usage
	3.4.3. OProfileUI - A GUI for OProfile
	3.4.4. Documentation

	3.5. Sysprof
	3.5.1. Setup
	3.5.2. Basic Usage
	3.5.3. Documentation

	3.6. LTTng (Linux Trace Toolkit, next generation)
	3.6.1. Setup
	3.6.2. Collecting and Viewing Traces
	3.6.2.1. Collecting and viewing a trace on the target (inside a shell)
	3.6.2.2. Collecting and viewing a userspace trace on the target (inside a shell)
	3.6.2.3. Manually copying a trace to the host and viewing it in Eclipse (i.e. using Eclipse without network support)
	3.6.2.4. Collecting and viewing a trace in Eclipse

	3.6.3. Documentation

	3.7. blktrace
	3.7.1. Setup
	3.7.2. Basic Usage
	3.7.2.1. Live Mode
	3.7.2.2. Using blktrace Remotely
	3.7.2.3. Tracing Block I/O via 'ftrace'

	3.7.3. Documentation

	Chapter 4. Real-World Examples
	4.1. Slow Write Speed on Live Images

