The Yocto Project ®
Release 5.1.1

The Linux Foundation

Dec 17, 2024

INTRODUCTION AND OVERVIEW

1 Yocto Project Quick Build

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

4.1

4.2

4.3

Compatible Linux Distribution
Build Host Packages
UseGittoClone Poky
Building Your Image e
Customizing Your Build for Specific Hardware
Creating Your Own General Layer
Where TOGONEXt oo i it

What I wish I’ d known about Yocto Project
Transitioning to a custom environment for systems development

Yocto Project Overview and Concepts Manual

The Yocto Project Overview and Concepts Manual
411 Welcome e e e
4.1.2 Other Information
Introducing the Yocto Project
4.2.1 Whatis the Yocto Project?
4.2.2 The Yocto Project Layer Model
423 Componentsand Tools
424 Development Methods
4.2.5 Reference Embedded Distribution (Poky)
4.2.6 The OpenEmbedded Build System Workflow
427 SomeBasicTerms.
The Yocto Project Development Environment
4.3.1 Open Source Philosophy,
4.3.2 TheDevelopment Host
4.3.3 Yocto Project Source Repositories Lo
4.3.4 Git Workflows and the Yocto Project

o N A B W VLW W

10
10

13

19

23
23
23
24
24
24
27
28
32
33
35
36
38
38
38
40
42

435 Git. o ov ot 45

43.6 Licensing i e e e e e e e e e 48

44 Yocto Project Concepts e e e e e 49
44.1 Yocto Project Components 49

442 Layers o. . e e e e e 51

443 OpenEmbedded Build System Concepts v it 51

4.4.4 Cross-Development Toolchain Generation 79

445 Shared State Cache L e 81

44.6 Automatically Added Runtime Dependencies 89

447 Fakerootand Pseudo e 91

448 BitBake Tasks Map L e 92

5 Yocto Project and OpenEmbedded Contributor Guide 97
5.1 Identify the component o e e e e e e e e 97
5.2 Reporting a Defect Against the Yocto Project and OpenEmbedded 97
53 RecipeStyleGuide e 98
5.3.1 Recipe Naming Conventions v v v v v v vt et e e e e e e e e 98

5.3.2 VersionPolicy o e e e e 99

5.3.3 Version Number Changes e 99

534 Recipeformatting e e e e 100

5.3.5 Recipemetadata e e e e e e e e e e e e e 100

5.3.6 Patch Upstream Status o 0 i e e e e e e e e e e e e 103

537 CVEpatches e 105

53.8 Patchformat e 106

5.4 Contributing Changes toa Component vt i i it e e e e 106
5.4.1 Contributing through mailing lists —Why not using web-based workflows? 106

5.4.2 Preparing Changes for Submission L o Lo 107

543 CreatingPatches 111

5.4.4 Validating Patches with Patchtest 112

5.4.5 Sending the Patches viaEmail 112

5.4.6 Using Scripts to Push a Change Upstream and RequestaPull 116

5.4.7 Submitting Changes to Stable Release Branches 117

5.4.8 Taking Patch Review into Account e 118

549 Tracking the Status of Patches 119

6 Yocto Project Reference Manual 121
6.1 System Requirements e e e e e e e e e e e e e 121
6.1.1 Minimum Free Disk Space e 121

6.1.2 Minimum System RAM e 122

6.1.3 Supported Linux Distributions 122

6.1.4 Required Packages forthe Build Host, 123

6.1.5 Required Git, tar, Python, make and gcc Versions 125

6.2
6.3

6.4

6.5

Yocto Project Terms o o e e e e e e e e e e e e e e e 129
Yocto Project Releases and the Stable Release Process 137
6.3.1 Major and Minor Release Cadence 137
6.3.2 Major Release Codenameso e e e 137
6.3.3 Stable Release Process e 138
6.3.4 Long Term Support Releases it 138
6.3.5 Testing and Quality ASSUrance ittt 139
Source Directory Structure L e e 140
6.4.1 Top-Level Core Componentso v v v v i i vii ettt 141
6.4.2 The Build Directory —build/« o v vt e e e e 143
6.4.3 The Metadata —meta/ oo e e e e e 150
CIasSeS . . v o v e e e e e e e e e 152
6.5.1 allarch i i i e e e e e e e e e 153
6.5.2 archiver . . . v v i e e e e e e e e e e e e e e 153
6.5.3 AULOLOOLS® . . o i e e e e e e e e e e e e e e e e e e 153
0.5.4 Dase ... 154
6.5.5 bash-completion i i i i i i it e e e e e e e e e e e e 154
6.5.6 bin_package . .. oi e e e e e e e e e e 154
6.5.7 binconfig i e e e e e e e e e e e 155
6.5.8 binconfig-disabled @ . L e e e e e e e e e e e e e e e e 155
6.5.9 buildhistory . . . v v i i i i e e e e e e e e e e e e e e e e e 155
6.5.10 DULiLdstats . v v v v v v e e e e e e e e e e e e e e e e e e e 155
6.5.11 DbuildstatsS—SUMMATY . « v ¢ v v v v v e 156
0.5.12 CATgo .« « v i e e e 156
6.5.13 Cargo_C . . i e e e e e e e e e 156
6.5.14 Cargo_COMIMON + + v v v v v e e e e e e e e e e e e e e e e e e e 156
6.5.15 cargo-update-recipe—Crates . . . v v v v v v i i e e e e e e e e e e 156
6.5.16 ccache e e e e e e e e e e e e e e e e e e 157
6.5.17 chrpath e e e e e e e e e e e 157
6.5.18 cmake . . i i e e e e e e e e e e e e e e e e e e 157
6.5.19 cmake—qgemu i e e e e e e e e e e e e e e e e 157
6.520 cmll ..o e e e e e 158
6.5.21 compress_dOC . . . v i i i e e e e e e e e e e e e e e e e e e 158
6.5.22 copyleft_compliancCe . . . v v v v v i e e e e e e e e e e e e e e e 158
6.5.23 copyleft_filter v v i v i i i e e e e e e e e e e 158
6.5.24 core-image i e e e e e e e e e e e e e 158
6.5.25 cpan® ... e 158
6.526 create—sSPAX . . . it i i i e e e e e e e e e e e e e e 159
0.5.27 CTOSS v v v v v e e e e e e e e e e e e e e e e e e e 159
6.5.28 cross—canadian e 159
6.529 CrosssdK . . it e e e e e e e e e e e e e e e e e e e 159
6.530 cve-check 159

6.5.31
6.5.32
6.5.33
6.5.34
6.5.35
6.5.36
6.5.37
6.5.38
6.5.39
6.5.40
6.5.41
6.5.42
6.5.43
6.5.44
6.5.45
6.5.46
6.5.47
6.5.48
6.5.49
6.5.50
6.5.51
6.5.52
6.5.53
6.5.54
6.5.55
6.5.56
6.5.57
6.5.58
6.5.59
6.5.60
6.5.61
6.5.62
6.5.63
6.5.64
6.5.65
6.5.66
6.5.67
6.5.68
6.5.69
6.5.70
6.5.71
6.5.72

AEDIan v v v v e 161
AEPLOY v v v e e e e e e e e e e e e e e e e s e 161
deVIiCeLTEE . v v v v v i e it e e e e e e e e e e e e e e 161
devshell . . . v v i e 162
AEVUPSTELTEAM v v v v v v e 162
EXEETNALSTC v v v v v v e 162
EXETAUSETS v v v v v v v et e 163
features_check i 0 e e e e e e e e e 164
FONtCAChE . v v v i i e e e e e e e e e e e e e e e e 165
fs—uuld . . . e e e e e e e e e e e e e e e e e e 165
GCONE o v v i e e e e e e e e e e e e e e e e e e 165
gettext e e e e e e e e e e e e 165
Jithub—releasesS . v v v v v v v e e e e e e e e e e e e e e e e e e e 165
GNOMEDASE & v v v v v e e e e e e e e e e e e e 165
GO v e e e e e e e e e e e 166
G o R 1o Yo I 166
GO—VENAOT &+ v v e 166
gobject—introspection i it e e e e e e e e e e e e 166
grub—efi . v . v e e e e e e e e e e e e e e e e e 166
gSEttANgS + v v v e e e e e e e e e e e e e e e e e 167
GER=AOC v v e e e e e e e e e e e e e 167
gtk—icon—cache v i i i e e e e e e e 167
gtk—immodules—cCache . . . v v v v v i e e e e e e e e e e e e e e e e e e e 167
gzipnative i e e e e e e e e e e e e e e e e e 167
1CECC v i e e e e e e e e e e e e e 167
I 7= = 168
image-buildinfo v i it e e e e e e e e e e e e e e 169
image_Ltypes . . v v i i i e 169
image—1ive i i e e e e e e e e e e e e e e e e e 170
INSANE v v v v e e e e e e e e e e e e e e e e e e 170
KeTNeL o v v v i i e 175
kernel-arch v i i i i e e e e e e e e e e e e e 175
kernel-deviCetree v v v v v i e 175
kernel—fitimage . . v v v v v v i e e e e e e e e e e e 175
kernel—grub . . . v v i e e e e e e e e e e e e e e e e 176
kernel-module—split . . . v v i i i e e e e e e e e e e e e e e e e 176
Kernel—uboot « v v v v v v i e 177
Kernel—UiMage . v v v v v v v e 177
KerNel—yOChtO « v v v v v e 177
KETNELSTC & v v v v e e v e 177
1ib_package .« . v v i e i e e e e e e e e e e e e e e e e e e e 177
LibCk o ot e 177

6.5.73
6.5.74
6.5.75
6.5.76
6.5.77
6.5.78
6.5.79
6.5.80
6.5.81
6.5.82
6.5.83
6.5.84
6.5.85
6.5.86
6.5.87
6.5.88
6.5.89
6.5.90
6.5.91
6.5.92
6.5.93
6.5.94
6.5.95
6.5.96
6.5.97
6.5.98
6.5.99
6.5.100
6.5.101
6.5.102
6.5.103
6.5.104
6.5.105
6.5.106
6.5.107
6.5.108
6.5.109
6.5.110
6.5.111
6.5.112
6.5.113
6.5.114

LiCEINSE v v v v e e e e e e e e e e e e 177

1inux—kKernel—-base . . v v v v v v v v et e e e e e e e e e e e e e e e e e e 177
1inuxloader .« v v vt i i e 177
L1OGGING v v v v v i e 178
MESOM « v v v v v e 178
metadata SCIM . v v v v v v e e e e e e e e e e e e e e s, 178
migrate_localCoUnt . . . v v v v v i e e e e e e e e e e e e e e e e 178
MIME ot vttt e 178
MAME=XAG « v v v v e 178
MITEOTS v v v v e v e 179
MOAULE & v v vt e 179
MOAULE-DasSE . . . v v it e 179
multilib™ oo oo o e e 179
NALIVE v v v v o e 179
NAtivesdK . v v v v v it e 180
NOPACKAGTES + v v v v v v e et e 180
NOSPAX + v v v v v e 181
o)1 181
0LINE v v v v e e e e e e e e e e e e e e e e 181
OVET1ayEs . v v v i e e e e e e e e e e e e e e e e e 181
Overlayfs—etC . . . i i it e 182
OWN=TMITTOTS v v v v v v v e 183
PACKAGE v v v e e e e e e e e e e e e e e e e e e e 184
package_deb i i i e e e e e e e e e e e e e e e e e e 184
PACKAge_iPK v v v e 185
PACKAGE_TPIM v v v v e e e e e e e e e e e e e e e e e e 185
Packagedata . . v i e e e e e e e e e e e e e e e e e 185
PACKATEGLOUD + v v v v v v v e 185
PatCh .« o e e e e e e e e e e e 185
Perlnative . . . v i e e e e e e e e e e e e 185
PYPL o v e e e e e e e e e e e e e 185
python_flit_core v i i i i e e e e e e e e e e e e 186
python_maturin o i it e e e e e e e e e e e e e e e e e 186
PYERON_MESONDY v v v v v e v e e e e e e e e e e e e e e e e e e 186
PYERON_PEPSLT v v v o v e e e e e e e e e e e e e e e e e e 186
PYthON_pPoetry_COTe . . . v v v v i i i e e e e e e e e e e e e e e e 186
PYLhON_PYO3 & o vt e e e e e e e e e e e e e e e e 186
python—-setuptools3_rust« @ i i i i i i e e e e e e e e e e e e e e e e 187
Pixbufcache . . . o i e e e e e e e e e 187
PRKGCONELG « v v o v o e e e e e e e e e e e e e e e e e e 187
populate_sdk . . . o . it e e e e e e e e e e e e e e e e 187
populate_sdk_* e 187

6.5.115
6.5.116
6.5.117
6.5.118
6.5.119
6.5.120
6.5.121
6.5.122
6.5.123
6.5.124
6.5.125
6.5.126
6.5.127
6.5.128
6.5.129
6.5.130
6.5.131
6.5.132
6.5.133
6.5.134
6.5.135
6.5.136
6.5.137
6.5.138
6.5.139
6.5.140
6.5.141
6.5.142
6.5.143
6.5.144
6.5.145
6.5.146
6.5.147
6.5.148
6.5.149
6.5.150
6.5.151
6.5.152
6.5.153
6.5.154
6.5.155
6.5.156

PLEXPOTE + v v v e v e e e e e e e e e e e e e e e e e 188
PLIMPOTE & v v v o e 188
PISEIV v v v v e 188
PLEST .« o e e e e e e e e e 189
PEEST=CATTO v v v v v e 189
PLESE—QNOME . & v v i e e e e e e e e e e e e e e e e e e 189
PYEhon3—dir e e e e e e e e e e e e 189
python3native o . o i i it e e e e e e e e e e e 189
pPython3targetconfig .« v v v v v v i e 189
e =111 T 189
recipe_sanity . . . i i e e e e e e e e 190
relocatable i it e e e e e e e e e e e e e e e e 190
remove—1ibtool L e e e e e e e e e e e e e e e 190
TEPOTE—ETTOT v v v v v e v e 190
Tetain « v v i e e e e e e e e e e e e e 190
T WOLK v v v v v e 191
TOOLES™ L . o o i e e e e e e e e e e e e e e e e e 191
= 191
FUST=COMMON v v v v v v v e 192
SANILY v v o e 192
SCOMS « v v e 192
SAL L 192
python_setuptools_build_meta . . . v v v v v v v v i et e e e e e e e 192
SELUPLOOLS3 v vt i i e 192
SEtUPLOOLS3_L1EGACY « v v v v v e 193
SELUPLOOLS3=0aSE v v v v v e e e e e e e e e e e e e e e 193
SION_TPIM v o v v o e e e e e e e e e e e e e e e e e e e 193
siteinfo . . o . o L e e e e e e e e e e e e e e e 193
Sstate . . . e e e e e e e e e 193
SEAGING v v vt e e e e e e e e e e e e e e e e 194
SYSLINUX v v v v v e 195
SYSEEMA . . . e 196
Systemd—Dbooto Lo e e e e e e e e e e e e 196
Lo 5 o = 196
LeStAMage . v v v i e e e e e e e e e e e e e e e e 197
£eSESAK v v et e 197
LexInfo . .o e e e e e e e e e e e e 197
toaster . . o o i e 198
£001Chain=—sCripts . v v v v v v e e e e e e e e e e e e e e e 198
LYPEChECK v v v v e e e e e e e e e e e e e e e 198
UDOOL=CONELIG « v v v vt e e e e e e e e e e e e e e e e 198
UDOOE=SIGN & v v v v vt e e e e e e e e e e e e e e e e e e e 198

vi

6.6

6.7

6.8

6.9

6.5.157 uninative i e e e e e e e e 199

6.5.158 update—alternativVes . . v v v v v v i i e e e e e e e e e e e e e e e e 199
6.5.159 update—rc.d e e e e e e e e e e 200
6.5.160 useradd® e e e e e e 200
6.5.101 Utility—tasks . . v v v v it i e 201
6.5.162 Uutils . . v v it e e e e e 201
6.5.163 vala e e 201
0.5.164 vex . ..o e e 201
6.5.165 waf 202
Tasks e 202
6.6.1 Normal Recipe Build Tasks 202
6.6.2 Manually Called Tasks 207
6.6.3 Image-Related Tasks e 209
6.6.4 Kernel-Related Tasks e 210
devtool Quick Reference e e e e 212
6.7.1 GettingHelp e 213
6.7.2 The Workspace Layer Structure it i i 215
6.7.3 Adding a New Recipe to the Workspace Layer 217
6.7.4 Extracting the Source for an ExistingRecipe 218
6.7.5 Synchronizing a Recipe’ s Extracted Source Tree 218
6.7.6 Modifying an ExistingRecipe 218
6.7.7 Editan ExistingRecipe L e e e 219
6.7.8 UpdatingaRecipe o e e e e e e 219
6.7.9 Checking on the Upgrade Statusof aRecipe 220
6.7.10 UpgradingaRecipe e 221
6.7.11 ResettingaRecipe. e 222
6.7.12 Finish WorkingonaRecipe e 222
6.7.13 Building Your Recipe e e 222
6.7.14 Building YourImage 223
6.7.15 Deploying Your Software on the Target Machine 223
6.7.16 Removing Your Software from the Target Machine 224
6.7.17 Creating the Workspace Layer in an Alternative Location 224
6.7.18 Get the Status of the Recipes in Your Workspace 224
6.7.19 Search for Available Target Recipes 224
6.7.20 Get Information on Recipe Configuration Scripts o .. 225
6.7.21 Generate an IDE Configuration foraRecipe 225
OpenEmbedded Kickstart (.wks) Reference 225
6.8.1 Introduction 225
6.8.2 Command: part or partitiono i e e e e e e e e e e e e e 226
6.8.3 Command: bootloader L e 228
QA Error and Warning Messagesl e 229
6.9.1 Introduction 229

vii

6.9.2 Errorsand Warningso e e e e e e e e e 229

6.9.3 Configuring and Disabling QA Checks e 240

6.10 Tmages i e e e e e e e e e e e e 240
6.11 Features o o e e e e e e e e e 242
6.11.1 Machine Features e 242
6.11.2 Distro Features e e e e e 243
6.11.3 TImage Features e 246
6.11.4 Feature Backfilling e 248

6.12 Variables Glossary e e e 249
6.13 Variable Context o i i i e e e e e e e e e 417
6.13.1 Configuration e e e e e e e e e e e e 417
6.13.2 Recipes e 419

6.14 FAQ . . . 420
6.14.1 General QUESHIONS v i e e e e e e e e e e e e e e e e e e e 421
6.14.2 Building environment L L Lo e e e e e e e e e 421
6.14.3 Using the OpenEmbedded Build system 423
6.14.4 Customizing generated iMages o oottt e e e e e e e e 425
6.14.5 Tssues on the running SYStEIM v v v v v v e e e e e e e e e e e e e e e 428

6.15 Contributions and Additional Information Lo Lo 428
6.15.1 Introduction o L e e e e e e e e e e e e e 428
6.15.2 ContributionS L. e e e e e e e e e 428
6.15.3 YoctoProject Bugzilla e e 428
6.15.4 Mailing liSts o L e e e e e e e e e e e 429
6.15.5 Internet Relay Chat (IRC) o . e 429
6.15.6 Links and Related Documentation oo 429

7 Yocto Project Board Support Package Developer’ s Guide 433
7.1 Board Support Packages (BSP) —Developer’ sGuide 433
7.1.1 BSPLayers e e e 433

7.1.2 Preparing Your Build Host to Work With BSP Layers 435

7.1.3 Example Filesystem Layout 437

7.1.4 Developing a Board Support Package (BSP) 446

7.1.5 Requirements and Recommendations for Released BSPs 448

7.1.6 Customizinga RecipeforaBSP 451

7.1.7 BSP Licensing Considerations 452

7.1.8 Creating a new BSP Layer Using the bitbake-layers Script 453

8 Yocto Project Development Tasks Manual 461
8.1 The Yocto Project Development Tasks Manual L. 461
8.1.1 Welcome e 461

8.1.2 Other Information e e e 462

8.2 Setting Up to Use the Yocto Project 462

viii

8.3

8.4

8.5

8.2.1 Creating a Team Development Environment 462
8.2.2 Preparingthe Build Host e 465
8.2.3 Locating Yocto Project Source Files o 470
8.2.4 Cloning and Checking Out Branches 472
8.2.5 Inmitializing the Build Environment L. oo 475
Understanding and Creating Layers 0 0 i i it e e e e e e 475
83.1 Creating Your Own Layer e 475
8.3.2 Following Best Practices When Creating Layers 478
8.3.3 Making Sure Your Layer is Compatible With Yocto Project 480
8.3.4 Enabling Your Layer e e e e e 482
8.3.5 Appending Other Layers Metadata With Your Layer 482
8.3.6 Prioritizing Your Layer 486
837 Managing Layers e e 488
8.3.8 Creating a General Layer Using the bitbake-layers Script 489
8.3.9 Adding a Layer Using the bitbake-layers Script 491
8.3.10 Saving and restoring the layerssetup oL Lo 492
Customizing Images 493
8.4.1 Customizing Images Using 1ocal.conf v v v i v v vt et et e 493
8.4.2 Customizing Images Using Custom IMAGE_FEATURES and EXTRA_IMAGE_FEATURES 494
8.4.3 Customizing Images Using Custom .bbFiles 495
8.4.4 Customizing Images Using Custom Package Groups 495
8.4.5 Customizing an Image Hostname e 496
Writinga New Recipe o o 0 o e e e e e 497
5.1 Overview Ll e e 497
8.5.2 Locate or Automatically Create a Base Recipe 498
8.5.3 Storing and Namingthe Recipe 501
854 RumningaBuildontheRecipe e 501
855 FetchingCode e 502
856 UnpackingCode e 504
857 PatchingCode e e e 505
8.5.8 Licensing e e e e e e e 505
8.5.9 Dependencies e e e e e e e e e e e 505
8.5.10 Configuringthe Recipe L 506
8.5.11 Using Headers to Interface with Devices 507
8.5.12 Compilation L e e e e e e e e e e e e 508
85.13 Inmstalling L e e e e e e e e 509
8.5.14 Enabling System ServiCes« c v v v v i e e e e e e e e e e 510
8.5.15 Packaging 511
8.5.16 Sharing Files Between Recipes e 512
8.5.17 Using Virtual Providers L e 512
8.5.18 Properly Versioning Pre-Release Recipes 514
8.5.19 Post-Installation Scripts e e e e 514

8.6

8.7

8.8
8.9
8.10
8.11
8.12

8.13
8.14

8.15

8.16
8.17

8.18
8.19

8520 Testing v v it e e e e e e e e e 515

8521 Examples e e e e e e e e 515
8.5.22 TFollowing Recipe Style Guidelines 520
8523 Recipe Syntaxo e e e e 520
AddingaNew Machine e 524
8.6.1 Adding the Machine ConfigurationFile 524
8.6.2 AddingaKernel forthe Machine 525
8.6.3 Adding a Formfactor Configuration File 525
Upgrading Recipes o e 526
8.7.1 Using the Auto Upgrade Helper (AUH), 526
8.7.2 Using devtool UPGrade . . . v v v v v vt i e et e e e e e e e e e e e 529
8.7.3 Manually UpgradingaRecipe L o 532
Finding Temporary Source Code e 533
Using Quiltin Your Workflow e e 534
Using a Development Shell e e 536
Using a Python Development Shell 0 . oo o 537
Building e 538
8.12.1 Buildinga SimpleImage e e 538
8.12.2 Building Images for Multiple Targets Using Multiple Configurations 540
8.12.3 Building an Initial RAM Filesystem (Initramfs) Image 543
8.12.4 Buildinga Tiny System e e e e e e e 544
8.12.5 Building Images for More than One Machine 548
8.12.6 Building Software from an External Source L. 550
8.12.7 Replicatinga Build Offine L 551
Speeding UpaBuild e 553
Working With Libraries 0 e e e 554
8.14.1 Including Static Library Files e 555
8.14.2 Combining Multiple Versions of Library Files into One Image 556
8.14.3 Installing Multiple Versions of the Same Library 558
Working with Pre-Built Libraries e 559
8.15.1 Introduction e 559
8.15.2 Versioned Libraries 559
8.15.3 Non-Versioned Libraries e e e 561
Using x32 psABL e 563
Enabling GObject Introspection SUPPOTt o v v i i e e e e e e e e 564
8.17.1 Enabling the Generation of Introspection Data 564
8.17.2 Disabling the Generation of Introspection Data 565
8.17.3 Testing that Introspection Works inanImage 565
8.17.4 Knownlssues 566
Optionally Using an External Toolchain, 566
Creating Partitioned Images Using Wic 567

8.19.1 Background e 567

8.20
8.21

8.22

8.23

8.24

8.25

8.26

8.27

8.28

8.29
8.30

8.19.2 ReqUIremMents v v v vt e e e e e e e e e e e e e 568

8.19.3 GettingHelp L e e e e e 568
8.19.4 Operational Modes e 570
8.19.5 Usingan Existing KickstartFile oo L. 572
8.19.6 Using the Wic Plugin Interface 573
8.19.7 WicExamples o e e e e e e e e e e 575
Flashing Images Using bmaptool ot vvv ittt e e e e e e 581
Making Images More Secureo e 582
8.21.1 General Considerations e e e e e 583
8.21.2 Security Flags e e e e e e e 583
8.21.3 Considerations Specific to the OpenEmbedded Build System 584
8.21.4 Tools for Hardening Your Image 585
Creating Your Own Distribution e 585
8.22.1 Copying and modifying the Poky distribution 586
Creating a Custom Template Configuration Directory 587
Conserving Disk Space L e 588
8.24.1 Conserving Disk Space During Builds 588
8.24.2 Purging Obsolete Shared State Cache Files 588
Working with Packages oL 589
8.25.1 Excluding Packages fromanImage L . 589
8.25.2 Incrementinga Package Version. oo 589
8.25.3 Handling Optional Module Packaging 593
8.25.4 Using Runtime Package Management 596
8.25.5 Generating and Using Signed Packages L. 601
8.25.6 Testing Packages Withptest 603
8.25.7 Creating Node Package Manager (NPM) Packages 604
8.25.8 Adding custom metadata to packages oL L 609
Efficiently Fetching Source Files Duringa Build 0 ... 609
8.26.1 Setting up Effective MrTors e e e e e 610
8.26.2 Getting Source Files and Suppressingthe Build 610
Selecting an Initialization Manager Lo e e e e e e 610
8.27.1 Using SysVinitwithudev 611
8.27.2 Using BusyBox init with BusyBoxmdev oL 611
8.27.3 Usingsystemd e e e e e e e 611
Selecting a Device Manager o o . i e e e e e e e e e e e e e 613
8.28.1 Using Persistent and Pre-Populated /dev oo 613
8.28.2 Using devtmpfs and a Device Manager 613
Usingan External SCM L . e 614
Creating a Read-Only Root Filesystem o et e e e 615
8.30.1 Creatingthe Root Filesystem 615
8.30.2 Post-Installation Scripts and Read-Only Root Filesystem 616
8.30.3 Areas With Write AcCess o i e 616

Xi

8.31

8.32

8.33

8.34

8.35

8.36

8.37

Maintaining Build Output Quality e 616
8.31.1 Enabling and Disabling Build History 617
8.31.2 Understanding What the Build History Contains 617
Performing Automated Runtime Testing 625
8.32.1 Enabling Tests o o e e e e e e 625
8.32.2 Running Tests ot it e e e e e e e e e e e e e e 630
8.32.3 Exporting Tests L e e e 632
8324 Writing New Tests L. e 632
8.32.5 [Installing Packages in the DUT Without the Package Manager 634
Debugging Tools and Techniques o i v i i e e e e e e e e 635
8.33.1 Viewing Logs from Failed Tasks 636
8.33.2 Viewing Variable Values 636
8.33.3 Viewing Package Information with oe-pkgdata-util 637
8.33.4 Viewing Dependencies Between Recipesand Tasks 638
8.33.5 Viewing Task Variable Dependencies 639
8.33.6 Debugging signature construction and unexpected task executions 640
8.33.7 Viewing Metadata Used to Create the Input Signature of a Shared State Task 641
8.33.8 Invalidating Shared State to Forcea TasktoRun 641
8.33.9 Running Specific Tasks L e 642
8.33.10 General BitBake Problems 643
8.33.11 Building with No Dependencies i i 644
8.33.12 Recipe Logging Mechanisms 0 i ittt e e e 644
8.33.13 Debugging Parallel Make Races e 646
8.33.14 Debugging With the GNU Project Debugger (GDB) Remotely 651
8.33.15 Debugging with the GNU Project Debugger (GDB) on the Target 655
8.33.16 Enabling Minidebuginfo 656
8.33.17 Other Debug@ing TipsS« v v v v i et e e e e e e e e e e e 656
Working With Licenses e e e e e e e e e 657
8.34.1 Tracking License Changes it 658
8.34.2 Enabling Commercially Licensed Recipes 659
8.34.3 Maintaining Open Source License Compliance During Your Product’ s Lifecycle 662
8.34.4 Copying Non Standard Licenses 666
Dealing with Vulnerability Reports 666
8.35.1 How to report a potential security vulnerability? 667
8.35.2 Security teamM e e e e e e e e e e e e e e e e e 668
Checking for Vulnerabilities L e 669
8.36.1 Vulnerabilities in Pokyand OE-Core 669
8.36.2 Vulnerability check atbuildtime L 670
8.36.3 Fixing CVE product name and version mappings« v v v v v v v v v v u . 672
8.36.4 Fixing vulnerabilities iIn1eCipes o 672
8.36.5 Implementationdetails L 674
Creating a Software Bill of Materials 675

xii

8.38 Using the Error Reporting Tool o e 676

8.38.1 Enablingand Using the Tool i it e 677
8.38.2 Disablingthe Tool e 677
8.38.3 Setting Up Your Own Error Reporting Server 678

8.39 Using Wayland and Weston L e e e e 678
8.39.1 Enabling WaylandinanImage 678
8.39.2 Running Weston e e e e e e e e e e 679

8.40 Using the Quick EMUlator (QEMU) e 679
8.40.1 OVerview e e e 679
8.40.2 Running QEMU e e e e 680
8.40.3 Switching Between Consoles e 681
8.40.4 Removingthe Splash Screen Lo 682
8.40.5 Disablingthe Cursor Grab 682
8.40.6 Running Under a Network File System (NFS) Server 682
8.40.7 QEMU CPU Compatibility Under KVM 683
8.40.8 QEMU Performance e e e e e 683
8.40.9 QEMU Command-Line Syntax i 684
8.40.10 rungemu Command-Line Options v i v v vt et e e e 685

8.41 Locking and Unlocking Recipes Using bblock v v v v v v v vt et e e e o 687
8.41.1 Lockingtasksandrecipes 687
8.41.2 Unlocking tasks and reCipes v o vt i e e e e e e e e 688
8.41.3 Configurationfile e e e e e e 688
8.41.4 Lockingmechanism L L e e e e 688
8415 Example L L e e 689

9 Yocto Project Linux Kernel Development Manual 691
9.1 Introduction e e e e 691
911 OVRIVIEW . . . o v o it et e e e e e 691

9.1.2 Kernel Modification Workflow o oo o o 692

9.2 CommonTasks e 694
9.2.1 Preparing the Build Host to Work on the Kernel 694

9.2.2 Creatingand PreparingaLayer 699

9.2.3 Modifying an Existing Recipe 700

9.2.4 Usingdevtool toPatchtheKernel 705

9.2.5 Using Traditional Kernel Development to Patch the Kernel 708

9.2.6 Configuringthe Kernel 711

9.277 Expanding Variables 719

9.2.8 Working witha “Dirty” Kernel Version String 719

9.2.9 Working With Your Own Sources e 720
9.2.10 Working with Out-of-Tree Modules 721
9.2.11 Inspecting Changes and Commits oo vttt 723
9.2.12 Adding Recipe-Space Kernel Features 724

9.3 Working with Advanced Metadata (yocto-kernel-cache) oo v v v v o 726
9.3.1 OVEIVIEW o oo i e e e 726

9.3.2 Using Kernel MetadatainaRecipe 726

9.3.3 Kernel Metadata Syntax oL e 728

9.3.4 Kernel Metadata Location e 737

9.3.5 Organizing YOUr SOUICE v v v v v i et e e e e e e e e e e e e e e e e e e e 739

9.3.6 SCC Description File Reference 741

9.4 Advanced Kernel Concepts e 741
9.4.1 Yocto Project Kernel Development and Maintenance 741

9.4.2 Yocto Linux Kernel Architecture and Branching Strategies 743

9.4.3 Kernel Build File Hierarchy 746

9.4.4 Determining Hardware and Non-Hardware Features for the Kernel Configuration Audit Phase 747

9.5 Kernel Maintenance L e e e e e e e e e e 749
9.5.1 Tree Construction v v ittt e e e e e e e e e e e e 749

052 BuildStrategy e e e e e e 751

9.6 Kernel Development FAQ L 752
9.6.1 Common Questions and Solutions 752

10 Yocto Project Profiling and Tracing Manual 755
10.1 Yocto Project Profiling and Tracing Manual 755
10.1.1 Introduction o it e e e e 755

10.1.2 General SEtup o v v e e e e e e e e e e e e e e e e 755

10.2 Overall Architecture of the Linux Tracing and Profiling Tools 756
10.2.1 Architecture of the Tracing and ProfilingTools 756

10.3 Basic Usage (with examples) for each of the Yocto Tracing Tools 757
1031 perf .« . o e e e e e e 757

1032 ftrace e e 791

1033 SystemTap o L 808

10.3.4 Sysprof e e e e 811

10.3.5 LTTng (Linux Trace Toolkit, next generation) v v v v v v v v v v v v v v 813

103.6 bIKtrace e e e 819

10.4 Real-World Examples e 826
10.4.1 Slow Write Speed on Live Images 827

11 Yocto Project Application Development and the Extensible Software Development Kit (eSDK) 829
11.1 Introduction o o o e e e e 829
I1.1.1 eSDK Introduction i 829

11.1.2 SDK Development Model 831

11.2 Using the Extensible SDK 832
11.2.1 Why use the Extensible SDK and WhatisinIt? 833

11.2.2 Installing the Extensible SDK 833

11.2.3 Running the Extensible SDK Environment Setup Script 835

Xiv

11.2.4 Using devtool in Your SDK Workflow 836

11.25 ACloser Look at devtool add v v v v v v v i it e 855
11.2.6 Working With Recipes e 859
11.2.7 Restoring the Target Device to its Original State 861
11.2.8 Installing Additional Items Into the Extensible SDK 861

11.2.9 Applying Updates to an Installed Extensible SDK 862
11.2.10 Creating a Derivative SDK With Additional Components 863

11.3 Using the Standard SDK 0 L 863
11.3.1 Why use the Standard SDK and WhatisinIt? 863
11.3.2 Installingthe SDK o . o e e e e 864
11.3.3 Running the SDK Environment Setup Script 865

11.4 Using the SDK Toolchain Directly 866
11.4.1 Autotools-Based Projects e 866

11.4.2 Makefile-Based Projects i e e e e e e 869

11.5 Obtainingthe SDK L e e e e 874
11.5.1 Working with the SDK components directly ina Yoctobuild 874
11.5.2 Working with standalone SDK Installers 875

11.5.3 Extracting the Root Filesystem ittt 877
11.5.4 Installed Standard SDK Directory Structure v v v it i 878
11.5.5 Installed Extensible SDK Directory Structure 880

11.6 Customizing the Extensible SDK standalone installer 882
11.6.1 Configuring the Extensible SDK e 882
11.6.2 Adjusting the Extensible SDK to Suit Your Build Host” sSetup 883
11.6.3 Changing the Extensible SDK Installer Title 884
11.6.4 Providing Updates to the Extensible SDK After Installation 884
11.6.5 Changing the Default SDK Installation Directory 885
11.6.6 Providing Additional Installable Extensible SDK Content 885
11.6.7 Minimizing the Size of the Extensible SDK Installer Download 886

11.7 Customizing the Standard SDK 887
11.7.1 Adding Individual Packages to the Standard SDK 887
11.7.2 Adding API Documentation to the Standard SDK 887

12 Toaster User Manual 889
12,1 Introduction o e e 889
12.1.1 Toaster Features e 889
12.1.2 Installation Options o L i it e e e e e e e e e 890

12.2 Preparing to Use Toaster oot ittt it e 891
12.2.1 Setting Up the Basic System Requirements 891
12.2.2 Establishing Toaster System Dependencies 891

12.3 Setting Upand Using Toaster o oot vt i it i e e e 892
12.3.1 Starting Toaster for Local Development 892
12.3.2 Settinga Different Port e e 892

XV

12.3.3 Setting Up Toaster Withouta Web Server 893

12.3.4 Setting Up Toaster Withouta Build Server 893

12.3.5 Setting up External Access e 893
12.3.6 The Directory for Cloning Layers, 894

12.3.7 TheBuild Directory e 894

12.3.8 Creatinga Django Superuser i i i e e e e e e e e e 894

12.3.9 Setting Up a Production Instance of Toaster 895
12.3.10 Using the Toaster Web Interface 900

124 Conceptsand Reference 907
12.4.1 Layer SOUICE . . . v v v v v e 907
1242 Releases o e 909

1243 Configuring Toaster L o e e e e e e e e e 910
12.4.4 Remote Toaster MONItOring o v v v v ittt e e e e e e 913

1245 Useful Commands e 916

13 Yocto Project Test Environment Manual 919
13.1 The Yocto Project Test Environment Manual, 919
13.1.1 Welcome 0 e 919
13.1.2 Yocto Project Autobuilder Overview L oL, 920

13.1.3 Yocto Project Tests —Types of Testing Overview 921
13.1.4 How Tests Mapto Areasof Code o i i i it e e e 922

13.1.5 TestExamples o 0 o e e e e e e e e e e e 925

13.1.6 Considerations When Writing Tests 928

13.2 Project Testing and Release Process e 929
13.2.1 DaytoDay Development e e 929
1322 Release Builds 930

13.3 Understanding the Yocto Project Autobuilder L. 930
13.3.1 Execution Flow within the Autobuilder 930
13.3.2 Autobuilder Target Execution Overview 932

13.3.3 Autobuilder Technology e 933
13.3.4 run-config Target Execution e 934

13.3.5 Deploying Yocto Autobuilder 934

13.4 Reproducible Builds 935
1341 Howwedefineit. e 935
1342 Why it matters o v i e 935

13.43 Howweimplementit e 936
13.4.4 Can we prove the projectis reproducible? Lo, 936
13.4.5 Canltest mylayer or recipes? o v i i v i e e e e e e e e e e 937

13.5 Yocto Project Compatible 937
13.5.1 Introduction L . e e e 937

13.5.2 Benefitso e e e 938
13.5.3 Validatingalayer e e e e e e e e e e 938

xvi

14 BitBake Documentation

15 Release Information

15.1

15.2

15.3

15.4

15.5

15.6

15.7

Introduction
15.1.1 General Migration Considerations
Release 5.1 (styhead)
15.2.1 Release 5.1 (styhead)
15.2.2 Release notes for 5.1 (styhead)
Release 5.0 (scarthgap)
15.3.1 Release 5.0 LTS (scarthgap)
15.3.2 Release notes for 5.0 (scarthgap)
15.3.3 Release notes for Yocto-5.0.1 (Scarthgap)

15.3.4 Release notes for Yocto-5.0.2 (Scarthgap)
15.3.5 Release notes for Yocto-5.0.3 (Scarthgap)
Release 4.3 (nanbield) e e e e e e
154.1 Release 4.3 (nanbield) e
15.4.2 Release notes for 4.3 (nanbield) e
15.4.3 Release notes for Yocto-4.3.1 (Nanbield)
15.4.4 Release notes for Yocto-4.3.2 (Nanbield)
15.4.5 Release notes for Yocto-4.3.3 (Nanbield)
15.4.6 Release notes for Yocto-4.3.4 (Nanbield)
Release 4.2 (mickledore) e e e e e e
15.5.1 Release 4.2 (mickledore) e e e e e e
15.5.2 Release notes for 4.2 (mickledore)
15.5.3 Release notes for Yocto-4.2.1 (Mickledore) e
15.5.4 Release notes for Yocto-4.2.2 (Mickledore)
15.5.5 Release notes for Yocto-4.2.3 (Mickledore)
15.5.6 Release notes for Yocto-4.2.4 (Mickledore)
Release 4.1 (langdale) e e
15.6.1 Release 4.1 (langdale) e e e e
15.6.2 Release notes for 4.1 (langdale) L
15.6.3 Release notes for Yocto-4.1.1 (Langdale)
15.6.4 Release notes for Yocto-4.1.2 (Langdale),
15.6.5 Release notes for Yocto-4.1.3 (Langdale)
15.6.6 Release notes for Yocto-4.1.4 (Langdale)
Release 4.0 (Kirkstone) e e e e e
15.7.1 Release 4.0 (kirkstone) e e e e e e e e
15.7.2 Release notes for 4.0 (kirkstone) e
15.7.3 Release notes for 4.0.1 (kirkstone) e
15.7.4 Release notes for Yocto-4.0.2 (Kirkstone)o
15.7.5 Release notes for Yocto-4.0.3 (Kirkstone)
15.7.6 Release notes for Yocto-4.0.4 (Kirkstone)

941

943

943

943

945

945

948

974

974

971

1003
1007
1014
1026
1026
1029
1055
1062
1069
1075
1081
1081
1085
1113
1119
1129
1137
1157
1157
1161
1184
1193
1202
1211
1219
1219
1224
1252
1259
1268
1278

xvii

15.7.7 Release notes for Yocto-4.0.5 (Kirkstone) e 1287
15.7.8 Release notes for Yocto-4.0.6 (Kirkstone) 1292
15.7.9 Release notes for Yocto-4.0.7 (Kirkstone) 1302
15.7.10 Release notes for Yocto-4.0.8 (Kirkstone) 1309
15.7.11 Release notes for Yocto-4.0.9 (Kirkstone) 1315
15.7.12 Release notes for Yocto-4.0.10 (Kirkstone) i 1322
15.7.13 Release notes for Yocto-4.0.11 (Kirkstone) 1327
15.7.14 Release notes for Yocto-4.0.12 (Kirkstone) i 1333
15.7.15 Release notes for Yocto-4.0.13 (Kirkstone) 1341
15.7.16 Release notes for Yocto-4.0.14 (Kirkstone) i 1355
15.7.17 Release notes for Yocto-4.0.15 (Kirkstone), 1370
15.7.18 Release notes for Yocto-4.0.16 (Kirkstone), 1375
15.7.19 Release notes for Yocto-4.0.17 (Kirkstone), 1381
15.7.20 Release notes for Yocto-4.0.18 (Kirkstone) e 1388
15.7.21 Release notes for Yocto-4.0.19 (Kirkstone), 1393
15.7.22 Release notes for Yocto-4.0.20 (Kirkstone), 1400
15.7.23 Release notes for Yocto-4.0.21 (Kirkstone) 1404
15.7.24 Release notes for Yocto-4.0.22 (Kirkstone) 1409
15.8 Release 3.4 (honiSter) o v i o i e e e e e e e e e e e e 1415
15.8.1 Migration notes for 3.4 (honister) e 1415
15.8.2 Release notes for 3.4 (honister) o v i i e e e e e e e 1419
15.8.3 Release notes for 3.4.1 (honiSter) e e e 1444
15.8.4 Release notes for 3.4.2 (honiSter) e e e e e 1452
15.8.5 Release notes for 3.4.3 (honister) i i i e e e e 1459
15.8.6 Release notes for 3.4.4 (honister) 1465
15.9 Release 3.3 (hardknott) e e e e e 1469
15.9.1 Minimum SysStem reqUIremMents v v v v v v v e e e e e e e e e e e e e e e e 1469
1592 Removed reCipes v i it e e e e e e e 1469
15.9.3 Single version common license file naming oL 1470
15.9.4 New python3targetconfigeclass o v i i e 1470
15.9.5 setup.pypathfor Pythonmodules 1470
159.6 BitBakechanges L e 1471
15.9.7 Packagingchanges. L 1471
15.9.8 Miscellaneous changes L e e 1471
15.10 Release 3.2 (gatesgarth) o e e e e e e e 1472
15.10.1 Minimum system requirements« ot b it e e e e e 1472
15.10.2 Removed reCipes v v v v i e e e e e e e e e e e 1472
15.10.3 Removed classes o o i e e e e e 1472
15.10.4 pseudo path filtering and mismatch behaviour L oL 1473
15.10.5 MLPREFIX now required for multilib when runtime dependencies conditionally added 1473
15.10.6 packagegroup-core-device-devel no longer included in images built for gemu* machines . . . 1474
15.10.7 DHCP server/clientreplaced e 1474

xviii

15.10.8 Packagingchanges L e e 1474

15.10.9 Package QA check changes e 1475
15.10.10Globbing no longer supported in file:// entriesin SRC_URI 1475
15.10.11deploy class now cleans DEPLOYDIR before do_deploy ottt 1476
15.10.12Custom SDK / SDK-style recipes need to include nat ivesdk-sdk-provides—dummy . . . 1476
15.10.131d. so.conf now moved back to main glibc package 1476
15.10.14Host DRI drivers now used for GL support within rungemu 1476
15.10.15Initramfs images now use ablank suffix oo oL 1477
15.10.16Image artifact name variables now centralised in image-artifact-names class 1477
15.10.17Miscellaneous changes o i i e e e e e e e e e e e e 1477
15.11 Release 3.1 (dunfell) e e 1478
15.11.1 Minimum system requirements L e 1478
15.11.2 mpc8315e-rdb machineremoved oL 1478
15.11.3 Python 2removed o o e e e e e e e e e e e e 1478
15.11.4 Reproducible builds now enabled by default 0oL, 1478
15.11.5 Impact of ptest feature is now more significant 1479
15.11.6 Removed recipes o v v vt it e e e e e e e e e e 1479
15.11.7 features_check class replaces distro_features_check 1479
15.11.8 Removedclasses e 1480
15.11.9 SRC_URI checksum behaviour i it i e 1480
15.11.10npm fetcher changes L 1480
I5.11.11Packaging changes 0 o i i e e e e e e e e e e e e 1481
15.11.12Additional warnings L i e e e e e e e e e e e e e e e 1481
15.11.13wic image type now used instead of 1ive by defaultforx86 1481
15.11.14Miscellaneous changes o e e 1481
15.12 Release 3.0 (ZeUS) o . i i i e e e e e e 1482
15.12.1 Init System Selection e e e e e e e e 1482
15.12.2 LSB Support Removed 1482
15.12.3 Removed Recipes o e 1482
15.12.4 Packaging Changes i i i i e e e e e e 1483
15,125 CVE Checking 1484
15.12.6 BitBake Changes e 1484
15.12.7 Sanity Checks L. 1485
15.12.8 Miscellaneous Changes o i e e 1485
15.13 Release 2.7 (WaITiOr) o v v v o e e e e e e e e e e e e e e e e e e e 1486
15.13.1 BitBake Changes e 1486
15.13.2 Eclipse Support Removed 1486
15.13.3 gemu-native Splits the System and User-Mode Parts 1487
15.13.4 The upstream-tracking.inc File Has Been Removed 1487
15.13.5 The DISTRO_FEATURES_LIBC Variable Has Been Removed 1487
15.13.6 License Value COITections« o v v v i v it it e e e e e e e e 1487
15.13.7 Packaging Changes e e e 1487

Xix

15.13.8 Removed Recipes i i i e e e e e e e e e e e e e 1488

15.13.9 Removed Classes o v i i ittt e e 1488
15.13.10Miscellaneous Changes L e 1488
15.14 Release 2.6 (thud) L L e 1489
15.14.1 GCC8.2isNowUsedby Default, 1489
15.14.2 Removed Recipes o o i i e e e e e e e e e 1489
15.14.3 Packaging Changes e e e 1491
15.14.4 XOrg Protocol dependencies Lo 1491
15.14.5 distutils and distutils3 Now Prevent Fetching Dependencies During the
do_configureTask e e e e 1491
15.14.6 linux-yocto Configuration Audit Issues Now Correctly Reported 1492
15.14.7 Image/Kernel Artifact Naming Changes 1492
15.14.8 SERIAL_CONSOLE Deprecated 1493
15.14.9 Configure Script Reports Unknown Options as Errors 1493
15.14.100verride Changes o o i e e e e e e 1493
15.14.11systemd Configuration is Now Split Into systemd-conf 1494
15.14.12Automatic Testing Changeso it i 1494
15.14.130penSSL Changes v v i i e e e e e e e e e e e e e e e e 1494
15.14.14BitBake Changes o e e e e 1495
15.14.15Security Changes L e 1495
15.14.16Post Installation Changes 1495
15.14.17Python 3 Profile-Guided Optimization v v 1495
15.14.18Miscellaneous Changes o o i i e e e e e e e 1495
15.15 Release 2.5 (SUMO) v v v i v e 1496
15.15.1 Packaging Changes 1496
15.15.2 Removed Recipes o o i i i e e e e e e e e e e e e 1497
15.15.3 Scriptsand Tools Changes o v i i i e e e e e e e 1497
15.15.4 BitBake Changes 1498
15.15.5 Pythonand Python 3 Changes 1498
15.15.6 Miscellaneous Changes o 0 i i i i e e e e e e e e 1499
15.16 Release 2.4 (rock0) o o i e e e e e e 1500
15.16.1 Memory ResidentMode L 1500
15.16.2 Packaging Changes o e 1501
15.16.3 Removed Recipes o i i e e e e e e e e e e e e 1502
15.16.4 Kernel Device Tree Moveo 0ottt 1503
15.16.5 Package QA Changes e 1503
15.16.6 README File Changes o o ittt e e 1503
15.16.7 Miscellaneous Changes o i e 1503
15.17 Release 2.3 (PYIO) . v v v v v v e 1505
15.17.1 Recipe-specific Sysroots L. e e e e e e 1505
15.17.2 pATH Variable e e e 1506

15.17.3 Changes to SCIIPLS . . . v v v v v e et e et e e e e e e e e e e e 1506

15.17.4 Changes to Functions i e 1507

15.17.5 BitBake Changes o i i i e e e e e e e e e e 1507
15.17.6 Absolute Symbolic Links 1508
15.17.7 GPLv2 Versions of GPLv3 Recipes Moved 1508
15.17.8 Package Management Changes e 1508
15.17.9 Removed Recipes o o i i e e e e e e e e e e 1509
15.17.10Wic Changes o o i i e e e e e e 1510
ISA71IQA Changes« v v i i e e e e e e e e e e e 1510
15.17.12Miscellaneous Changes o o e e 1511
15.18 Release 2.2 (IMOIty) . . . v v v v v o o e 1512
15.18.1 Minimum Kernel Version L 1512
15.18.2 Staging Directories in Sysroot Has Been Simplified 1513
15.18.3 Removal of Old Images and Other Files in tmp/deploy Now Enabled 1513
15.18.4 Python Changes o v i i i it e e e e e e e e e e e e e 1513
15.18.5 uClibc Replaced by musl e e e 1514
15.18.6 s${B} No Longer Default Working Directory for Tasks 1514
15.18.7 rungemu PortedtoPython L 1514
15.18.8 Default Linker Hash Style Changed, 1516
15.18.9 KERNEL_IMAGE_BASE_NAME no Longer Uses KERNEL_IMAGETYPE 1516
15.18.10I1MGDEPLOYDIR Replaces DEPLOY_DIR_IMAGE for Most Use Cases 1517
15.18.11BitBake Changes o i i e e e 1517
15.18.12Swabber has Been Removed L 1517
15.18.13Removed Recipes o . o i e e e e e e e e e 1517
15.18.14Removed Classes o o e e 1518
15.18.15Minor Packaging Changes 1519
15.18.16Miscellaneous Changes o o i i it e e 1519
15.19 Release 2.1 (krogoth) L . o e e e e e e 1519
15.19.1 Variable Expansion in Python Functions, 1519
15.19.2 Overrides Must Now be Lower-Case, 1520
15.19.3 Expand Parameter to getVar () and getVarFlag() is Now Mandatory 1520
15.19.4 Makefile Environment Changes o o v i i i it 1520
15.19.5 libexecdir Reverted to S{prefix}/libexec v v i v v v v i .. 1520
15.19.6 ac_cv_sizeof_off_t is No Longer Cachedin Site Files 1521
15.19.7 Image Generation is Now Split Out from Filesystem Generation 1521
15.19.8 Removed Recipes o i i i e e e e e e e e 1521
15.19.9 Class Changes o ittt e e e e e e e e 1522
15.19.10Build System User Interface Changes 1522
15.19.11TADT Removed e e e 1522
15.19.12Poky Reference Distribution Changes 1523
15.19.13Packaging Changes e e e 1523
15.19.14Tuning File Changes e 1524
15.19.15Supporting GObject Introspection 1524

xxi

15.19.16Miscellaneous Changes i v v v i e e e e e e e e e e e e e e e e 1524

15.20 Release 2.0 (Jethro) o o o i e e e e e e e e e 1525
1520.1 GCCS . . . o o e e 1525
15.20.2 Gstreamer 0.10 Removed L e 1526
15.20.3 Removed Recipes o i i e e e e e e e e e e e 1526
15.20.4 BitBake datastore improvements e e e e e e e e e e e e e 1526
15.20.5 Shell Message Function Changes 1527
15.20.6 Extra Development/Debug Package Cleanup 1527
15.20.7 Recipe Maintenance Tracking Data Moved to OE-Core 1528
15.20.8 Automatic Stale Sysroot File Cleanup 1528
15.20.9 linux-yocto Kernel Metadata Repository Now Split from Source 1528
15.20.10Additional QA checks L 1529
15.20.11Miscellaneous Changes i i e e 1529

15.21 Release 1.8 (fido) o i e e e e 1529
15.21.1 Removed Recipes o o e 1529
15.21.2 BlueZ 4.x/5.xSelection e e e e e e e 1530
15.21.3 Kernel Build Changes e 1530
15.21.4 SSL 3.0is Now DisabledinOpenSSL 1531
15.21.5 Default Sysroot Poisoning e 1531
15.21.6 Rebuild Improvements oL e 1531
15.21.7 QA Check and Validation Changes i 1531
15.21.8 Miscellaneous Changes o v v i i e e e e e e e e e 1532

15.22 Release 1.7 (dizzy) o o o i e e e e e e e 1532
15.22.1 Changes to Setting QEMU PACKAGECONFIG Options in local.conf 1532
15.22.2 Minimum Git VerSion v v v vt i e e e e e e e e e e 1532
15.22.3 Autotools Class Changes o v v i i et e e e e e e e e e e e 1532
15.22.4 Binary Configuration Scripts Disabled L . 1533
15.22.5 eglibc 2.19 Replaced with glibc 2.20 o . i it i i 1534
15.22.6 Kernel Module Autoloading 1534
15227 QA Check Changes o i v i i e e e e e e e e e e e e 1534
15.22.8 Removed Recipes o o e e e e e e e e 1535
15.22.9 Miscellaneous Changes L e 1535

15.23 Release 1.6 (daisy) o o o i e e e e 1535
1523.1 archiver Class o 0 i i e e e e e e e e e e e e 1535
15.23.2 Packaging Changes ot i i i e e e e e e e e e e e 1535
15233 BitBake e 1536
15.23.4 Changes to Variables 1537
15.23.5 Package Test (PteSt) o v v v i i e e e e e e 1538
15.23.6 Build Changes e e e e 1538
15.23.7 gemu-native e e e e e e e e e e e e 1538
15.23.8 core—image-basic . . .« .« v i e e e e e e e e e e 1539
15.23.9 Licensing oo it e e e e e 1539

xxii

1523, 10CFLAGS OPLIONS « . v v v v v o e 1539

15.23.11Custom Image Output Types o v v i e e e e e e e e e e e e e e e e 1539
15.23.12Tasks . . . o o o o e e e e e 1539
15.23.13update—-alternative Provider 1539
15.23.14virtclass Overrides o i i e e e e e 1540
15.23.15Removed and Renamed Recipes e 1540
15.23.16Removed CIasses o v v i it i e e e e e e e e e e e e e 1540
15.23.17Reference Board Support Packages (BSPs) 000, 1540
15.24 Release 1.5 (dora) o e e e e e e e 1541
15.24.1 Host Dependency Changes i i v i i v it et e e e e e e 1541
15.24.2 atom-pc Board Support Package (BSP) L oo 1541
15243 BitBake e e 1541
15244 QAWarnings e e 1542
15.24.5 Directory Layout Changes o o v i i et e e e e e e e e e e 1542
15.24.6 Shortened Git SRCREV Values o 0 v i i et et e e e e 1543
15.247 IMAGE_FEATURES v vt vttt ittt e e e e et e e e e e e e e e e 1543
15248 /run . . o L e e e e e e e e e e e e e e e 1543
15.24.9 Removal of Package Manager Database Within Image Recipes 1543
15.24.10Images Now Rebuild Only on Changes Instead of Every Time 1543
15.24.11Task Recipes o o e 1544
15.24.12BusyBox e 1544
15.24.13Automated Image Testing o o i i e e e e e e e e e e 1544
15.24.14Build History L e 1544
15.24.15udev . . . oL e e 1544
15.24.16Removed and Renamed Recipes o o 1545
15.24.170ther Changes v v v i i e e e e e e e e e e e e e e e e e e e 1545
15.25 Release 1.4 (dylan) L e e e e e 1545
15.25.1 BitBake o e e e e e 1546
15.25.2 Build Behavior 1546
15.25.3 Proxies and Fetching Source e 1546
15.25.4 Custom Interfaces File (netbase change) 1546
15.25.5 Remote Debugging L e 1547
15.25.6 Variables L 1547
15.25.7 Target Package Management withRPM 1547
15.25.8 Recipes Moved o o e e e e e e e e e e 1547
15.25.9 Removals and Renames e 1548
15.26 Release 1.3 (danny) L . o e e e e e e e e e e e 1549
15.26.1 Local Configuration o i v vttt e e e e e 1549
15.26.2 RECIPES .« v v v o e 1549
15.26.3 Linux Kernel Naming e 1551
16 Supported Release Manuals 1553

16.1 Release Series 5.1 (styhead) e e e e
16.2 Release Series 5.0 (scarthgap) o 0 e e e e e e
16.3 Release Series 4.0 (kirkstone) e e

17 Outdated Release Manuals
17.1 Release Series 4.3 (nanbield) e
17.2 Release Series 4.2 (mickledore) e
17.3 Release Series 4.1 (langdale) e
17.4 Release Series 3.4 (honister) o o v i e e e e e e e e e e
17.5 Release Series 3.3 (hardknott) e e e
17.6 Release Series 3.2 (gatesgarth) L e e e e
17.7 Release Series 3.1 (dunfell) e
17.8 Release Series 3.0 (ZEUS) o v i e e e e e
17.9 Release Series 2.7 (WAITIOT) o v v i v e
17.10 Release Series 2.6 (thud) e e e e e
17.11 Release Series 2.5 (SUMO) o o i i i it e e e e e e e e e
17.12 Release Series 2.4 (rockO) o v i e e e e e e e e e
17.13 Release Series 2.3 (PYIO) . . . ¢« v v v v v e e e e e e e e e e e e e e e e
17.14 Release Series 2.2 (MOTLY) . . .« o v v v v i it e
17.15 Release Series 2.1 (krogoth) L e
17.16 Release Series 2.0 (Jethro) o . i i e e e e e e e e e e e
17.17 Release Series 1.8 (fido) o o e e e e e e
17.18 Release Series 1.7 (dizzy)« o o v i i i e e e e e e e e e
17.19 Release Series 1.6 (daiSy) o . o i i i e e e e
17.20 Release Series 1.5 (dora) 0 o i i e e e e
17.21 Release Series 1.4 (dylan) o e e e e e e e
17.22 Release Series 1.3 (danny) o L e e e e e e e e e
17.23 Release Series 1.2 (denzil) e
17.24 Release Series 1.1 (edison) e e e e
17.25 Release Series 1.0 (bernard) e e e e e
17.26 Release Series 0.9 (laverne) o . i e e e e e e e

18 Index
19 Documentation Downloads

Index

XXiv

The Yocto Project ®, Release 5.1.1

INTRODUCTION AND OVERVIEW 1

The Yocto Project ®, Release 5.1.1

2 INTRODUCTION AND OVERVIEW

CHAPTER

ONE

YOCTO PROJECT QUICK BUILD

1.1 Welcome!

This short document steps you through the process for a typical image build using the Yocto Project. The document also
introduces how to configure a build for specific hardware. You will use Yocto Project to build a reference embedded OS
called Poky.

Note

e The examples in this paper assume you are using a native Linux system running a recent Ubuntu Linux distri-
bution. If the machine you want to use Yocto Project on to build an image (Build Host) is not a native Linux
system, you can still perform these steps by using CROss PlatformS (CROPS) and setting up a Poky container.
See the Setting Up to Use CROss PlatformS (CROPS) section in the Yocto Project Development Tasks Manual

for more information.

* You may use version 2 of Windows Subsystem For Linux (WSL 2) to set up a build host using Windows 10 or
later, Windows Server 2019 or later. See the Setting Up to Use Windows Subsystem For Linux (WSL 2) section

in the Yocto Project Development Tasks Manual for more information.

If you want more conceptual or background information on the Yocto Project, see the Yocto Project Overview and Concepts

Manual.

1.2 Compatible Linux Distribution

Make sure your Build Host meets the following requirements:

* Atleast 90 Gbytes of free disk space, though much more will help to run multiple builds and increase performance

by reusing build artifacts.

¢ At least 8 Gbytes of RAM, though a modern modern build host with as much RAM and as many CPU cores as

possible is strongly recommended to maximize build performance.

* Runs a supported Linux distribution (i.e. recent releases of Fedora, openSUSE, CentOS, Debian, or Ubuntu). For a

The Yocto Project ®, Release 5.1.1

list of Linux distributions that support the Yocto Project, see the Supported Linux Distributions section in the Yocto
Project Reference Manual. For detailed information on preparing your build host, see the Preparing the Build Host

section in the Yocto Project Development Tasks Manual.

Git 1.8.3.1 or greater

tar 1.28 or greater

Python 3.8.0 or greater.

gce 8.0 or greater.

GNU make 4.0 or greater

If your build host does not meet any of these three listed version requirements, you can take steps to prepare the system
so that you can still use the Yocto Project. See the Required Git, tar, Python, make and gcc Versions section in the Yocto

Project Reference Manual for information.

1.3 Build Host Packages

You must install essential host packages on your build host. The following command installs the host packages based on

an Ubuntu distribution:

$ sudo apt install gawk wget git diffstat unzip texinfo gcc build-essential chrpath.
—socat cpio python3 python3-pip python3-pexpect xz-utils debianutils iputils-ping.
—python3-git python3-jinja2 python3-subunit zstd liblz4-tool file locales libacll

$ sudo locale-gen en_US.UTF-8

Note

For host package requirements on all supported Linux distributions, see the Required Packages for the Build Host

section in the Yocto Project Reference Manual.

1.4 Use Git to Clone Poky

Once you complete the setup instructions for your machine, you need to get a copy of the Poky repository on your build

host. Use the following commands to clone the Poky repository.

$ git clone git://git.yoctoproject.org/poky

Cloning into 'poky'...

remote: Counting

objects: 432160, done. remote: Compressing objects: 100%

(102056/102056) , done. remote: Total 432160 (delta 323116), reused

432037 (delta 323000) Receiving objects: 100% (432160/432160), 153.81 MiB | 8.54 MiB/

(continues on next page)

4 Chapter 1. Yocto Project Quick Build

The Yocto Project ®, Release 5.1.1

(continued from previous page)
—s, done.
Resolving deltas: 100% (323116/323116), done.

Checking connectivity... done.

Go to Releases wiki page, and choose a release codename (such as st yhead), corresponding to either the latest stable

release or a Long Term Support release.

Then move to the poky directory and take a look at existing branches:

$ cd poky
$ git branch -a

remotes/origin/HEAD —-> origin/master
remotes/origin/dunfell

remotes/origin/dunfell-next

remotes/origin/gatesgarth

remotes/origin/gatesgarth—-next

remotes/origin/master

remotes/origin/master—next

For this example, check out the st yhead branch based on the St yhead release:

$ git checkout -t origin/styhead -b my-styhead
Branch 'my-styhead' set up to track remote branch 'styhead' from 'origin'.

Switched to a new branch 'my-styhead'

The previous Git checkout command creates a local branch named my-styhead. The files available to you in that branch

exactly match the repository’ s files in the st yhead release branch.

Note that you can regularly type the following command in the same directory to keep your local files in sync with the

release branch:

1.4. Use Git to Clone Poky 5

https://wiki.yoctoproject.org/wiki/Releases

The Yocto Project ®, Release 5.1.1

$ git pull

For more options and information about accessing Yocto Project related repositories, see the Locating Yocto Project Source

Files section in the Yocto Project Development Tasks Manual.

1.5 Building Your Image

Use the following steps to build your image. The build process creates an entire Linux distribution, including the toolchain,

from source.

Note

* If you are working behind a firewall and your build host is not set up for proxies, you could encounter problems

with the build process when fetching source code (e.g. fetcher failures or Git failures).

* If you do not know your proxy settings, consult your local network infrastructure resources and get that infor-
mation. A good starting point could also be to check your web browser settings. Finally, you can find more

information on the “Working Behind a Network Proxy” page of the Yocto Project Wiki.

1. Initialize the Build Environment: From within the poky directory, run the oe-init-build-env environment setup

script to define Yocto Project’ s build environment on your build host.

$ cd poky

$ source oe-init-build-env

You had no conf/local.conf file. This configuration file has therefore been
created for you with some default values. You may wish to edit it to, for
example, select a different MACHINE (target hardware). See conf/local.conf

for more information as common configuration options are commented.

You had no conf/bblayers.conf file. This configuration file has therefore
been created for you with some default values. To add additional metadata

layers into your configuration please add entries to conf/bblayers.conf.
The Yocto Project has extensive documentation about OE including a reference
manual which can be found at:

https://docs.yoctoproject.org

For more information about OpenEmbedded see their website:

https://www.openembedded.org/

Shell environment set up for builds.

(continues on next page)

6 Chapter 1. Yocto Project Quick Build

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

The Yocto Project ®, Release 5.1.1

(continued from previous page)

You can now run 'bitbake <target>'

Common targets are:
core—-image-minimal
core-image-full-cmdline
core-image-sato
core—-image-weston
meta-toolchain

meta-ide-support

You can also run generated QEMU images with a command like 'rungemu gemux86-64"

Other commonly useful commands are:
— 'devtool' and 'recipetool' handle common recipe tasks
- 'bitbake-layers' handles common layer tasks

- 'oe-pkgdata-util' handles common target package tasks

Among other things, the script creates the Build Directory, which is bui1d in this case and is located in the Source
Directory. After the script runs, your current working directory is set to the Build Directory. Later, when the build

completes, the Build Directory contains all the files created during the build.

2. Examine Your Local Configuration File: When you set up the build environment, a local configuration file named
local.conf becomes available in a conf subdirectory of the Build Directory. For this example, the defaults are
set to build for a gemux86 target, which is suitable for emulation. The package manager used is set to the RPM

package manager.

Tip
You can significantly speed up your build and guard against fetcher failures by using Shared State Cache mirrors
and enabling Hash Equivalence. This way, you can use pre-built artifacts rather than building them. This is

relevant only when your network and the server that you use can download these artifacts faster than you would
be able to build them.

To use such mirrors, uncomment the below lines in your conf/local . conf file in the Build Directory:

BB_HASHSERVE_UPSTREAM = "wss://hashserv.yoctoproject.org/ws"

SSTATE_MIRRORS ?= "file://.* http://cdn.jsdelivr.net/yocto/sstate/all/PATH;
—downloadfilename=PATH"

BB_HASHSERVE = "auto"

BB_SIGNATURE_HANDLER = "OEEquivHash"

The hash equivalence server needs the websockets python module version 9.1 or later. Debian GNU/Linux

1.5. Building Your Image 7

The Yocto Project ®, Release 5.1.1

12 (Bookworm) and later, Fedora, CentOS Stream 9 and later, and Ubuntu 22.04 (LTS) and later, all have
a recent enough package. Other supported distributions need to get the module some other place than their

package feed, e.g. via pip.

3. Start the Build: Continue with the following command to build an OS image for the target, which is

core-image-sato in this example:

$ bitbake core-image-sato

For information on using the bitbake command, see the BitBake section in the Yocto Project Overview and

Concepts Manual, or see The BitBake Command in the BitBake User Manual.

4. Simulate Your Image Using QEMU: Once this particular image is built, you can start QEMU, which is a Quick
EMUIator that ships with the Yocto Project:

$ rungemu gemux86-64

If you want to learn more about running QEMU, see the Using the Quick EMUIator (QEMU) chapter in the Yocto

Project Development Tasks Manual.

5. Exit QEMU: Exit QEMU by either clicking on the shutdown icon or by typing Ctr1-C in the QEMU transcript
window from which you evoked QEMU.

1.6 Customizing Your Build for Specific Hardware
So far, all you have done is quickly built an image suitable for emulation only. This section shows you how to customize
your build for specific hardware by adding a hardware layer into the Yocto Project development environment.

In general, layers are repositories that contain related sets of instructions and configurations that tell the Yocto Project
what to do. Isolating related metadata into functionally specific layers facilitates modular development and makes it easier

to reuse the layer metadata.

Note

By convention, layer names start with the string “meta- “.
Follow these steps to add a hardware layer:

1. Find a Layer: Many hardware layers are available. The Yocto Project Source Repositories has many hardware

layers. This example adds the meta-altera hardware layer.

2. Clone the Layer: Use Git to make a local copy of the layer on your machine. You can put the copy in the top level

of the copy of the Poky repository created earlier:

8 Chapter 1. Yocto Project Quick Build

https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-intro.html#the-bitbake-command
https://git.yoctoproject.org
https://github.com/kraj/meta-altera

The Yocto Project ®, Release 5.1.1

$ cd poky

$ git clone https://github.com/kraj/meta-altera.git

Cloning into 'meta-altera'..

remote: Counting objects: 25170, done.

remote: Compressing objects: 100% (350/350), done.

remote: Total 25170 (delta 645), reused 719 (delta 538), pack-reused 24219
Receiving objects: 100% (25170/25170), 41.02 MiB | 1.64 MiB/s, done.
Resolving deltas: 100% (13385/13385), done.

Checking connectivity... done.

The hardware layer is now available next to other layers inside the Poky reference repository on your build host as

meta—-altera and contains all the metadata needed to support hardware from Altera, which is owned by Intel.

Note

It is recommended for layers to have a branch per Yocto Project release. Please make sure to checkout the layer

branch supporting the Yocto Project release you’ re using.

3. Change the Configuration to Build for a Specific Machine: The MACHINE variable in the 1ocal.conf file
specifies the machine for the build. For this example, set the MACHINE variable to cyclone5. These configurations

are used: https://github.com/kraj/meta-altera/blob/master/conf/machine/cycloneS.conf.

Note

See the “Examine Your Local Configuration File” step earlier for more information on configuring the build.

4. Add Your Layer to the Layer Configuration File: Before you can use a layer during a build, you must add it to

your bblayers.conf file, which is found in the Build Directory conf directory.

Use the bitbake-layers add-layer command to add the layer to the configuration file:

$ cd poky/build

$ bitbake-layers add-layer ../meta-altera

NOTE: Starting bitbake server...

Parsing recipes: 100% |###########AF#HAFFHAFFRAFFAAFFAAFHAAFHAAFHAFFRAFFHAFFRAFFES
#######| Time: 0:00:32

Parsing of 918 .bb files complete (0 cached, 918 parsed). 1401 targets,

123 skipped, 0 masked, 0 errors.

You can find more information on adding layers in the Adding a Layer Using the bitbake-layers Script section.

Completing these steps has added the met a—altera layer to your Yocto Project development environment and configured

1.6. Customizing Your Build for Specific Hardware 9

https://github.com/kraj/meta-altera/blob/master/conf/machine/cyclone5.conf

The Yocto Project ®, Release 5.1.1

it to build for the cyclone5 machine.

Note

The previous steps are for demonstration purposes only. If you were to attempt to build an image for the cyclone5

machine, you should read the Altera README.

1.7 Creating Your Own General Layer

Maybe you have an application or specific set of behaviors you need to isolate. You can create your own general layer using

the bitbake-layers create—layer command. The tool automates layer creation by setting up a subdirectory with

a layer.conf configuration file, a recipes—example subdirectory that contains an example.bb recipe, a licensing

file, and a README.

The following commands run the tool to create a layer named meta-mylayer in the poky directory:

$ cd poky

$ bitbake-layers create-layer meta-mylayer

NOTE:

Starting bitbake server...

Add your new layer with 'bitbake-layers add-layer meta-mylayer'

For more information on layers and how to create them, see the Creating a General Layer Using the bitbake-layers Script

section in the Yocto Project Development Tasks Manual.

1.8 Where To Go Next

Now that you have experienced using the Yocto Project, you might be asking yourself “What now?” . The Yocto Project

has many sources of information including the website, wiki pages, and user manuals:

* Website: The Yocto Project Website provides background information, the latest builds, breaking news, full de-

velopment documentation, and access to a rich Yocto Project Development Community into which you can tap.

Video Seminar: The Introduction to the Yocto Project and BitBake, Part 1 and Introduction to the Yocto Project
and BitBake, Part 2 videos offer a video seminar introducing you to the most important aspects of developing a

custom embedded Linux distribution with the Yocto Project.

Yocto Project Overview and Concepts Manual: The Yocto Project Overview and Concepts Manual is a great
place to start to learn about the Yocto Project. This manual introduces you to the Yocto Project and its development

environment. The manual also provides conceptual information for various aspects of the Yocto Project.

Yocto Project Wiki: The Yocto Project Wiki provides additional information on where to go next when ramping

up with the Yocto Project, release information, project planning, and QA information.

Yocto Project Mailing Lists: Related mailing lists provide a forum for discussion, patch submission and an-

nouncements. There are several mailing lists grouped by topic. See the Mailing lists section in the Yocto Project

10

Chapter 1. Yocto Project Quick Build

https://www.yoctoproject.org
https://youtu.be/yuE7my3KOpo
https://youtu.be/iZ05TTyzGHk
https://youtu.be/iZ05TTyzGHk
https://wiki.yoctoproject.org/wiki

The Yocto Project ®, Release 5.1.1

Reference Manual for a complete list of Yocto Project mailing lists.

¢ Comprehensive List of Links and Other Documentation: The Links and Related Documentation section in the

Yocto Project Reference Manual provides a comprehensive list of all related links and other user documentation.

The Yocto Project ®

<docs@lists.yoctoproject.org>

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Share Alike 2.0 UK: England & Wales as published by Creative Commons.

To report any inaccuracies or problems with this (or any other Yocto Project) manual, or to send additions or changes,
please send email/patches to the Yocto Project documentation mailing list at docs@lists.yoctoproject.org or log

into the Libera Chat #yocto channel.

1.8. Where To Go Next 11

mailto:docs@lists.yoctoproject.org
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://libera.chat/

The Yocto Project ®, Release 5.1.1

12 Chapter 1. Yocto Project Quick Build

CHAPTER

TWO

WHAT I WISH I’ D KNOWN ABOUT YOCTO PROJECT

Note

Before reading further, make sure you’ ve taken a look at the Software Overview page which presents the definitions
for many of the terms referenced here. Also, know that some of the information here won’ t make sense now, but
as you start developing, it is the information you’ 11 want to keep close at hand. These are best known methods for

working with Yocto Project and they are updated regularly.

Using the Yocto Project is fairly easy, until something goes wrong. Without an understanding of how the build process
works, you’ 1l find yourself trying to troubleshoot ‘“a black box” . Here are a few items that new users wished they had

known before embarking on their first build with Yocto Project. Feel free to contact us with other suggestions.

1. Use Git, not the tarball download: If you use git the software will be automatically updated with bug updates

because of how git works. If you download the tarball instead, you will need to be responsible for your own updates.

2. Get to know the layer index: All layers can be found in the layer index. Layers which have applied for Yocto
Project Compatible status (structure continuity assurance and testing) can be found in the Yocto Project Compatible
Layers page. Generally check the Compatible layer index first, and if you don’ t find the necessary layer check
the general layer index. The layer index is an original artifact from the Open Embedded Project. As such, that
index doesn’ t have the curating and testing that the Yocto Project provides on Yocto Project Compatible layer
list, but the latter has fewer entries. Know that when you start searching in the layer index that not all layers have
the same level of maturity, validation, or usability. Nor do searches prioritize displayed results. There is no easy
way to help you through the process of choosing the best layer to suit your needs. Consequently, it is often trial and
error, checking the mailing lists, or working with other developers through collaboration rooms that can help you

make good choices.

3. Use existing BSP layers from silicon vendors when possible: Intel, TI, NXP and others have information on
what BSP layers to use with their silicon. These layers have names such as “meta-intel” or “meta-ti” . Try
not to build layers from scratch. If you do have custom silicon, use one of these layers as a guide or template and

familiarize yourself with the Yocto Project Board Support Package Developer’ s Guide.

13

https://www.yoctoproject.org/software-overview
https://layers.openembedded.org
https://www.yoctoproject.org/development/yocto-project-compatible-layers/
https://www.yoctoproject.org/development/yocto-project-compatible-layers/

The Yocto Project ®, Release 5.1.1

4. Do not put everything into one layer: Use different layers to logically separate information in your build. As

an example, you could have a BSP layer, a GUI layer, a distro configuration, middleware, or an application (e.g.
“meta-filesystems” , “meta-python” , “meta-intel” , and so forth). Putting your entire build into one layer limits
and complicates future customization and reuse. Isolating information into layers, on the other hand, helps keep

simplify future customizations and reuse.

. Never modify the POKY layer. Never. Ever. When you update to the next release, you’ 1l lose all of your

work. ALL OF IT.

. Don’ t be fooled by documentation searching results: Yocto Project documentation is always being updated.

Unfortunately, when you use Google to search for Yocto Project concepts or terms, Google consistently searches
and retrieves older versions of Yocto Project manuals. For example, searching for a particular topic using Google
could result in a “hit” on a Yocto Project manual that is several releases old. To be sure that you are using the

most current Yocto Project documentation, use the drop-down menu at the top of any of its page.

Many developers look through the All-in-one ‘Mega’ Manual for a concept or term by doing a search through
the whole page. This manual is a concatenation of the core set of Yocto Project manual. Thus, a simple string
search using Ctrl-F in this manual produces all the “hits” for a desired term or concept. Once you find the area
in which you are interested, you can display the actual manual, if desired. It is also possible to use the search bar

in the menu or in the left navigation pane.

. Understand the basic concepts of how the build system works: the workflow: Understanding the Yocto Project

workflow is important as it can help you both pinpoint where trouble is occurring and how the build is breaking.

The workflow breaks down into the following steps:
1. Fetch —get the source code
2. Extract —unpack the sources
3. Patch —apply patches for bug fixes and new capability
4. Configure —set up your environment specifications
5. Build —compile and link
6. Install —copy files to target directories
7. Package —bundle files for installation

During “fetch” , there may be an inability to find code. During “extract”, there is likely an invalid zip or something
similar. In other words, the function of a particular part of the workflow gives you an idea of what might be going

wrong.

14

Chapter 2. What | wish I’ d known about Yocto Project

https://docs.yoctoproject.org/singleindex.html

The Yocto Project ®, Release 5.1.1

8.

10.

11.

Open Embedded Architecture Workflow

T Local scMs
oject A 5
Releases Projects (optional) Upstream Source Output Packages
Metadata/Inputs Pracess Steps (tasks)
Source Materials Build System . Output Image Data
User Package Feeds
Configuration Source .deb
Fetching generation
Meta
Output Image SDK
.bb + A
(bb + patches) Analysis for - Generation Generation
Pﬁt:h‘ package er;erarion QA
Application splitting plus 8 Tests
Machine BSP ml’.;:‘cuk:siei S
Configuration P
Config/ Application
Compile/ .ipk Development
N Autoconf generation SDK
PUI'CV‘ as needed
Configuration

Know that you can generate a dependency graph and learn how to do it: A dependency graph shows depen-
dencies between recipes, tasks, and targets. You can use the “-g” option with BitBake to generate this graph.
When you start a build and the build breaks, you could see packages you have no clue about or have any idea why
the build system has included them. The dependency graph can clarify that confusion. You can learn more about
dependency graphs and how to generate them in the Generating Dependency Graphs section in the BitBake User

Manual.

Here’ s how you decode ‘“‘magic” folder names in tmp/work: The build system fetches, unpacks, preprocesses,
and builds. If something goes wrong, the build system reports to you directly the path to a folder where the
temporary (build/tmp) files and packages reside resulting from the build. For a detailed example of this process,

see the example. Unfortunately this example is on an earlier release of Yocto Project.

“

When you perform a build, you can use the “-u” BitBake command-line option to specify a user interface viewer
into the dependency graph (e.g. knotty, ncurses, or taskexp) that helps you understand the build dependencies

better.

You can build more than just images: You can build and run a specific task for a specific package (including
devshell) or even a single recipe. When developers first start using the Yocto Project, the instructions found in the
Yocto Project Quick Build show how to create an image and then run or flash that image. However, you can actually
build just a single recipe. Thus, if some dependency or recipe isn’ t working, you can just say ‘“bitbake foo”
where “foo” is the name for a specific recipe. As you become more advanced using the Yocto Project, and if
builds are failing, it can be useful to make sure the fetch itself works as desired. Here are some valuable links:
Using a Development Shell for information on how to build and run a specific task using devshell. Also, the SDK

manual shows how to build out a specific recipe.

An ambiguous definition: Package vs Recipe: A recipe contains instructions the build system uses to create

packages. Recipes and Packages are the difference between the front end and the result of the build process.

As mentioned, the build system takes the recipe and creates packages from the recipe’ s instructions. The resulting
packages are related to the one thing the recipe is building but are different parts (packages) of the build (i.e. the
main package, the doc package, the debug symbols package, the separate utilities package, and so forth). The build

15

https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-intro.html#generating-dependency-graphs
https://wiki.yoctoproject.org/wiki/Cookbook:Example:Adding_packages_to_your_OS_image

The Yocto Project ®, Release 5.1.1

system splits out the packages so that you don’ t need to install the packages you don’ t want or need, which is

advantageous because you are building for small devices when developing for embedded and IoT.

12. You will want to learn about and know what’ s packaged in the root filesystem.

13. Create your own image recipe: There are a number of ways to create your own image recipe. We suggest you

create your own image recipe as opposed to appending an existing recipe. It is trivial and easy to write an image

recipe. Again, do not try appending to an existing image recipe. Create your own and do it right from the start.

14. Finally, here is a list of the basic skills you will need as a systems developer. You must be able to:

L]

deal with corporate proxies

add a package to an image

understand the difference between a recipe and package

build a package by itself and why that’ s useful

find out what packages are created by a recipe

find out what files are in a package

find out what files are in an image

add an ssh server to an image (enable transferring of files to target)
know the anatomy of a recipe

know how to create and use layers

find recipes (with the OpenEmbedded Layer index)

understand difference between machine and distro settings

find and use the right BSP (machine) for your hardware

find examples of distro features and know where to set them
understanding the task pipeline and executing individual tasks
understand devtool and how it simplifies your workflow

improve build speeds with shared downloads and shared state cache
generate and understand a dependency graph

generate and understand BitBake environment

build an Extensible SDK for applications development

15. Depending on what you primary interests are with the Yocto Project, you could consider any of the following

reading:

Look Through the Yocto Project Development Tasks Manual: This manual contains procedural infor-

mation grouped to help you get set up, work with layers, customize images, write new recipes, work with

16

Chapter 2. What | wish I’ d known about Yocto Project

https://layers.openembedded.org

The Yocto Project ®, Release 5.1.1

libraries, and use QEMU. The information is task-based and spans the breadth of the Yocto Project. See the

Yocto Project Development Tasks Manual.

* Look Through the Yocto Project Application Development and the Extensible Software Development
Kit (eSDK) manual: This manual describes how to use both the standard SDK and the extensible SDK,
which are used primarily for application development. The Using the Extensible SDK also provides example

workflows that use devtool. See the section Using deviool in Your SDK Workflow for more information.

* Learn About Kernel Development: If you want to see how to work with the kernel and understand Yocto
Linux kernels, see the Yocto Project Linux Kernel Development Manual. This manual provides information on

how to patch the kernel, modify kernel recipes, and configure the kernel.

¢ Learn About Board Support Packages (BSPs): If you want to learn about BSPs, see the Yocto Project
Board Support Package Developer’ s Guide. This manual also provides an example BSP creation workflow.

See the Board Support Packages (BSP) —Developer’ s Guide section.

¢ Learn About Toaster: Toaster is a web interface to the Yocto Project” s OpenEmbedded build system. If

you are interested in using this type of interface to create images, see the Toaster User Manual.

¢ Discover the VSCode extension: The Yocto Project BitBake extension for the Visual Studio Code IDE
provides language features and commands for working with the Yocto Project. If you are interested in using

this extension, visit its marketplace page.

* Have Available the Yocto Project Reference Manual: Unlike the rest of the Yocto Project manual set, this
manual is comprised of material suited for reference rather than procedures. You can get build details, a closer
look at how the pieces of the Yocto Project development environment work together, information on various
technical details, guidance on migrating to a newer Yocto Project release, reference material on the directory
structure, classes, and tasks. The Yocto Project Reference Manual also contains a fairly comprehensive glossary

of variables used within the Yocto Project.

The Yocto Project ®

<docs@lists.yoctoproject.org>

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Share Alike 2.0 UK: England & Wales as published by Creative Commons.

To report any inaccuracies or problems with this (or any other Yocto Project) manual, or to send additions or changes,
please send email/patches to the Yocto Project documentation mailing list at docs@lists.yoctoproject.org or log

into the Libera Chat #yocto channel.

17

https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
mailto:docs@lists.yoctoproject.org
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://libera.chat/

The Yocto Project ®, Release 5.1.1

18 Chapter 2. What | wish I’ d known about Yocto Project

CHAPTER

THREE

TRANSITIONING TO A CUSTOM ENVIRONMENT FOR SYSTEMS
DEVELOPMENT

Note

So you’ ve finished the Yocto Project Quick Build and glanced over the document What I wish I’ d known about Yocto
Project, the latter contains important information learned from other users. You’ re well prepared. But now, as you
are starting your own project, it isn’ t exactly straightforward what to do. And, the documentation is daunting. We'’

ve put together a few hints to get you started.

1. Make a list of the processor, target board, technologies, and capabilities that will be part of your project.
You will be finding layers with recipes and other metadata that support these things, and adding them to your

configuration. (See #3)

2. Set up your board support. Even if you’ re using custom hardware, it might be easier to start with an existing
target board that uses the same processor or at least the same architecture as your custom hardware. Knowing the
board already has a functioning Board Support Package (BSP) within the project makes it easier for you to get

comfortable with project concepts.

3. Find and acquire the best BSP for your target. Use the Yocto Project Compatible Layers or even the OpenEm-
bedded Layer Index to find and acquire the best BSP for your target board. The Yocto Project layer index BSPs
are regularly validated. The best place to get your first BSP is from your silicon manufacturer or board vendor —
they can point you to their most qualified efforts. In general, for Intel silicon use meta-intel, for Texas Instruments
use meta-ti, and so forth. Choose a BSP that has been tested with the same Yocto Project release that you’ ve
downloaded. Be aware that some BSPs may not be immediately supported on the very latest release, but they will

be eventually.

You might want to start with the build specification that Poky provides (which is reference embedded distribution)

and then add your newly chosen layers to that. Here is the information about adding layers.

4. Based on the layers you’ ve chosen, make needed changes in your configuration. For instance, you’ ve

19

https://www.yoctoproject.org/software-overview/layers/
https://layers.openembedded.org
https://layers.openembedded.org

The Yocto Project ®, Release 5.1.1

10.

11.

chosen a machine type and added in the corresponding BSP layer. You’ 1l then need to change the value of the
MACHINE variable in your configuration file (build/local.conf) to point to that same machine type. There could be
other layer-specific settings you need to change as well. Each layer has a README document that you can look at

for this type of usage information.

. Add a new layer for any custom recipes and metadata you create. Use the bitbake-layers create-layer

tool for Yocto Project 2.4+ releases. If you are using a Yocto Project release earlier than 2.4, use the yocto-layer
create tool. The bitbake-layers tool also provides a number of other useful layer-related commands. See

Creating a General Layer Using the bitbake-layers Script section.

Create your own layer for the BSP you’ re going to use. It is not common that you would need to create an
entire BSP from scratch unless you have a really special device. Even if you are using an existing BSP, create your
own layer for the BSP. For example, given a 64-bit x86-based machine, copy the conf/intel-corei7-64 definition
and give the machine a relevant name (think board name, not product name). Make sure the layer configuration
is dependent on the meta-intel layer (or at least, meta-intel remains in your bblayers.conf). Now you can put your

custom BSP settings into your layer and you can re-use it for different applications.

Write your own recipe to build additional software support that isn’ t already available in the form of a
recipe. Creating your own recipe is especially important for custom application software that you want to run on
your device. Writing new recipes is a process of refinement. Start by getting each step of the build process working
beginning with fetching all the way through packaging. Next, run the software on your target and refine further as

needed. See Writing a New Recipe in the Yocto Project Development Tasks Manual for more information.

Now you’ re ready to create an image recipe. There are a number of ways to do this. However, it is strongly
recommended that you have your own image recipe —don’ t try appending to existing image recipes. Recipes for

images are trivial to create and you usually want to fully customize their contents.

Build your image and refine it. Add what’ s missing and fix anything that’ s broken using your knowledge of

the workflow to identify where issues might be occurring.

Consider creating your own distribution. When you get to a certain level of customization, consider creating

your own distribution rather than using the default reference distribution.

Distribution settings define the packaging back-end (e.g. rpm or other) as well as the package feed and possibly the
update solution. You would create your own distribution in a new layer inheriting from Poky but overriding what
needs to change for your distribution. If you find yourself adding a lot of configuration to your local.conf file aside

from paths and other typical local settings, it’ s time to consider creating your own distribution.

You can add product specifications that can customize the distribution if needed in other layers. You can also add
other functionality specific to the product. But to update the distribution, not individual products, you update the

distribution feature through that layer.

Congratulations! You’ re well on your way. Welcome to the Yocto Project community.

The Yocto Project ®

20

Chapter 3. Transitioning to a custom environment for systems development

The Yocto Project ®, Release 5.1.1

<docs@lists.yoctoproject.org>

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Share Alike 2.0 UK: England & Wales as published by Creative Commons.

To report any inaccuracies or problems with this (or any other Yocto Project) manual, or to send additions or changes,
please send email/patches to the Yocto Project documentation mailing list at docs@lists.yoctoproject.org or log

into the Libera Chat #yocto channel.

21

mailto:docs@lists.yoctoproject.org
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://libera.chat/

The Yocto Project ®, Release 5.1.1

22 Chapter 3. Transitioning to a custom environment for systems development

CHAPTER

FOUR

YOCTO PROJECT OVERVIEW AND CONCEPTS MANUAL

4.1 The Yocto Project Overview and Concepts Manual

4.1.1 Welcome

Welcome to the Yocto Project Overview and Concepts Manual! This manual introduces the Yocto Project by providing
concepts, software overviews, best-known-methods (BKMs), and any other high-level introductory information suitable

for a new Yocto Project user.
Here is what you can get from this manual:

e Introducing the Yocto Project: This chapter provides an introduction to the Yocto Project. You will learn about
features and challenges of the Yocto Project, the layer model, components and tools, development methods, the

Poky reference distribution, the OpenEmbedded build system workflow, and some basic Yocto terms.

e The Yocto Project Development Environment: This chapter helps you get started understanding the Yocto Project
development environment. You will learn about open source, development hosts, Yocto Project source repositories,

workflows using Git and the Yocto Project, a Git primer, and information about licensing.

* Yocto Project Concepts : This chapter presents various concepts regarding the Yocto Project. You can find conceptual

information about components, development, cross-toolchains, and so forth.
This manual does not give you the following:

o Step-by-step Instructions for Development Tasks: Instructional procedures reside in other manuals within the Yocto
Project documentation set. For example, the Yocto Project Development Tasks Manual provides examples on how
to perform various development tasks. As another example, the Yocto Project Application Development and the
Extensible Software Development Kit (eSDK) manual contains detailed instructions on how to install an SDK, which

is used to develop applications for target hardware.

* Reference Material: This type of material resides in an appropriate reference manual. For example, system variables
are documented in the Yocto Project Reference Manual. As another example, the Yocto Project Board Support

Package Developer’ s Guide contains reference information on BSPs.

23

The Yocto Project ®, Release 5.1.1

¢ Detailed Public Information Not Specific to the Yocto Project: For example, exhaustive information on how to use the
Source Control Manager Git is better covered with Internet searches and official Git Documentation than through

the Yocto Project documentation.

4.1.2 Other Information

Because this manual presents information for many different topics, supplemental information is recommended for full
comprehension. For additional introductory information on the Yocto Project, see the Yocto Project Website. If you
want to build an image with no knowledge of Yocto Project as a way of quickly testing it out, see the Yocto Project Quick
Build document. For a comprehensive list of links and other documentation, see the “Links and Related Documentation”

section in the Yocto Project Reference Manual.

4.2 Introducing the Yocto Project

4.2.1 What is the Yocto Project?

The Yocto Project is an open source collaboration project that helps developers create custom Linux-based systems that
are designed for embedded products regardless of the product’ s hardware architecture. Yocto Project provides a flexible
toolset and a development environment that allows embedded device developers across the world to collaborate through

shared technologies, software stacks, configurations, and best practices used to create these tailored Linux images.

Thousands of developers worldwide have discovered that Yocto Project provides advantages in both systems and ap-
plications development, archival and management benefits, and customizations used for speed, footprint, and memory
utilization. The project is a standard when it comes to delivering embedded software stacks. The project allows software
customizations and build interchange for multiple hardware platforms as well as software stacks that can be maintained

and scaled.

YOCTO PROJECT (YP)

Umbrella Open Socurce Project
Po
Iw that Builds and Maintains
Yocto Project Open Validated Open Squce TDqu and
Open Source Build Engine e e Cumpnnentslﬁussnclated with
and Y P-Comptible Metadata Embedded Distribution Embedded Linux
for Embedded Linux

OpenEmbedded

For further introductory information on the Yocto Project, you might be interested in this article by Drew Moseley and

in this short introductory video.

24 Chapter 4. Yocto Project Overview and Concepts Manual

https://www.yoctoproject.org
https://www.embedded.com/electronics-blogs/say-what-/4458600/Why-the-Yocto-Project-for-my-IoT-Project-
https://www.youtube.com/watch?v=utZpKM7i5Z4

The Yocto Project ®, Release 5.1.1

The remainder of this section overviews advantages and challenges tied to the Yocto Project.

Features

Here are features and advantages of the Yocto Project:

Widely Adopted Across the Industry: Many semiconductor, operating system, software, and service vendors adopt
and support the Yocto Project in their products and services. For a look at the Yocto Project community and the
companies involved with the Yocto Project, see the “COMMUNITY” and “ECOSYSTEM” tabs on the Yocto

Project home page.

Architecture Agnostic: Yocto Project supports Intel, ARM, MIPS, AMD, PPC and other architectures. Most ODMs,
OSVs, and chip vendors create and supply BSPs that support their hardware. If you have custom silicon, you can

create a BSP that supports that architecture.

Aside from broad architecture support, the Yocto Project fully supports a wide range of devices emulated by the
Quick EMUlator (QEMU).

Images and Code Transfer Easily: Yocto Project output can easily move between architectures without moving to
new development environments. Additionally, if you have used the Yocto Project to create an image or application
and you find yourself not able to support it, commercial Linux vendors such as Wind River, Mentor Graphics,
Timesys, and ENEA could take it and provide ongoing support. These vendors have offerings that are built using

the Yocto Project.

Flexibility: Corporations use the Yocto Project many different ways. One example is to create an internal Linux
distribution as a code base the corporation can use across multiple product groups. Through customization and
layering, a project group can leverage the base Linux distribution to create a distribution that works for their product

needs.

Ideal for Constrained Embedded and IoT devices: Unlike a full Linux distribution, you can use the Yocto Project
to create exactly what you need for embedded devices. You only add the feature support or packages that you
absolutely need for the device. For devices that have display hardware, you can use available system components
such as X11, Wayland, GTK+, Qt, Clutter, and SDL (among others) to create a rich user experience. For devices
that do not have a display or where you want to use alternative Ul frameworks, you can choose to not build these

components.

Comprehensive Toolchain Capabilities: Toolchains for supported architectures satisfy most use cases. However, if
your hardware supports features that are not part of a standard toolchain, you can easily customize that toolchain
through specification of platform-specific tuning parameters. And, should you need to use a third-party toolchain,

mechanisms built into the Yocto Project allow for that.

Mechanism Rules Over Policy: Focusing on mechanism rather than policy ensures that you are free to set policies

based on the needs of your design instead of adopting decisions enforced by some system software provider.

Uses a Layer Model: The Yocto Project layer infrastructure groups related functionality into separate bundles. You
can incrementally add these grouped functionalities to your project as needed. Using layers to isolate and group
functionality reduces project complexity and redundancy, allows you to easily extend the system, make customiza-

tions, and keep functionality organized.

4.2

Introducing the Yocto Project 25

https://www.yoctoproject.org
https://www.yoctoproject.org

The Yocto Project ®, Release 5.1.1

Supports Partial Builds: You can build and rebuild individual packages as needed. Yocto Project accomplishes
this through its Shared State Cache (sstate) scheme. Being able to build and debug components individually eases

project development.

Releases According to a Strict Schedule: Major releases occur on a six-month cycle predictably in October and
April. The most recent two releases support point releases to address common vulnerabilities and exposures. This

predictability is crucial for projects based on the Yocto Project and allows development teams to plan activities.

Rich Ecosystem of Individuals and Organizations: For open source projects, the value of community is very impor-
tant. Support forums, expertise, and active developers who continue to push the Yocto Project forward are readily

available.

Binary Reproducibility: The Yocto Project allows you to be very specific about dependencies and achieves very
high percentages of binary reproducibility (e.g. 99.8% for core-image-minimal). When distributions are not
specific about which packages are pulled in and in what order to support dependencies, other build systems can

arbitrarily include packages.

License Manifest: The Yocto Project provides a license manifest for review by people who need to track the use of

open source licenses (e.g. legal teams).

Challenges

Here are challenges you might encounter when developing using the Yocto Project:

e Steep Learning Curve: The Yocto Project has a steep learning curve and has many different ways to accomplish

similar tasks. It can be difficult to choose between such ways.

Understanding What Changes You Need to Make For Your Design Requires Some Research: Beyond the simple
tutorial stage, understanding what changes need to be made for your particular design can require a significant
amount of research and investigation. For information that helps you transition from trying out the Yocto Project
to using it for your project, see the “What I wish I’ d known about Yocto Project” and “Transitioning to a custom

environment for systems development” documents on the Yocto Project website.

Project Workflow Could Be Confusing: The Yocto Project workflow could be confusing if you are used to traditional
desktop and server software development. In a desktop development environment, there are mechanisms to easily
pull and install new packages, which are typically pre-compiled binaries from servers accessible over the Internet.

Using the Yocto Project, you must modify your configuration and rebuild to add additional packages.

Working in a Cross-Build Environment Can Feel Unfamiliar: When developing code to run on a target, compilation,
execution, and testing done on the actual target can be faster than running a BitBake build on a development host and
then deploying binaries to the target for test. While the Yocto Project does support development tools on the target,
the additional step of integrating your changes back into the Yocto Project build environment would be required.
Yocto Project supports an intermediate approach that involves making changes on the development system within

the BitBake environment and then deploying only the updated packages to the target.

The Yocto Project OpenEmbedded Build System produces packages in standard formats (i.e. RPM, DEB, IPK, and
TAR). You can deploy these packages into the running system on the target by using utilities on the target such as

rpm Or ipk.

26

Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

e [nitial Build Times Can be Significant: Long initial build times are unfortunately unavoidable due to the large number
of packages initially built from scratch for a fully functioning Linux system. Once that initial build is completed,
however, the shared-state (sstate) cache mechanism Yocto Project uses keeps the system from rebuilding packages
that have not been “touched” since the last build. The sstate mechanism significantly reduces times for successive
builds.

4.2.2 The Yocto Project Layer Model

The Yocto Project’ s “Layer Model” is a development model for embedded and IoT Linux creation that distinguishes the
Yocto Project from other simple build systems. The Layer Model simultaneously supports collaboration and customiza-
tion. Layers are repositories that contain related sets of instructions that tell the OpenEmbedded Build System what to do.

You can collaborate, share, and reuse layers.

Layers can contain changes to previous instructions or settings at any time. This powerful override capability is what

allows you to customize previously supplied collaborative or community layers to suit your product requirements.

You use different layers to logically separate information in your build. As an example, you could have BSP, GUI, distro
configuration, middleware, or application layers. Putting your entire build into one layer limits and complicates future
customization and reuse. Isolating information into layers, on the other hand, helps simplify future customizations and
reuse. You might find it tempting to keep everything in one layer when working on a single project. However, the more

modular your Metadata, the easier it is to cope with future changes.

Note
» Use Board Support Package (BSP) layers from silicon vendors when possible.

» Familiarize yourself with the Yocto Project Compatible Layers or the OpenEmbedded Layer Index. The latter

contains more layers but they are less universally validated.

» Layers support the inclusion of technologies, hardware components, and software components. The Yocto
Project Compatible designation provides a minimum level of standardization that contributes to a strong ecosys-
tem. “YP Compatible” is applied to appropriate products and software components such as BSPs, other
OE-compatible layers, and related open-source projects, allowing the producer to use Yocto Project badges

and branding assets.

To illustrate how layers are used to keep things modular, consider machine customizations. These types of customizations
typically reside in a special layer, rather than a general layer, called a BSP Layer. Furthermore, the machine customizations
should be isolated from recipes and Metadata that support a new GUI environment, for example. This situation gives you
a couple of layers: one for the machine configurations, and one for the GUI environment. It is important to understand,
however, that the BSP layer can still make machine-specific additions to recipes within the GUI environment layer without
polluting the GUI layer itself with those machine-specific changes. You can accomplish this through a recipe that is a

BitBake append (. bbappend) file, which is described later in this section.

4.2. Introducing the Yocto Project 27

https://www.yoctoproject.org/software-overview/layers/
https://layers.openembedded.org

The Yocto Project ®, Release 5.1.1

Note

For general information on BSP layer structure, see the Yocto Project Board Support Package Developer’ s Guide.

The Source Directory contains both general layers and BSP layers right out of the box. You can easily identify layers that
ship with a Yocto Project release in the Source Directory by their names. Layers typically have names that begin with the

string meta-.

Note

It is not a requirement that a layer name begin with the prefix meta-, but it is a commonly accepted standard in the

Yocto Project community.

For example, if you were to examine the tree view of the poky repository, you will see several layers: meta,
meta-skeleton, meta-selftest, meta-poky, and meta-yocto-bsp. Each of these repositories represents a dis-

tinct layer.

For procedures on how to create layers, see the “Understanding and Creating Layers” section in the Yocto Project

Development Tasks Manual.

4.2.3 Components and Tools

The Yocto Project employs a collection of components and tools used by the project itself, by project developers, and by
those using the Yocto Project. These components and tools are open source projects and metadata that are separate from
the reference distribution (Poky) and the OpenEmbedded Build System. Most of the components and tools are downloaded

separately.

This section provides brief overviews of the components and tools associated with the Yocto Project.

Development Tools
Here are tools that help you develop images and applications using the Yocto Project:

e CROPS: CROPS is an open source, cross-platform development framework that leverages Docker Containers.
CROPS provides an easily managed, extensible environment that allows you to build binaries for a variety of ar-

chitectures on Windows, Linux and Mac OS X hosts.

¢ devtool: This command-line tool is available as part of the extensible SDK (eSDK) and is its cornerstone. You
can use devtool to help build, test, and package software within the eSDK. You can use the tool to optionally

integrate what you build into an image built by the OpenEmbedded build system.

The devtool command employs a number of sub-commands that allow you to add, modify, and upgrade recipes.
As with the OpenEmbedded build system, “recipes” represent software packages within devtool. When you use
devtool add, a recipe is automatically created. When you use devtool modify, the specified existing recipe

is used in order to determine where to get the source code and how to patch it. In both cases, an environment is set

28 Chapter 4. Yocto Project Overview and Concepts Manual

https://git.yoctoproject.org/poky/tree/
https://github.com/crops/poky-container/
https://www.docker.com/

The Yocto Project ®, Release 5.1.1

up so that when you build the recipe a source tree that is under your control is used in order to allow you to make
changes to the source as desired. By default, both new recipes and the source go into a “workspace” directory
under the eSDK. The devtool upgrade command updates an existing recipe so that you can build it for an

updated set of source files.

You can read about the devt ool workflow in the Yocto Project Application Development and Extensible Software
Development Kit (eSDK) Manual in the “Using devtool in Your SDK Workflow” section.

Extensible Software Development Kit (eSDK): The eSDK provides a cross-development toolchain and libraries tai-
lored to the contents of a specific image. The eSDK makes it easy to add new applications and libraries to an image,
modify the source for an existing component, test changes on the target hardware, and integrate into the rest of the
OpenEmbedded build system. The eSDK gives you a toolchain experience supplemented with the powerful set of

devtool commands tailored for the Yocto Project environment.

For information on the eSDK, see the Yocto Project Application Development and the Extensible Software Develop-
ment Kit (eSDK) Manual.

Toaster: Toaster is a web interface to the Yocto Project OpenEmbedded build system. Toaster allows you to

configure, run, and view information about builds. For information on Toaster, see the Toaster User Manual.

VSCode IDE Extension: The Yocto Project BitBake extension for Visual Studio Code provides a rich set of features
for working with BitBake recipes. The extension provides syntax highlighting, hover tips, and completion for
BitBake files as well as embedded Python and Bash languages. Additional views and commands allow you to
efficiently browse, build and edit recipes. It also provides SDK integration for cross-compiling and debugging

through devtool.

Learn more about the VSCode Extension on the extension’ s frontpage.

Production Tools

Here are tools that help with production related activities using the Yocto Project:

Auto Upgrade Helper: This utility when used in conjunction with the OpenEmbedded Build System (BitBake and
OE-Core) automatically generates upgrades for recipes that are based on new versions of the recipes published

upstream. See Using the Auto Upgrade Helper (AUH) for how to set it up.

Recipe Reporting System: The Recipe Reporting System tracks recipe versions available for Yocto Project. The
main purpose of the system is to help you manage the recipes you maintain and to offer a dynamic overview of the
project. The Recipe Reporting System is built on top of the OpenEmbedded Layer Index, which is a website that
indexes OpenEmbedded-Core layers.

Patchwork: Patchwork is a fork of a project originally started by OzLabs. The project is a web-based tracking system
designed to streamline the process of bringing contributions into a project. The Yocto Project uses Patchwork as

an organizational tool to handle patches, which number in the thousands for every release.

AutoBuilder: AutoBuilder is a project that automates build tests and quality assurance (QA). By using the public

AutoBuilder, anyone can determine the status of the current development branch of Poky.

4.2

Introducing the Yocto Project 29

https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
https://layers.openembedded.org
https://patchwork.yoctoproject.org/
https://ozlabs.org/

The Yocto Project ®, Release 5.1.1

Note

AutoBuilder is based on buildbot.

A goal of the Yocto Project is to lead the open source industry with a project that automates testing and QA
procedures. In doing so, the project encourages a development community that publishes QA and test plans, publicly
demonstrates QA and test plans, and encourages development of tools that automate and test and QA procedures

for the benefit of the development community.
You can learn more about the AutoBuilder used by the Yocto Project Autobuilder /ere.

Pseudo: Pseudo is the Yocto Project implementation of fakeroot, which is used to run commands in an environment

that seemingly has root privileges.

During a build, it can be necessary to perform operations that require system administrator privileges. For example,
file ownership or permissions might need to be defined. Pseudo is a tool that you can either use directly or through
the environment variable LD_PRELOAD. Either method allows these operations to succeed even without system

administrator privileges.
Thanks to Pseudo, the Yocto Project never needs root privileges to build images for your target system.

You can read more about Pseudo in the “Fakeroot and Pseudo” section.

Open-Embedded Build System Components

Here are components associated with the OpenEmbedded Build System:

* BitBake: BitBake is a core component of the Yocto Project and is used by the OpenEmbedded build system to

build images. While BitBake is key to the build system, BitBake is maintained separately from the Yocto Project.

BitBake is a generic task execution engine that allows shell and Python tasks to be run efficiently and in parallel
while working within complex inter-task dependency constraints. In short, BitBake is a build engine that works

through recipes written in a specific format in order to perform sets of tasks.
You can learn more about BitBake in the BitBake User Manual.

OpenEmbedded-Core: OpenEmbedded-Core (OE-Core) is a common layer of metadata (i.e. recipes, classes, and
associated files) used by OpenEmbedded-derived systems, which includes the Yocto Project. The Yocto Project
and the OpenEmbedded Project both maintain the OpenEmbedded-Core. You can find the OE-Core metadata in

the Yocto Project Source Repositories.

Historically, the Yocto Project integrated the OE-Core metadata throughout the Yocto Project source repository
reference system (Poky). After Yocto Project Version 1.0, the Yocto Project and OpenEmbedded agreed to work
together and share a common core set of metadata (OE-Core), which contained much of the functionality previously
found in Poky. This collaboration achieved a long-standing OpenEmbedded objective for having a more tightly
controlled and quality-assured core. The results also fit well with the Yocto Project objective of achieving a smaller

number of fully featured tools as compared to many different ones.

30

Chapter 4. Yocto Project Overview and Concepts Manual

http://man.he.net/man1/fakeroot
https://docs.yoctoproject.org/bitbake/2.10/index.html
https://git.yoctoproject.org/poky/tree/meta

The Yocto Project ®, Release 5.1.1

Sharing a core set of metadata results in Poky as an integration layer on top of OE-Core. You can see that in
this figure. The Yocto Project combines various components such as BitBake, OE-Core, script “glue” , and

documentation for its build system.

Reference Distribution (Poky)

Poky is the Yocto Project reference distribution. It contains the OpenEmbedded Build System (BitBake and OE-Core) as
well as a set of metadata to get you started building your own distribution. See the figure in “What is the Yocto Project?”

section for an illustration that shows Poky and its relationship with other parts of the Yocto Project.

To use the Yocto Project tools and components, you can download (clone) Poky and use it to bootstrap your own

distribution.

Note

Poky does not contain binary files. It is a working example of how to build your own custom Linux distribution from

source.

You can read more about Poky in the “Reference Embedded Distribution (Poky)” section.

Packages for Finished Targets
Here are components associated with packages for finished targets:

* Matchbox: Matchbox is an Open Source, base environment for the X Window System running on non-desktop,
embedded platforms such as handhelds, set-top boxes, kiosks, and anything else for which screen space, input

mechanisms, or system resources are limited.

Matchbox consists of a number of interchangeable and optional applications that you can tailor to a specific, non-

desktop platform to enhance usability in constrained environments.
You can find the Matchbox source in the Yocto Project Source Repositories.

¢ Opkg: Open PacKaGe management (opkg) is a lightweight package management system based on the itsy package
(ipkg) management system. Opkg is written in C and resembles Advanced Package Tool (APT) and Debian Package
(dpkg) in operation.

Opkg is intended for use on embedded Linux devices and is used in this capacity in the OpenEmbedded and

OpenWrt projects, as well as the Yocto Project.
Note
As best it can, opkg maintains backwards compatibility with ipkg and conforms to a subset of Debian’ s policy

manual regarding control files.

You can find the opkg source in the Yocto Project Source Repositories.

4.2. Introducing the Yocto Project 31

https://git.yoctoproject.org
https://www.openembedded.org
https://openwrt.org/
https://git.yoctoproject.org

The Yocto Project ®, Release 5.1.1

Archived Components

The Build Appliance is a virtual machine image that enables you to build and boot a custom embedded Linux image with

the Yocto Project using a non-Linux development system.

Historically, the Build Appliance was the second of three methods by which you could use the Yocto Project on a system

that was not native to Linux.

1. Hob: Hob, which is now deprecated and is no longer available since the 2.1 release of the Yocto Project provided

a rudimentary, GUI-based interface to the Yocto Project. Toaster has fully replaced Hob.

2. Build Appliance: Post Hob, the Build Appliance became available. It was never recommended that you use the
Build Appliance as a day-to-day production development environment with the Yocto Project. Build Appliance

was useful as a way to try out development in the Yocto Project environment.

3. CROPS: The final and best solution available now for developing using the Yocto Project on a system not native to
Linux is with CROPS.

4.2.4 Development Methods

The Yocto Project development environment usually involves a Build Host and target hardware. You use the Build Host

to build images and develop applications, while you use the target hardware to execute deployed software.

This section provides an introduction to the choices or development methods you have when setting up your Build Host.
Depending on your particular workflow preference and the type of operating system your Build Host runs, you have several

choices.

Note

For additional detail about the Yocto Project development environment, see the “7The Yocto Project Development

Environment” chapter.

* Native Linux Host: By far the best option for a Build Host. A system running Linux as its native operating system
allows you to develop software by directly using the BitBake tool. You can accomplish all aspects of development

from a regular shell in a supported Linux distribution.

For information on how to set up a Build Host on a system running Linux as its native operating system, see the

“Setting Up a Native Linux Host” section in the Yocto Project Development Tasks Manual.

* CROss PlatformS (CROPS): Typically, you use CROPS, which leverages Docker Containers, to set up a Build Host

that is not running Linux (e.g. Microsoft Windows or macOS).

Note

You can, however, use CROPS on a Linux-based system.

CROPS is an open source, cross-platform development framework that provides an easily managed, extensible

32 Chapter 4. Yocto Project Overview and Concepts Manual

https://github.com/crops/poky-container/
https://www.docker.com/

The Yocto Project ®, Release 5.1.1

environment for building binaries targeted for a variety of architectures on Windows, macOS, or Linux hosts.
Once the Build Host is set up using CROPS, you can prepare a shell environment to mimic that of a shell being

used on a system natively running Linux.

For information on how to set up a Build Host with CROPS,; see the “Setting Up to Use CROss PlatformS (CROPS)”

section in the Yocto Project Development Tasks Manual.

» Windows Subsystem For Linux (WSL 2): You may use Windows Subsystem For Linux version 2 to set up a Build

Host using Windows 10 or later, or Windows Server 2019 or later.

The Windows Subsystem For Linux allows Windows to run a real Linux kernel inside of a lightweight virtual
machine (VM).

For information on how to set up a Build Host with WSL 2, see the “Serting Up to Use Windows Subsystem For
Linux (WSL 2)” section in the Yocto Project Development Tasks Manual.

* Toaster: Regardless of what your Build Host is running, you can use Toaster to develop software using the Yocto
Project. Toaster is a web interface to the Yocto Project’ s OpenEmbedded Build System. The interface allows you to
configure and run your builds. Information about builds is collected and stored in a database. You can use Toaster

to configure and start builds on multiple remote build servers.
For information about and how to use Toaster, see the Toaster User Manual.

* Using the VSCode Extension: You can use the Yocto Project BitBake extension for Visual Studio Code to start your

BitBake builds through a graphical user interface.

Learn more about the VSCode Extension on the extension’ s marketplace page

4.2.5 Reference Embedded Distribution (Poky)

“Poky” , which is pronounced Pock-ee, is the name of the Yocto Project’ s reference distribution or Reference OS Kit.
Poky contains the OpenEmbedded Build System (BitBake and OpenEmbedded-Core (OE-Core)) as well as a set of Metadata
to get you started building your own distro. In other words, Poky is a base specification of the functionality needed for a
typical embedded system as well as the components from the Yocto Project that allow you to build a distribution into a

usable binary image.

Poky is a combined repository of BitBake, OpenEmbedded-Core (which is found in meta), meta-poky,
meta-yocto-bsp, and documentation provided all together and known to work well together. You can view these

items that make up the Poky repository in the Source Repositories.

Note

If you are interested in all the contents of the poky Git repository, see the “7Top-Level Core Components” section in

the Yocto Project Reference Manual.

The following figure illustrates what generally comprises Poky:

4.2. Introducing the Yocto Project 33

https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
https://git.yoctoproject.org/poky/tree/

The Yocto Project ®, Release 5.1.1

YOCTO PROJECT (YP)

YP-Compatible BSPs (e.g. meta-intel, meta-ti, and so forth)

YP-Compatible Layers
Puky Yocto Project Autobuilder (QA)
meta-poky Development Tools for the User
e e core (Mefdata) | metayocto-bsp Production Tools to Build the Project
= Documentation Other Layers and Project Components
Pseudo

Documentation

meta-openembedded
OpenEmbedded

* BitBake is a task executor and scheduler that is the heart of the OpenEmbedded build system.
* meta-poky, which is Poky-specific metadata.
* meta-yocto-bsp, which are Yocto Project-specific Board Support Packages (BSPs).

¢ OpenEmbedded-Core (OE-Core) metadata, which includes shared configurations, global variable definitions,
shared classes, packaging, and recipes. Classes define the encapsulation and inheritance of build logic. Recipes

are the logical units of software and images to be built.

* Documentation, which contains the Yocto Project source files used to make the set of user manuals.

Note

While Poky is a “complete” distribution specification and is tested and put through QA, you cannot use it as a product

“out of the box” in its current form.

To use the Yocto Project tools, you can use Git to clone (download) the Poky repository then use your local copy of the

reference distribution to bootstrap your own distribution.

Note

Poky does not contain binary files. It is a working example of how to build your own custom Linux distribution from

source.

Poky has a regular, well established, six-month release cycle under its own version. Major releases occur at the same
time major releases (point releases) occur for the Yocto Project, which are typically in the Spring and Fall. For more
information on the Yocto Project release schedule and cadence, see the “Yocto Project Releases and the Stable Release

Process” chapter in the Yocto Project Reference Manual.

Much has been said about Poky being a “default configuration” . A default configuration provides a starting image

34 Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

footprint. You can use Poky out of the box to create an image ranging from a shell-accessible minimal image all the way
up to a Linux Standard Base-compliant image that uses a GNOME Mobile and Embedded (GMAE) based reference user

interface called Sato.

One of the most powerful properties of Poky is that every aspect of a build is controlled by the metadata. You can use
metadata to augment these base image types by adding metadata /ayers that extend functionality. These layers can provide,
for example, an additional software stack for an image type, add a board support package (BSP) for additional hardware,

or even create a new image type.

Metadata is loosely grouped into configuration files or package recipes. A recipe is a collection of non-executable meta-
data used by BitBake to set variables or define additional build-time tasks. A recipe contains fields such as the recipe
description, the recipe version, the license of the package and the upstream source repository. A recipe might also indi-
cate that the build process uses autotools, make, distutils or any other build process, in which case the basic functionality
can be defined by the classes it inherits from the OE-Core layer’ s class definitions in . /meta/classes. Within a
recipe you can also define additional tasks as well as task prerequisites. Recipe syntax through BitBake also supports both
:prepend and :append operators as a method of extending task functionality. These operators inject code into the
beginning or end of a task. For information on these BitBake operators, see the “Appending and Prepending (Override

Style Syntax)” section in the BitBake User’ s Manual.

4.2.6 The OpenEmbedded Build System Workflow

The OpenEmbedded Build System uses a “workflow” to accomplish image and SDK generation. The following figure

overviews that workflow:

User
Configuration > Package Feeds

Metadata
[-bb +
patches)

QA Image SDK
Machine BSP (B Tests Generation Generation
Configuration \
Policy
Configuration Config Application

Images Development

Openembedded Architecture Workflow

Upstream Source u Cutput Packages
Metadatanputs Process steps (tasks)
Build system Output Image Data

SDK

yocto - [Juinux

FREGIECY

Here is a brief summary of the “workflow” :

4.2. Introducing the Yocto Project 35

https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#appending-and-prepending-override-style-syntax
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#appending-and-prepending-override-style-syntax

The Yocto Project ®, Release 5.1.1

. Developers specify architecture, policies, patches and configuration details.

. The build system fetches and downloads the source code from the specified location. The build system supports

standard methods such as tarballs or source code repositories systems such as Git.

. Once source code is downloaded, the build system extracts the sources into a local work area where patches are

applied and common steps for configuring and compiling the software are run.

. The build system then installs the software into a temporary staging area where the binary package format you

select (DEB, RPM, or IPK) is used to roll up the software.

. Different QA and sanity checks run throughout entire build process.

. After the binaries are created, the build system generates a binary package feed that is used to create the final root

file image.

. The build system generates the file system image and a customized Extensible SDK (eSDK) for application devel-

opment in parallel.

For a very detailed look at this workflow, see the “OpenEmbedded Build System Concepts” section.

4.2.7 Some Basic Terms

It helps to understand some basic fundamental terms when learning the Yocto Project. Although there is a list of terms in

the “Yocto Project Terms” section of the Yocto Project Reference Manual, this section provides the definitions of some

terms helpful for getting started:

* Configuration Files: Files that hold global definitions of variables, user-defined variables, and hardware configuration

information. These files tell the OpenEmbedded Build System what to build and what to put into the image to support

a particular platform.

Extensible Software Development Kit (eSDK): A custom SDK for application developers. This eSDK allows devel-
opers to incorporate their library and programming changes back into the image to make their code available to
other application developers. For information on the eSDK, see the Yocto Project Application Development and the

Extensible Software Development Kit (eSDK) manual.

Layer: A collection of related recipes. Layers allow you to consolidate related metadata to customize your build.
Layers also isolate information used when building for multiple architectures. Layers are hierarchical in their
ability to override previous specifications. You can include any number of available layers from the Yocto Project
and customize the build by adding your own layers after them. You can search the Layer Index for layers used

within Yocto Project.

For more detailed information on layers, see the “Understanding and Creating Layers” section in the Yocto Project
Development Tasks Manual. For a discussion specifically on BSP Layers, see the “BSP Layers” section in the

Yocto Project Board Support Packages (BSP) Developer’ s Guide.

Metadata: A key element of the Yocto Project is the Metadata that is used to construct a Linux distribution and is
contained in the files that the OpenEmbedded build system parses when building an image. In general, Metadata

includes recipes, configuration files, and other information that refers to the build instructions themselves, as well

36

Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

as the data used to control what things get built and the effects of the build. Metadata also includes commands and
data used to indicate what versions of software are used, from where they are obtained, and changes or additions
to the software itself (patches or auxiliary files) that are used to fix bugs or customize the software for use in a

particular situation. OpenEmbedded-Core is an important set of validated metadata.

* OpenEmbedded Build System: The terms “BitBake” and “build system” are sometimes used for the OpenEmbedded
Build System.

BitBake is a task scheduler and execution engine that parses instructions (i.e. recipes) and configuration data.
After a parsing phase, BitBake creates a dependency tree to order the compilation, schedules the compilation of
the included code, and finally executes the building of the specified custom Linux image (distribution). BitBake is

similar to the make tool.

During a build process, the build system tracks dependencies and performs a native or cross-compilation of each
package. As a first step in a cross-build setup, the framework attempts to create a cross-compiler toolchain (i.e.
Extensible SDK) suited for the target platform.

* OpenEmbedded-Core (OE-Core): OE-Core is metadata comprised of foundation recipes, classes, and associated
files that are meant to be common among many different OpenEmbedded-derived systems, including the Yocto
Project. OE-Core is a curated subset of an original repository developed by the OpenEmbedded community that
has been pared down into a smaller, core set of continuously validated recipes. The result is a tightly controlled and

quality-assured core set of recipes.
You can see the Metadata in the meta directory of the Yocto Project Source Repositories.

* Packages: In the context of the Yocto Project, this term refers to a recipe’ s packaged output produced by BitBake
(i.e. a “baked recipe”). A package is generally the compiled binaries produced from the recipe’ s sources. You

“bake” something by running it through BitBake.

It is worth noting that the term “package” can, in general, have subtle meanings. For example, the packages
referred to in the “Required Packages for the Build Host” section in the Yocto Project Reference Manual are

compiled binaries that, when installed, add functionality to your host Linux distribution.

Another point worth noting is that historically within the Yocto Project, recipes were referred to as packages —

thus, the existence of several BitBake variables that are seemingly mis-named, (e.g. PR, PV, and PE).
* Poky: Poky is a reference embedded distribution and a reference test configuration. Poky provides the following:
— A base-level functional distro used to illustrate how to customize a distribution.
— A means by which to test the Yocto Project components (i.e. Poky is used to validate the Yocto Project).
— A vehicle through which you can download the Yocto Project.

Poky is not a product level distro. Rather, it is a good starting point for customization.

Note

Poky is an integration layer on top of OE-Core.

4.2. Introducing the Yocto Project 37

https://git.yoctoproject.org

The Yocto Project ®, Release 5.1.1

* Recipe: The most common form of metadata. A recipe contains a list of settings and tasks (i.e. instructions) for
building packages that are then used to build the binary image. A recipe describes where you get source code and
which patches to apply. Recipes describe dependencies for libraries or for other recipes as well as configuration

and compilation options. Related recipes are consolidated into a layer.

4.3 The Yocto Project Development Environment

This chapter takes a look at the Yocto Project development environment. The chapter provides Yocto Project Development
environment concepts that help you understand how work is accomplished in an open source environment, which is very

different as compared to work accomplished in a closed, proprietary environment.

Specifically, this chapter addresses open source philosophy, source repositories, workflows, Git, and licensing.

4.3.1 Open Source Philosophy

Open source philosophy is characterized by software development directed by peer production and collaboration through
an active community of developers. Contrast this to the more standard centralized development models used by com-
mercial software companies where a finite set of developers produces a product for sale using a defined set of procedures

that ultimately result in an end product whose architecture and source material are closed to the public.

Open source projects conceptually have differing concurrent agendas, approaches, and production. These facets of the
development process can come from anyone in the public (community) who has a stake in the software project. The open
source environment contains new copyright, licensing, domain, and consumer issues that differ from the more traditional
development environment. In an open source environment, the end product, source material, and documentation are all

available to the public at no cost.

A benchmark example of an open source project is the Linux kernel, which was initially conceived and created by Finnish
computer science student Linus Torvalds in 1991. Conversely, a good example of a non-open source project is the

Windows family of operating systems developed by Microsoft Corporation.

Wikipedia has a good historical description of the Open Source Philosophy. You can also find helpful information on

how to participate in the Linux Community here.

4.3.2 The Development Host

A development host or Build Host is key to using the Yocto Project. Because the goal of the Yocto Project is to develop
images or applications that run on embedded hardware, development of those images and applications generally takes

place on a system not intended to run the software —the development host.

You need to set up a development host in order to use it with the Yocto Project. Most find that it is best to have a native
Linux machine function as the development host. However, it is possible to use a system that does not run Linux as its
operating system as your development host. When you have a Mac or Windows-based system, you can set it up as the
development host by using CROPS, which leverages Docker Containers. Once you take the steps to set up a CROPS
machine, you effectively have access to a shell environment that is similar to what you see when using a Linux-based
development host. For the steps needed to set up a system using CROPS, see the “Setting Up to Use CROss PlatformS
(CROPS)” section in the Yocto Project Development Tasks Manual.

38 Chapter 4. Yocto Project Overview and Concepts Manual

https://en.wikipedia.org/wiki/Open_source
https://www.kernel.org/doc/html/latest/process/index.html
https://github.com/crops/poky-container
https://www.docker.com/

The Yocto Project ®, Release 5.1.1

If your development host is going to be a system that runs a Linux distribution, you must still take steps to prepare the
system for use with the Yocto Project. You need to be sure that the Linux distribution on the system is one that supports
the Yocto Project. You also need to be sure that the correct set of host packages are installed that allow development
using the Yocto Project. For the steps needed to set up a development host that runs Linux, see the “Serting Up a Native

Linux Host” section in the Yocto Project Development Tasks Manual.

Once your development host is set up to use the Yocto Project, there are several ways of working in the Yocto Project

environment:

e Command Lines, BitBake, and Shells: Traditional development in the Yocto Project involves using the OpenEm-
bedded Build System, which uses BitBake, in a command-line environment from a shell on your development host.
You can accomplish this from a host that is a native Linux machine or from a host that has been set up with
CROPS. Either way, you create, modify, and build images and applications all within a shell-based environment

using components and tools available through your Linux distribution and the Yocto Project.

)

For a general flow of the build procedures, see the “Building a Simple Image” section in the Yocto Project Devel-

opment Tasks Manual.

* Board Support Package (BSP) Development: Development of BSPs involves using the Yocto Project to create and
test layers that allow easy development of images and applications targeted for specific hardware. To development

BSPs, you need to take some additional steps beyond what was described in setting up a development host.

The Yocto Project Board Support Package Developer’ s Guide provides BSP-related development information. For
specifics on development host preparation, see the “Preparing Your Build Host to Work With BSP Layers” section

in the Yocto Project Board Support Package (BSP) Developer’ s Guide.

* Kernel Development: If you are going to be developing kernels using the Yocto Project you likely will be using

devtool. A workflow using devtool makes kernel development quicker by reducing iteration cycle times.

The Yocto Project Linux Kernel Development Manual provides kernel-related development information. For specifics
on development host preparation, see the *Preparing the Build Host to Work on the Kernel” section in the Yocto

Project Linux Kernel Development Manual.

 Using Toaster: The other Yocto Project development method that involves an interface that effectively puts the
Yocto Project into the background is Toaster. Toaster provides an interface to the OpenEmbedded build system.
The interface enables you to configure and run your builds. Information about builds is collected and stored in a

database. You can use Toaster to configure and start builds on multiple remote build servers.

For steps that show you how to set up your development host to use Toaster and on how to use Toaster in general,

see the Toaster User Manual.

* Using the VSCode Extension: You can use the Yocto Project BitBake extension for Visual Studio Code to start your

BitBake builds through a graphical user interface.

Learn more about the VSCode Extension on the extension’ s marketplace page.

4.3. The Yocto Project Development Environment 39

https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake

The Yocto Project ®, Release 5.1.1

4.3.3 Yocto Project Source Repositories

The Yocto Project team maintains complete source repositories for all Yocto Project files at https://git.yoctoproject.org/.
This web-based source code browser is organized into categories by function such as IDE Plugins, Matchbox, Poky, Yocto
Linux Kernel, and so forth. From the interface, you can click on any particular item in the “Name” column and see
the URL at the bottom of the page that you need to clone a Git repository for that particular item. Having a local Git
repository of the Source Directory, which is usually named “poky” , allows you to make changes, contribute to the history,

and ultimately enhance the Yocto Project’ s tools, Board Support Packages, and so forth.

For any supported release of Yocto Project, you can also go to the Yocto Project Website and select the “DOWNLOADS”
item from the “SOFTWARE” menu and get a released tarball of the poky repository, any supported BSP tarball, or

Yocto Project tools. Unpacking these tarballs gives you a snapshot of the released files.

Note

* The recommended method for setting up the Yocto Project Source Directory and the files for supported BSPs

(e.g., meta-intel) is to use Git to create a local copy of the upstream repositories.

* Be sure to always work in matching branches for both the selected BSP repository and the Source Directory
(i.e. poky) repository. For example, if you have checked out the “styhead” branch of poky and you are going

to use meta—-intel, be sure to checkout the “styhead” branch of meta-intel.

In summary, here is where you can get the project files needed for development:

» Source Repositories: This area contains Poky, Yocto documentation, metadata layers, and Linux kernel. You can

create local copies of Git repositories for each of these areas.

40 Chapter 4. Yocto Project Overview and Concepts Manual

https://git.yoctoproject.org/
https://www.yoctoproject.org
https://git.yoctoproject.org

The Yocto Project ®, Release 5.1.1

yOcto - Source Repositories

PROJECT Yocto Project
e —
Name Description Idle
-Poky
poky Poky Build Tool and Metadata 4 days
poky-contrib Poky Built Tool and Metadata - User Contributions Tree 8 hours
yocto-docs Versioned project documentation 21 min.
-Poky Support
poky-config Combo-layer configuration and support scripts for the poky repository 4 days
poky-contrib-archive User contributions older than January 1st 2013
-Yocto Automated Testing
poky-buildhistory Autobuilder Saved Build History (for Poky master) 11 hours
yocto-buildstats Build performance test results from the Yocto project 1 min.
yocto-testresults Test results published from the public autobuilder 9 hours
yocto-testresults-contrib Test results published from contributor autobuilders and QA teams 8 hours
-Yocto Metadata Layers - Platinum Members
meta-arm Layer containing support for Arm products 4 days
meta-aws Layer containing Amazon Web Services (AWS) device software support metadata 43 min.
meta-intel Layer containing Intel hardware support metadata 35 hours
meta-ti Layer containing Tl hardware support metadata 4 hours
meta-xilinx Layer containing Xilinx hardware support metadata 8 months
-Yocto Metadata Layers - Autobuilder Tested
meta-gplv2 GPLv2 versions of software where upstream has moved to GPLv3 licenses 4 weeks
meta-mingw Layer for mingw based SDKs 4 weeks
meta-yocto Yocto Project integration layers (Poky distro configuration, reference hardware ... 19 hours
-Yocto Metadata Layers - Member Layers
meta-amd Layer containing AMD hardware support metadata 3 months
meta-freescale Layer containing NXP hardware support metadata 43 min.
meta-renesas Layer supporting Renesas Electronics SoCs

For steps on how to view and access these upstream Git repositories, see the “Accessing Source Repositories” Section

in the Yocto Project Development Tasks Manual.

* Yocto release archives: This is where you can download tarballs corresponding to each Yocto Project release.
Downloading and extracting these files does not produce a local copy of a Git repository but rather a snapshot

corresponding to a particular release.

* DOWNLOADS page: The Yocto Project website includes a “DOWNLOADS” page accessible through the
“SOFTWARE” menu that allows you to download any Yocto Project release, tool, and Board Support Pack-
age (BSP) in tarball form. The hyperlinks point to the tarballs under https://downloads.yoctoproject.org/releases/

yocto/.

4.3. The Yocto Project Development Environment 41

https://downloads.yoctoproject.org/releases/yocto
https://www.yoctoproject.org/software-overview/downloads/
https://www.yoctoproject.org
https://downloads.yoctoproject.org/releases/yocto/
https://downloads.yoctoproject.org/releases/yocto/

The Yocto Project ®, Release 5.1.1

COMMUNITY

PROJECT

SOFTWARE : DOWNLOADS

RELEASE YP CORE - LANGDALE 4.1.3-2023.03.15 ~ RELEASE ARCHIVE

The Yocto Project® build system (BitBake and the OE-Core metadata) is packaged with the reference distro [git clone -b langdale git://gityoctoproject.org/f @_
(called Poky). This allows you to try out the whole system. You can create a binary image of Poky as is, or
alter the Poky recipes and layers for use in your customized work.

or download

Git is preferred to a tarball download. If you use the former, then code updates can easily be applied to your
code base. Using the latter requires you to update your code base yourself, and the documents are slightly
older.

The tools and bsps below are not included. You must download each separately, and they are specific to the
version of software you are using.

0 RELEASE INFORMATION - YP CORE - LANGDALE 4.1.3

TOOLS
BUILD APPLIANCE -LANGDALE BUILDTOOLS ESDK - LANGDALE
413 413
The Build Appliance is a virtual This buildtools SDK contains the
machine which enables you to build needed versions of various programs
and boot a custom embedded Linux to build Yocto Project on most n
image with the Yocto Project using a distributions.FeaturesPython3
non-Linux de... READ MORE » 3.10.6git 2.37.3tar ... READ MORE » s

For steps on how to use the “DOWNLOADS” page, see the “Using the Downloads Page” section in the Yocto

Project Development Tasks Manual.

4.3.4 Git Workflows and the Yocto Project

Developing using the Yocto Project likely requires the use of Gir. Git is a free, open source distributed version control
system used as part of many collaborative design environments. This section provides workflow concepts using the Yocto
Project and Git. In particular, the information covers basic practices that describe roles and actions in a collaborative

development environment.

Note

If you are familiar with this type of development environment, you might not want to read this section.

The Yocto Project files are maintained using Git in “branches” whose Git histories track every change and whose structures

provide branches for all diverging functionality. Although there is no need to use Git, many open source projects do so.

For the Yocto Project, a key individual called the “maintainer” is responsible for the integrity of the development branch
of a given Git repository. The development branch is the “upstream” repository from which final or most recent builds
of a project occur. The maintainer is responsible for accepting changes from other developers and for organizing the

underlying branch structure to reflect release strategies and so forth.

42 Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

Note

For information on finding out who is responsible for (maintains) a particular area of code in the Yocto Project, see

the “Identify the component” section of the Yocto Project and OpenEmbedded Contributor Guide.

The Yocto Project poky Git repository also has an upstream contribution Git repository named poky-contrib. You
can see all the branches in this repository using the web interface of the Source Repositories organized within the “Poky
Support” area. These branches hold changes (commits) to the project that have been submitted or committed by the
Yocto Project development team and by community members who contribute to the project. The maintainer determines

if the changes are qualified to be moved from the “contrib” branches into the “master” branch of the Git repository.

Developers (including contributing community members) create and maintain cloned repositories of upstream branches.
The cloned repositories are local to their development platforms and are used to develop changes. When a developer is

satisfied with a particular feature or change, they “push” the change to the appropriate “contrib” repository.

Developers are responsible for keeping their local repository up-to-date with whatever upstream branch they are working
against. They are also responsible for straightening out any conflicts that might arise within files that are being worked on
simultaneously by more than one person. All this work is done locally on the development host before anything is pushed

toa “contrib” area and examined at the maintainer’ s level.

There is a somewhat formal method by which developers commit changes and push them into the ‘“contrib” area and
subsequently request that the maintainer include them into an upstream branch. This process is called “submitting a
patch” or “submitting a change.” For information on submitting patches and changes, see the “Contributing Changes

to a Component” section in the Yocto Project and OpenEmbedded Contributor Guide.

In summary, there is a single point of entry for changes into the development branch of the Git repository, which is
controlled by the project’ s maintainer. A set of developers independently develop, test, and submit changes to “contrib”
areas for the maintainer to examine. The maintainer then chooses which changes are going to become a permanent part

of the project.

git pull
project git pull and push local
"contrib" development
y(p)ngztc(? git repository git repositor
project /
"master" git pull from the
project git pull and push project
source repositories "contrib" development
git repository git repositor
git pull T

While each development environment is unique, there are some best practices or methods that help development run

4.3. The Yocto Project Development Environment 43

https://git.yoctoproject.org

The Yocto Project ®, Release 5.1.1

smoothly. The following list describes some of these practices. For more information about Git workflows, see the

workflow topics in the Git Community Book.

Make Small Changes: It is best to keep the changes you commit small as compared to bundling many disparate
changes into a single commit. This practice not only keeps things manageable but also allows the maintainer to

more easily include or refuse changes.

Make Complete Changes: It is also good practice to leave the repository in a state that allows you to still successfully
build your project. In other words, do not commit half of a feature, then add the other half as a separate, later

commit. Each commit should take you from one buildable project state to another buildable state.

Use Branches Liberally: Tt is very easy to create, use, and delete local branches in your working Git repository on
the development host. You can name these branches anything you like. It is helpful to give them names associated
with the particular feature or change on which you are working. Once you are done with a feature or change and

have merged it into your local development branch, simply discard the temporary branch.

Merge Changes: The git merge command allows you to take the changes from one branch and fold them into
another branch. This process is especially helpful when more than a single developer might be working on different
parts of the same feature. Merging changes also automatically identifies any collisions or “conflicts” that might

happen as a result of the same lines of code being altered by two different developers.

Manage Branches: Because branches are easy to use, you should use a system where branches indicate varying
levels of code readiness. For example, you can have a “work” branch to develop in,a “test” branch where the
code or change is tested, a “stage” branch where changes are ready to be committed, and so forth. As your project

develops, you can merge code across the branches to reflect ever-increasing stable states of the development.

Use Push and Pull: The push-pull workflow is based on the concept of developers “pushing” local commits to a
remote repository, which is usually a contribution repository. This workflow is also based on developers “pulling”
known states of the project down into their local development repositories. The workflow easily allows you to pull
changes submitted by other developers from the upstream repository into your work area ensuring that you have
the most recent software on which to develop. The Yocto Project has two scripts named create-pull-request
and send-pull-request that ship with the release to facilitate this workflow. You can find these scripts in the
scripts folder of the Source Directory. For information on how to use these scripts, see the “Using Scripts to

Push a Change Upstream and Request a Pull” section in the Yocto Project and OpenEmbedded Contributor Guide.

Patch Workflow: This workflow allows you to notify the maintainer through an email that you have a change (or
patch) you would like considered for the development branch of the Git repository. To send this type of change, you
format the patch and then send the email using the Git commands git format-patch and git send-email.
For information on how to use these scripts, see the “Contributing Changes to a Component” section in the Yocto
Project and OpenEmbedded Contributor Guide.

44

Chapter 4. Yocto Project Overview and Concepts Manual

https://book.git-scm.com

The Yocto Project ®, Release 5.1.1

4.3.5 Git

The Yocto Project makes extensive use of Git, which is a free, open source distributed version control system. Git
supports distributed development, non-linear development, and can handle large projects. It is best that you have some
fundamental understanding of how Git tracks projects and how to work with Git if you are going to use the Yocto Project
for development. This section provides a quick overview of how Git works and provides you with a summary of some

essential Git commands.

Note
* For more information on Git, see https://git-scm.com/documentation.

« If you need to download Git, it is recommended that you add Git to your system through your distribution’
s ‘“software store” (e.g. for Ubuntu, use the Ubuntu Software feature). For the Git download page, see

https://git-scm.com/download.

¢ For information beyond the introductory nature in this section, see the “Locating Yocto Project Source Files”

section in the Yocto Project Development Tasks Manual.

Repositories, Tags, and Branches

As mentioned briefly in the previous section and also in the “Git Workflows and the Yocto Project” section, the Yocto
Project maintains source repositories at https://git.yoctoproject.org/. If you look at this web-interface of the repositories,

each item is a separate Git repository.

Git repositories use branching techniques that track content change (not files) within a project (e.g. a new feature or
updated documentation). Creating a tree-like structure based on project divergence allows for excellent historical infor-
mation over the life of a project. This methodology also allows for an environment from which you can do lots of local

experimentation on projects as you develop changes or new features.

A Git repository represents all development efforts for a given project. For example, the Git repository poky contains all
changes and developments for that repository over the course of its entire life. That means that all changes that make up

all releases are captured. The repository maintains a complete history of changes.

You can create a local copy of any repository by “cloning” it with the git clone command. When you clone a Git
repository, you end up with an identical copy of the repository on your development system. Once you have a local copy
of a repository, you can take steps to develop locally. For examples on how to clone Git repositories, see the “Locating

Yocto Project Source Files” section in the Yocto Project Development Tasks Manual.

It is important to understand that Git tracks content change and not files. Git uses “branches” to organize different
development efforts. For example, the poky repository has several branches that include the current “styhead” branch,
the “master” branch, and many branches for past Yocto Project releases. You can see all the branches by going to

https://git.yoctoproject.org/poky/ and clicking on the [. . .] link beneath the “Branch” heading.

Each of these branches represents a specific area of development. The “master” branch represents the current or most

recent development. All other branches represent offshoots of the “master” branch.

4.3. The Yocto Project Development Environment 45

https://git-scm.com/documentation
https://git-scm.com/download
https://git.yoctoproject.org/
https://git.yoctoproject.org/poky/

The Yocto Project ®, Release 5.1.1

When you create a local copy of a Git repository, the copy has the same set of branches as the original. This means
you can use Git to create a local working area (also called a branch) that tracks a specific development branch from the
upstream source Git repository. In other words, you can define your local Git environment to work on any development

branch in the repository. To help illustrate, consider the following example Git commands:

$ cd ~
$ git clone git://git.yoctoproject.org/poky —-b styhead

In the previous example after moving to the home directory, the git clone command creates alocal copy of the upstream
poky Git repository and checks out a local branch named “styhead” , which tracks the upstream “origin/styhead” branch.

Changes you make while in this branch would ultimately affect the upstream “styhead” branch of the poky repository.

It is important to understand that when you create and checkout a local working branch based on a branch name, your
local environment matches the “tip” of that particular development branch at the time you created your local branch,
which could be different from the files in the “master” branch of the upstream repository. In other words, creating and
checking out a local branch based on the “styhead” branch name is not the same as checking out the “master” branch

in the repository. Keep reading to see how you create a local snapshot of a Yocto Project Release.

Gituses “tags” to mark specific changes in a repository branch structure. Typically, a tag is used to mark a special point
such as the final change (or commit) before a project is released. You can see the tags used with the poky Git repository

by going to https://git.yoctoproject.org/poky/ and clicking on the [. . .] link beneath the “Tag” heading.

Some key tags for the poky repository are jethro-14.0.3, morty-16.0.1, pyro-17.0.0, and styhead-5.1.1.

These tags represent Yocto Project releases.

When you create a local copy of the Git repository, you also have access to all the tags in the upstream repository. Similar
to branches, you can create and checkout a local working Git branch based on a tag name. When you do this, you get a
snapshot of the Git repository that reflects the state of the files when the change was made associated with that tag. The

most common use is to checkout a working branch that matches a specific Yocto Project release. Here is an example:

el =~

git clone git://git.yoctoproject.org/poky
cd poky

git fetch --tags

v v W W W»n

git checkout tags/rocko-18.0.0 -b my_rocko-18.0.0

In this example, the name of the top-level directory of your local Yocto Project repository is poky. After moving to the
poky directory, the git fetch command makes all the upstream tags available locally in your repository. Finally, the
git checkout command creates and checks out a branch named “my-rocko-18.0.0” that is based on the upstream
branch whose “HEAD” matches the commit in the repository associated with the “rocko-18.0.0” tag. The files in
your repository now exactly match that particular Yocto Project release as it is tagged in the upstream Git repository. It
is important to understand that when you create and checkout a local working branch based on a tag, your environment

matches a specific point in time and not the entire development branch (i.e. from the “tip” of the branch backwards).

46 Chapter 4. Yocto Project Overview and Concepts Manual

https://git.yoctoproject.org/poky/

The Yocto Project ®, Release 5.1.1

Basic Commands

Git has an extensive set of commands that lets you manage changes and perform collaboration over the life of a project.

Conveniently though, you can manage with a small set of basic operations and workflows once you understand the basic

philosophy behind Git. You do not have to be an expert in Git to be functional. A good place to look for instruction on a

minimal set of Git commands is here.

The following list of Git commands briefly describes some basic Git operations as a way to get started. As with any set

of commands, this list (in most cases) simply shows the base command and omits the many arguments it supports. See

the Git documentation for complete descriptions and strategies on how to use these commands:

git init: Initializes an empty Git repository. You cannot use Git commands unless you have a . git repository.

git clone: Creates a local clone of a Git repository that is on equal footing with a fellow developer’ s Git repository

or an upstream repository.

git add: Locally stages updated file contents to the index that Git uses to track changes. You must stage all files that

have changed before you can commit them.

git commit: Creates a local “commit” that documents the changes you made. Only changes that have been staged
can be committed. Commits are used for historical purposes, for determining if a maintainer of a project will
allow the change, and for ultimately pushing the change from your local Git repository into the project’ s upstream

repository.

git status: Reports any modified files that possibly need to be staged and gives you a status of where you stand

regarding local commits as compared to the upstream repository.

git checkout branch-name: Changes your local working branch and in this form assumes the local branch already

exists. This command is analogous to “cd” .

git checkout -b working-branch upstream-branch: Creates and checks out a working branch on your local machine.
The local branch tracks the upstream branch. You can use your local branch to isolate your work. It is a good idea
to use local branches when adding specific features or changes. Using isolated branches facilitates easy removal of

changes if they do not work out.

git branch: Displays the existing local branches associated with your local repository. The branch that you have

currently checked out is noted with an asterisk character.

git branch -D branch-name: Deletes an existing local branch. You need to be in a local branch other than the one

you are deleting in order to delete branch-name.

git pull --rebase: Retrieves information from an upstream Git repository and places it in your local Git repository.
You use this command to make sure you are synchronized with the repository from which you are basing changes
(e.g. the “styhead” branch). The -—rebase option ensures that any local commits you have in your branch are

preserved at the top of your local branch.

git push repo-name local-branch:upstream-branch: Sends all your committed local changes to the upstream Git
repository that your local repository is tracking (e.g. a contribution repository). The maintainer of the project

draws from these repositories to merge changes (commits) into the appropriate branch of project’ s upstream

4.3.

The Yocto Project Development Environment 47

https://git-scm.com/documentation

The Yocto Project ®, Release 5.1.1

repository.

* git merge: Combines or adds changes from one local branch of your repository with another branch. When you
create a local Git repository, the default branch may be named “main” . A typical workflow is to create a temporary
branch that is based off “main” that you would use for isolated work. You would make your changes in that isolated
branch, stage and commit them locally, switch to the “main” branch, and then use the git merge command to
apply the changes from your isolated branch into the currently checked out branch (e.g. “main”). After the merge

is complete and if you are done with working in that isolated branch, you can safely delete the isolated branch.

e git cherry-pick commits: Choose and apply specific commits from one branch into another branch. There are times

when you might not be able to merge all the changes in one branch with another but need to pick out certain ones.

* gitk: Provides a GUI view of the branches and changes in your local Git repository. This command is a good way

to graphically see where things have diverged in your local repository.

Note

You need to install the gitk package on your development system to use this command.

* git log: Reports a history of your commits to the repository. This report lists all commits regardless of whether you

have pushed them upstream or not.

* git diff: Displays line-by-line differences between a local working file and the same file as understood by Git. This

command is useful to see what you have changed in any given file.

4.3.6 Licensing

Because open source projects are open to the public, they have different licensing structures in place. License evolution
for both Open Source and Free Software has an interesting history. If you are interested in this history, you can find basic

information here:
* Open source license history
 Free software license history
In general, the Yocto Project is broadly licensed under the Massachusetts Institute of Technology (MIT) License. MIT

licensing permits the reuse of software within proprietary software as long as the license is distributed with that software.

Patches to the Yocto Project follow the upstream licensing scheme. You can find information on the MIT license here.

When you build an image using the Yocto Project, the build process uses a known list of licenses to ensure compliance.
You can find this list in the Source Directory at meta/files/common-licenses. Once the build completes, the list of

all licenses found and used during that build are kept in the Build Directory at tmp/deploy/licenses.

If a module requires a license that is not in the base list, the build process generates a warning during the build. These
tools make it easier for a developer to be certain of the licenses with which their shipped products must comply. However,

even with these tools it is still up to the developer to resolve potential licensing issues.

48 Chapter 4. Yocto Project Overview and Concepts Manual

https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Free_software_license
https://en.wikipedia.org/wiki/MIT_License

The Yocto Project ®, Release 5.1.1

The base list of licenses used by the build process is a combination of the Software Package Data Exchange (SPDX) list
and the Open Source Initiative (OSI) projects. SPDX Group is a working group of the Linux Foundation that maintains a
specification for a standard format for communicating the components, licenses, and copyrights associated with a software
package. OSl is a corporation dedicated to the Open Source Definition and the effort for reviewing and approving licenses

that conform to the Open Source Definition (OSD).

You can find a list of the combined SPDX and OSI licenses that the Yocto Project uses in the meta/files/

common-1licenses directory in your Source Directory.

For information that can help you maintain compliance with various open source licensing during the lifecycle of a product

”

created using the Yocto Project, see the “Maintaining Open Source License Compliance During Your Product’ s Lifecycle

section in the Yocto Project Development Tasks Manual.

4.4 Yocto Project Concepts

This chapter provides explanations for Yocto Project concepts that go beyond the surface of “how-to” information
and reference (or look-up) material. Concepts such as components, the OpenEmbedded Build System workflow, cross-

development toolchains, shared state cache, and so forth are explained.

4.4.1 Yocto Project Components

The BitBake task executor together with various types of configuration files form the OpenEmbedded-Core (OE-Core).

This section overviews these components by describing their use and how they interact.
BitBake handles the parsing and execution of the data files. The data itself is of various types:
* Recipes: Provides details about particular pieces of software.
¢ Class Data: Abstracts common build information (e.g. how to build a Linux kernel).

* Configuration Data: Defines machine-specific settings, policy decisions, and so forth. Configuration data acts as

the glue to bind everything together.

BitBake knows how to combine multiple data sources together and refers to each data source as a layer. For information

on layers, see the “Understanding and Creating Layers” section of the Yocto Project Development Tasks Manual.

Here are some brief details on these core components. For additional information on how these components interact

during a build, see the “OpenEmbedded Build System Concepts” section.

BitBake

BitBake is the tool at the heart of the OpenEmbedded Build System and is responsible for parsing the Metadata, generating

a list of tasks from it, and then executing those tasks.
This section briefly introduces BitBake. If you want more information on BitBake, see the BitBake User Manual.

To see a list of the options BitBake supports, use either of the following commands:

4.4. Yocto Project Concepts 49

https://spdx.org
https://opensource.org
https://docs.yoctoproject.org/bitbake/2.10/index.html

The Yocto Project ®, Release 5.1.1

$ bitbake -h
$ bitbake --help

The most common usage for BitBake is bitbake recipename, where recipename is the name of the recipe you want
to build (referred to as the “target”). The target often equates to the first part of a recipe’ s filename (e.g. “foo” for
a recipe named foo_1.3.0-r0.bb). So, to process the matchbox-desktop_1.2.3.bb recipe file, you might type
the following:

$ bitbake matchbox-desktop

Several different versions of matchbox-desktop might exist. BitBake chooses the one selected by the distribution
configuration. You can get more details about how BitBake chooses between different target versions and providers in the

“Preferences” section of the BitBake User Manual.

BitBake also tries to execute any dependent tasks first. So for example, before building mat chbox-desktop, BitBake

would build a cross compiler and glibc if they had not already been built.

A useful BitBake option to consider is the -k or ——cont inue option. This option instructs BitBake to try and continue
processing the job as long as possible even after encountering an error. When an error occurs, the target that failed and

those that depend on it cannot be remade. However, when you use this option other dependencies can still be processed.

Recipes

Files that have the . bb suffix are “recipes” files. In general, a recipe contains information about a single piece of software.
This information includes the location from which to download the unaltered source, any source patches to be applied to
that source (if needed), which special configuration options to apply, how to compile the source files, and how to package
the compiled output.

The term “package” is sometimes used to refer to recipes. However, since the word “package” is used for the packaged
)

output from the OpenEmbedded build system (i.e. . ipk or .deb files), this document avoids using the term “package’

when referring to recipes.

Classes

Class files (.bbclass) contain information that is useful to share between recipes files. An example is the autotools*
class, which contains common settings for any application that is built with the GNU Autotools. The “Classes” chapter

in the Yocto Project Reference Manual provides details about classes and how to use them.

Configurations

The configuration files (.conf) define various configuration variables that govern the OpenEmbedded build process.
These files fall into several areas that define machine configuration options, distribution configuration options, compiler
tuning options, general common configuration options, and user configuration options in conf/local.conf, which is

found in the Build Directory.

50 Chapter 4. Yocto Project Overview and Concepts Manual

https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-execution.html#preferences
https://en.wikipedia.org/wiki/GNU_Autotools

The Yocto Project ®, Release 5.1.1

4.4.2 Layers

Layers are repositories that contain related metadata (i.e. sets of instructions) that tell the OpenEmbedded build system
how to build a target. 7he Yocto Project Layer Model facilitates collaboration, sharing, customization, and reuse within
the Yocto Project development environment. Layers logically separate information for your project. For example, you
can use a layer to hold all the configurations for a particular piece of hardware. Isolating hardware-specific configurations
allows you to share other metadata by using a different layer where that metadata might be common across several pieces

of hardware.

There are many layers working in the Yocto Project development environment. The Yocto Project Compatible Layer

Index and OpenEmbedded Layer Index both contain layers from which you can use or leverage.

By convention, layers in the Yocto Project follow a specific form. Conforming to a known structure allows BitBake to
make assumptions during builds on where to find types of metadata. You can find procedures and learn about tools (i.e.
bitbake-layers) for creating layers suitable for the Yocto Project in the “Understanding and Creating Layers” section

of the Yocto Project Development Tasks Manual.

4.4.3 OpenEmbedded Build System Concepts

This section takes a more detailed look inside the build process used by the OpenEmbedded Build System, which is the
build system specific to the Yocto Project. At the heart of the build system is BitBake, the task executor.

The following diagram represents the high-level workflow of a build. The remainder of this section expands on the

fundamental input, output, process, and metadata logical blocks that make up the workflow.

Source Materials
User
Configuration

Metadata
(-bb +
patches)

Openembedded Architecture Workflow

bl Upstream Source u Cutput Packages
Metadatanputs Process steps (tasks)
Build system Output Image Data

Machine BSP
Configuration
Policy
Configuration Config Application

Development
SDK

yocto - [Juinux

FREGIECY

4.4. Yocto Project Concepts 51

https://www.yoctoproject.org/software-overview/layers/
https://www.yoctoproject.org/software-overview/layers/
https://layers.openembedded.org

The Yocto Project ®, Release 5.1.1

In general, the build’” s workflow consists of several functional areas:

User Configuration: metadata you can use to control the build process.
Metadata Layers: Various layers that provide software, machine, and distro metadata.
Source Files: Upstream releases, local projects, and SCMs.

Build System: Processes under the control of BitBake. This block expands on how BitBake fetches source, ap-
plies patches, completes compilation, analyzes output for package generation, creates and tests packages, generates

images, and generates cross-development tools.

Package Feeds: Directories containing output packages (RPM, DEB or IPK), which are subsequently used in the
construction of an image or Software Development Kit (SDK), produced by the build system. These feeds can
also be copied and shared using a web server or other means to facilitate extending or updating existing images on

devices at runtime if runtime package management is enabled.
Images: Images produced by the workflow.

Application Development SDK: Cross-development tools that are produced along with an image or separately with
BitBake.

User Configuration

User configuration helps define the build. Through user configuration, you can tell BitBake the target architecture for

which you are building the image, where to store downloaded source, and other build properties.

The following figure shows an expanded representation of the “User Configuration” box of the general workflow figure:

Source Directory (e.g. poky directory)

bitbake User Conl'_'lguratlon
. Edits

build

documentation * | A

meta . .

Build Directo | ;
meta-poky ryV - bitbake
meta-selftest conf <tar;_:|et>
meta-skeleton - bblayers.conf \ 4
meta-yocto-bsp local.conf
Scripts site.conf :

oe-setup-builddir auto.conf BitBake
|
oe-init-build-env D e oe-init-build-env

BitBake needs some basic configuration files in order to complete a build. These files are * . conf files. The minimally

necessary ones reside as example files in the build/conf directory of the Source Directory. For simplicity, this section

refers to the Source Directory as the “Poky Directory.”

52

Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

When you clone the Poky Git repository or you download and unpack a Yocto Project release, you can set up the Source

Directory to be named anything you want. For this discussion, the cloned repository uses the default name poky.

Note

The Poky repository is primarily an aggregation of existing repositories. It is not a canonical upstream source.

The meta-poky layer inside Poky contains a conf directory that has example configuration files. These example files
are used as a basis for creating actual configuration files when you source oe-init-build-env, which is the build environment

script.

Sourcing the build environment script creates a Build Directory if one does not already exist. BitBake uses the Build
Directory for all its work during builds. The Build Directory has a conf directory that contains default versions of your
local.conf and bblayers.conf configuration files. These default configuration files are created only if versions do

not already exist in the Build Directory at the time you source the build environment setup script.

Because the Poky repository is fundamentally an aggregation of existing repositories, some users might be familiar with
running the oe-init-build-env script in the context of separate OpenEmbedded-Core (OE-Core) and BitBake repositories
rather than a single Poky repository. This discussion assumes the script is executed from within a cloned or unpacked

version of Poky.

Depending on where the script is sourced, different sub-scripts are called to set up the Build Directory (Yocto or OpenEm-
bedded). Specifically, the script scripts/oe-setup-builddir inside the poky directory sets up the Build Directory

and seeds the directory (if necessary) with configuration files appropriate for the Yocto Project development environment.

Note

The scripts/oe-setup-builddir script uses the $TEMPLATECONF variable to determine which sample configuration files

to locate.

The local.conf file provides many basic variables that define a build environment. Here is a list of a few. To see
the default configurations in a 1ocal. conf file created by the build environment script, see the local.conf.sample in the

meta-poky layer:
 Target Machine Selection: Controlled by the MACHINE variable.
* Download Directory: Controlled by the DL_DIR variable.
e Shared State Directory: Controlled by the SSTATE_DIR variable.
* Build Output: Controlled by the TMPDIR variable.
* Distribution Policy: Controlled by the DISTRO variable.
* Packaging Format: Controlled by the PACKAGE_CLASSES variable.

* SDK Target Architecture: Controlled by the SDKMACHINE variable.

4.4. Yocto Project Concepts 53

https://git.yoctoproject.org/poky/tree/meta-poky/conf/templates/default/local.conf.sample

The Yocto Project ®, Release 5.1.1

 Extra Image Packages: Controlled by the EXTRA_IMAGE_FEATURES variable.

Note

Configurations set in the conf/local.conf file can also be set in the conf/site.conf and conf/auto.conf

configuration files.

The bblayers. conf file tells BitBake what layers you want considered during the build. By default, the layers listed in
this file include layers minimally needed by the build system. However, you must manually add any custom layers you

have created. You can find more information on working with the bblayers.conf file in the “Enabling Your Layer’

section in the Yocto Project Development Tasks Manual.

The files site.conf and auto.conf are not created by the environment initialization script. If you want the site.

conf file, you need to create it yourself. The auto. conf file is typically created by an autobuilder:

e site.conf: You can use the conf/site.conf configuration file to configure multiple build directories. For example,
suppose you had several build environments and they shared some common features. You can set these default build

properties here. A good example is perhaps the packaging format to use through the PACKAGE _CLASSES variable.

¢ auto.conf: The file is usually created and written to by an autobuilder. The settings put into the file are typically the

same as you would find in the conf/local.conf or the conf/site.conf files.

You can edit all configuration files to further define any particular build environment. This process is represented by the

“User Configuration Edits” box in the figure.

When you launch your build with the bitbake target command, BitBake sorts out the configurations to ultimately
define your build environment. It is important to understand that the OpenEmbedded Build System reads the configura-
tion files in a specific order: site.conf, auto.conf, and local.conf. And, the build system applies the normal
assignment statement rules as described in the “Syntax and Operators” chapter of the BitBake User Manual. Because
the files are parsed in a specific order, variable assignments for the same variable could be affected. For example, if the
auto.conf file and the 1ocal.conf set variablel to different values, because the build system parses local.conf

after auto.conf, variablel is assigned the value from the 1ocal. conf file.

Metadata, Machine Configuration, and Policy Configuration

The previous section described the user configurations that define BitBake’ s global behavior. This section takes a closer
look at the layers the build system uses to further control the build. These layers provide Metadata for the software,

machine, and policies.

In general, there are three types of layer input. You can see them below the “User Configuration” box in the general

workflow figure <overview-manual/concepts:openembedded build system concepts>:

* Metadata (.bb + Patches): Software layers containing user-supplied recipe files, patches, and append files. A good
example of a software layer might be the meta-qt5 layer from the OpenEmbedded Layer Index. This layer is
for version 5.0 of the popular Qt cross-platform application development framework for desktop, embedded and

mobile.

54 Chapter 4. Yocto Project Overview and Concepts Manual

https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html
https://layers.openembedded.org/layerindex/branch/master/layer/meta-qt5
https://layers.openembedded.org
https://wiki.qt.io/About_Qt

The Yocto Project ®, Release 5.1.1

* Machine BSP Configuration: Board Support Package (BSP) layers (i.e. “BSP Layer” in the following figure)
providing machine-specific configurations. This type of information is specific to a particular target architecture.

A good example of a BSP layer from the Reference Distribution (Poky) is the meta-yocto-bsp layer.

e Policy Configuration: Distribution Layers (i.e. “Distro Layer” in the following figure) providing top-level or general
policies for the images or SDKs being built for a particular distribution. For example, in the Poky Reference
Distribution the distro layer is the meta-poky layer. Within the distro layer is a conf/distro directory that

contains distro configuration files (e.g. poky.conf that contain many policy configurations for the Poky distribution.

The following figure shows an expanded representation of these three layers from the general workflow figure:

Layers
Distro Layer BSP Layer
COPYING.MIT COPYING.MIT
README README
classes conf
<class=. bbclass machine
<class= bbclass <machine=.conf
conf include
layer.conf *.inc
distro layer.conf
=distro=.conf recipes-bsp Metadata
<distro=.conf fomnfactor Machine BSP Configuration
include fomfactor Policy Configuration
* <) ne=
ine ":::E'rﬂznﬁg Build Directory
Becipes-#* fermfactor*. bbappend conf
<recipe= recipes-core bblayers.conf
<recipe> <recipe>
<recipe>.bb files
<recipe>.bbappend <recipe>.bbappend *
files recipes-graphics
<recipe> <recipe> bitbake <target>
<distro=> <recipe=
defconfig <machine>
*.conf z
Software Layer <recipe>.bbappend BitBake
COPYING.MIT recipeskemnel
README linwe
classes files
<class=.bbclass <machine=.cfg
<class>.bbclass <machine>. scc
conf <recipe=.bbappend
layer.conf
recipes-*
<recipe=
<recipe>.bb
<recipe>
=recipe=.bb
=recipe>
* patch
<recipe=
<recipe>.bb
files
* patch

In general, all layers have a similar structure. They all contain a licensing file (e.g. COPYING.MIT) if the layer is to be
distributed, a README file as good practice and especially if the layer is to be distributed, a configuration directory, and
recipe directories. You can learn about the general structure for layers used with the Yocto Project in the “Creating Your
Own Layer” section in the Yocto Project Development Tasks Manual. For a general discussion on layers and the many
layers from which you can draw, see the “Layers” and “The Yocto Project Layer Model” sections both earlier in this

manual.

If you explored the previous links, you discovered some areas where many layers that work with the Yocto Project exist.

4.4. Yocto Project Concepts 55

https://git.yoctoproject.org/poky/tree/meta-yocto-bsp
https://git.yoctoproject.org/poky/tree/meta-poky
https://git.yoctoproject.org/poky/tree/meta-poky/conf/distro/poky.conf

The Yocto Project ®, Release 5.1.1

The Source Repositories also shows layers categorized under ‘Yocto Metadata Layers.”

Note

There are layers in the Yocto Project Source Repositories that cannot be found in the OpenEmbedded Layer Index.

Such layers are either deprecated or experimental in nature.

BitBake uses the conf/bblayers.conf file, which is part of the user configuration, to find what layers it should be

using as part of the build.

Distro Layer

The distribution layer provides policy configurations for your distribution. Best practices dictate that you isolate these
types of configurations into their own layer. Settings you provide in conf/distro/distro.conf override similar

settings that BitBake finds in your conf/local.conf file in the Build Directory.
The following list provides some explanation and references for what you typically find in the distribution layer:

¢ classes: Class files (.bbclass) hold common functionality that can be shared among recipes in the distribution.
When your recipes inherit a class, they take on the settings and functions for that class. You can read more about

class files in the “Classes” chapter of the Yocto Reference Manual.

 conf: This area holds configuration files for the layer (conf/layer.conf), the distribution (conf/distro/

distro.conf), and any distribution-wide include files.

* recipes-:* Recipes and append files that affect common functionality across the distribution. This area could include
recipes and append files to add distribution-specific configuration, initialization scripts, custom image recipes, and
so forth. Examples of recipes—* directories are recipes—core and recipes—extra. Hierarchy and contents
within a recipes-* directory can vary. Generally, these directories contain recipe files (*.bb), recipe append

files (* .bbappend), directories that are distro-specific for configuration files, and so forth.

BSP Layer

The BSP Layer provides machine configurations that target specific hardware. Everything in this layer is specific to the
machine for which you are building the image or the SDK. A common structure or form is defined for BSP layers. You

can learn more about this structure in the Yocto Project Board Support Package Developer’ s Guide.

Note

In order for a BSP layer to be considered compliant with the Yocto Project, it must meet some structural requirements.

The BSP Layer’ s configuration directory contains configuration files for the machine (conf /machine/machine.conf)

and, of course, the layer (conf/layer.conf).

The remainder of the layer is dedicated to specific recipes by function: recipes-bsp, recipes-core,

56 Chapter 4. Yocto Project Overview and Concepts Manual

https://git.yoctoproject.org

The Yocto Project ®, Release 5.1.1

recipes—graphics, recipes-kernel, and so forth. There can be metadata for multiple formfactors, graphics sup-

port systems, and so forth.

Note

While the figure shows several recipes-* directories, not all these directories appear in all BSP layers.

Software Layer

The software layer provides the Metadata for additional software packages used during the build. This layer does not

include Metadata that is specific to the distribution or the machine, which are found in their respective layers.

This layer contains any recipes, append files, and patches, that your project needs.

Sources

In order for the OpenEmbedded build system to create an image or any target, it must be able to access source files.
The general workflow figure represents source files using the “Upstream Project Releases” , “Local Projects” , and
“SCMs (optional)” boxes. The figure represents mirrors, which also play a role in locating source files, with the “Source

Materials” box.

The method by which source files are ultimately organized is a function of the project. For example, for released software,
projects tend to use tarballs or other archived files that can capture the state of a release guaranteeing that it is statically
represented. On the other hand, for a project that is more dynamic or experimental in nature, a project might keep source
files in a repository controlled by a Source Control Manager (SCM) such as Git. Pulling source from a repository allows
you to control the point in the repository (the revision) from which you want to build software. A combination of the two

is also possible.

BitBake uses the SRC_URI variable to point to source files regardless of their location. Each recipe must have a SRC_URI

variable that points to the source.

Another area that plays a significant role in where source files come from is pointed to by the DL_DIR variable. This
area is a cache that can hold previously downloaded source. You can also instruct the OpenEmbedded build system
to create tarballs from Git repositories, which is not the default behavior, and store them in the DL_DIR by using the
BB_GENERATE_MIRROR_TARBALLS variable.

Judicious use of a DL_DIR directory can save the build system a trip across the Internet when looking for files. A good
method for using a download directory is to have DL_DIR point to an area outside of your Build Directory. Doing so

allows you to safely delete the Build Directory if needed without fear of removing any downloaded source file.

The remainder of this section provides a deeper look into the source files and the mirrors. Here is a more detailed look

at the source file area of the general workflow figure:

4.4. Yocto Project Concepts 57

The Yocto Project ®, Release 5.1.1

Upstream Local SCMs
Project Releases Projects {optional)
Local Source Tree
busybox meta-qts
=<directory> .
Git
busybox-1.28.3.tarbz2 <file=
=file>
qt <directory> meta-altera
<file= Git
gt-everywhere-opensource-src-5.5.1. tar.gz =file=
=directory> opkg
dbus
Local Source Tree Subwversion
dbus-1.13.2.targz R
=flle>
<recipe> <files
Tarball, ZIP File, or Other Archive Files P
<file>
=file>
<directory>
Source Material
Mirrors Pre-Mirrors (Local Shared Directories)
Remotely Stored Archive Files Locally Stored Archive Files

Upstream Project Releases

Upstream project releases exist anywhere in the form of an archived file (e.g. tarball or zip file). These files correspond
to individual recipes. For example, the figure uses specific releases each for BusyBox, Qt, and Dbus. An archive file can

be for any released product that can be built using a recipe.

Local Projects

Local projects are custom bits of software the user provides. These bits reside somewhere local to a project —perhaps

a directory into which the user checks in items (e.g. a local directory containing a development source tree used by the
group).
The canonical method through which to include a local project is to use the externalsrc class to include that local project.

You use either the 1ocal.conf orarecipe’ s append file to override or set the recipe to point to the local directory on

your disk to pull in the whole source tree.

58 Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

Source Control Managers (Optional)

Another place from which the build system can get source files is with Fetchers employing various Source Control Man-
agers (SCMs) such as Git or Subversion. In such cases, a repository is cloned or checked out. The do_fetch task inside

BitBake uses the SRC_URI variable and the argument’ s prefix to determine the correct fetcher module.

Note

For information on how to have the OpenEmbedded build system generate tarballs for Git repositories and place them
in the DL_DIR directory, see the BB_.GENERATE _MIRROR _TARBALLS variable in the Yocto Project Reference

Manual.

When fetching a repository, BitBake uses the SRCREV variable to determine the specific revision from which to build.

Source Mirror(s)

There are two kinds of mirrors: pre-mirrors and regular mirrors. The PREMIRRORS and MIRRORS variables point to
these, respectively. BitBake checks pre-mirrors before looking upstream for any source files. Pre-mirrors are appropriate
when you have a shared directory that is not a directory defined by the DL_DIR variable. A Pre-mirror typically points to

a shared directory that is local to your organization.

Regular mirrors can be any site across the Internet that is used as an alternative location for source code should the primary

site not be functioning for some reason or another.

Package Feeds

When the OpenEmbedded build system generates an image or an SDK, it gets the packages from a package feed area

located in the Build Directory. The general workflow figure shows this package feeds area in the upper-right corner.

This section looks a little closer into the package feeds area used by the build system. Here is a more detailed look at the

areca:

4.4. Yocto Project Concepts 59

https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-fetching.html#fetchers

The Yocto Project ®, Release 5.1.1

BitBake Package Feeds

Build Directory

poky
build
tmp
deploy DEPLOY_DIR
<package_type> DEPLOY_DIR_*
<package_arch> PACKAGE_ARCH

*=type=

PACKAGE_ARCH

.ipk
Generation

Package feeds are an intermediary step in the build process. The OpenEmbedded build system provides classes to generate
different package types, and you specify which classes to enable through the PACKAGE_CLASSES variable. Before placing
the packages into package feeds, the build process validates them with generated output quality assurance checks through

the insane class.

The package feed area resides in the Build Directory. The directory the build system uses to temporarily store packages is
determined by a combination of variables and the particular package manager in use. See the ‘“Package Feeds” box in
the illustration and note the information to the right of that area. In particular, the following defines where package files

are kept:
e DEPLOY_DIR: Defined as tmp/deploy in the Build Directory.

* DEPLOY_DIR_*: Depending on the package manager used, the package type sub-folder. Given RPM, IPK, or DEB
packaging and tarball creation, the DEPLOY_DIR_RPM, DEPLOY_DIR_IPK, or DEPLOY_DIR_DERB variables are

used, respectively.

* PACKAGE_ARCH: Defines architecture-specific sub-folders. For example, packages could be available for the 1586

60 Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

or gemux86 architectures.

BitBake uses the do_package_write_* tasks to generate packages and place them into the package holding area (e.g.
do_package_write_ipk for IPK packages). See the “do_package_write_deb” , “do_package_write_ipk” , and
“do_package_write_rpm” sections in the Yocto Project Reference Manual for additional information. As an example,
consider a scenario where an IPK packaging manager is being used and there is package architecture support for both
1586 and gemux86. Packages for the 1586 architecture are placed in build/tmp/deploy/ipk/i586, while packages
for the gemux86 architecture are placed in build/tmp/deploy/ipk/gemux86.

BitBake Tool

The OpenEmbedded build system uses BitBake to produce images and Software Development Kits (SDKs). You can see
from the general workflow figure, the BitBake area consists of several functional areas. This section takes a closer look at

each of those areas.

Note

Documentation for the BitBake tool is available separately. See the BitBake User Manual for reference material on
BitBake.

Source Fetching

The first stages of building a recipe are to fetch and unpack the source code:

4.4. Yocto Project Concepts 61

https://docs.yoctoproject.org/bitbake/2.10/index.html

The Yocto Project ®, Release 5.1.1

Upstream
Project
Releases

Local SCMs
Projects (optional)

Build Directory

tmp «f TMPDIR
Source Fetching work

£ {PACKAGE_ARCH}-poky-${TARGET 05}
WORKDIR

${PV}-${PR}
${BPN}-${PV} <& 5
${MACHINE}-poky-$ {TARGET 05}
${PN}
${Pv}-s{PR} < WORKDIR
${BPN}-${PV} < 5

The do_fetch and do_unpack tasks fetch the source files and unpack them into the Build Directory.

Note

For every local file (e.g. file://) thatis part of a recipe’ s SRC_URI statement, the OpenEmbedded build system
takes a checksum of the file for the recipe and inserts the checksum into the signature for the do_fetch task. If any

local file has been modified, the do_fetch task and all tasks that depend on it are re-executed.

By default, everything is accomplished in the Build Directory, which has a defined structure. For additional general

information on the Build Directory, see the “build/” section in the Yocto Project Reference Manual.

Each recipe has an area in the Build Directory where the unpacked source code resides. The S variable points to this area
for a recipe’ s unpacked source code. The name of that directory for any given recipe is defined from several different

variables. The preceding figure and the following list describe the Build Directory’ s hierarchy:

e TMPDIR: The base directory where the OpenEmbedded build system performs all its work during the build. The
default base directory is the tmp directory.

* PACKAGE_ARCH: The architecture of the built package or packages. Depending on the eventual destination of the

62 Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

package or packages (i.e. machine architecture, Build Host, SDK, or specific machine), PACKAGE_ARCH varies.

See the variable’ s description for details.

e TARGET _OS: The operating system of the target device. A typical value would be “linux” (e.g. “qemux86-
poky-linux”).

¢ PN: The name of the recipe used to build the package. This variable can have multiple meanings. However, when

used in the context of input files, PN represents the name of the recipe.

e WORKDIR: The location where the OpenEmbedded build system builds a recipe (i.e. does the work to create the
package).

— PV: The version of the recipe used to build the package.
— PR: The revision of the recipe used to build the package.
* S: Contains the unpacked source files for a given recipe.

— BPN: The name of the recipe used to build the package. The BPN variable is a version of the PN variable but

with common prefixes and suffixes removed.

— PV: The version of the recipe used to build the package.

Note

In the previous figure, notice that there are two sample hierarchies: one based on package architecture (i.e. PACK-
AGE_ARCH) and one based on a machine (i.e. MACHINE). The underlying structures are identical. The differentiator
being what the OpenEmbedded build system is using as a build target (e.g. general architecture, a build host, an SDK,

or a specific machine).

Patching

Once source code is fetched and unpacked, BitBake locates patch files and applies them to the source files:

4.4. Yocto Project Concepts 63

The Yocto Project ®, Release 5.1.1

Upstream
Project
Releases

Local SCMs
Projects (optional)

Patch Application

Build Directory

Recipes tm‘fmf TMPDIR
SRC_URI = "... \ ${PACKAGE_ARCH}-poky-${TARGET_0OS}
=patch_file=\ s{PN}
- s{Pv}-s{Pr} & WORKDIR
${BPN}-$ {PV} < s
${MACHINE }-poky-${TARGET_OS}
s{PN}
Patch Files s{Pv}-s{PR} WORKDIR
* patch ${BPN}-${PV} < S
* diff

The do_patch task uses a recipe’ s SRC_URI statements and the FILESPATH variable to locate applicable patch files.

Default processing for patch files assumes the files have either *.patch or *.diff file types. You can use SRC_URI

parameters to change the way the build system recognizes patch files. See the do_patch task for more information.

BitBake finds and applies multiple patches for a single recipe in the order in which it locates the patches. The FILESPATH
variable defines the default set of directories that the build system uses to search for patch files. Once found, patches are

applied to the recipe’ s source files, which are located in the S directory.

For more information on how the source directories are created, see the “Source Fetching” section. For more information
on how to create patches and how the build system processes patches, see the “Patching Code” section in the Yocto Project
Development Tasks Manual. You can also see the “Use deviool modify to Modify the Source of an Existing Component”
section in the Yocto Project Application Development and the Extensible Software Development Kit (SDK) manual and
the “Using Traditional Kernel Development to Patch the Kernel” section in the Yocto Project Linux Kernel Development

Manual.

64 Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

Configuration, Compilation, and Staging

After source code is patched, BitBake executes tasks that configure and compile the source code. Once compilation

occurs, the files are copied to a holding area (staged) in preparation for packaging:

Upstream
Project
Releases

Local SCMs
Projects (optional)

Source Mirror(s)

Build Directory

Configure / Compile / g : TMPDIR
led wWol
Autoreconf as N ${PACKAGE_ARCH}-poky-${TARGET_OS}
s{PN}
${PV}-${PR} «¢ WORKDIR
${BPN}-${PV]} «f S/B

D

image o

recipe-sysroot

recipe-sysroot-native
${MACHINE }-poky-${TARGET_OS}

${PN}
${PV}-${PR} < WORKDIR
${BPN}-${PV} S/B
image D

recipe-sysroot
recipe-sysroot-native

This step in the build process consists of the following tasks:

* do_prepare_recipe_sysroot: This task sets up the two sysroots in ${ WORKDIR} (i.e. recipe-sysroot and
recipe-sysroot—-native) so that during the packaging phase the sysroots can contain the contents of the
do_populate_sysroot tasks of the recipes on which the recipe containing the tasks depends. A sysroot exists for

both the target and for the native binaries, which run on the host system.

* do_configure: This task configures the source by enabling and disabling any build-time and configuration options
for the software being built. Configurations can come from the recipe itself as well as from an inherited class.

Additionally, the software itself might configure itself depending on the target for which it is being built.

The configurations handled by the do_configure task are specific to configurations for the source code being built

by the recipe.

If you are using the autotools* class, you can add additional configuration options by using the EXTRA_OECONF
or PACKAGECONFIG _CONFARGS variables. For information on how this variable works within that class, see the

4.4. Yocto Project Concepts 65

The Yocto Project ®, Release 5.1.1

autotools* class here.

* do_compile: Once a configuration task has been satisfied, BitBake compiles the source using the do_compile task.
Compilation occurs in the directory pointed to by the B variable. Realize that the B directory is, by default, the

same as the S directory.

* do_install: After compilation completes, BitBake executes the do_install task. This task copies files from the B
directory and places them in a holding area pointed to by the D variable. Packaging occurs later using files from

this holding directory.

Package Splitting

After source code is configured, compiled, and staged, the build system analyzes the results and splits the output into

packages:

66 Chapter 4. Yocto Project Overview and Concepts Manual

https://git.yoctoproject.org/poky/tree/meta/classes-recipe/autotools.bbclass

The Yocto Project ®, Release 5.1.1

Upstream Uneal SCMs
Projects (optional)

Project
Releases

TMPDIR

tmp
work
S{PACKAGE ARCH}-poky-5{ TARGET 05}
S{PN}
${PV}-${PR} &
S{BPN}-5{PV}
image
package
pkogdata
packages-split .«
S1PN}
recipe-sysmot
recipe-sysmot-native
S{MACHINE}-poky-3{TARGET_O5}
S{PN}
s{PV}-s{PR}
S{BPN}-5{PV}
image
package
pkgdata
packages-split
S1PN}
recipe-sysmot
recipe-sysmot-native

WORKDIR
5/B

D

PKGD

PEGDESTWORK
PEGDEST

PKGD
PKGDESTWORK
PKGDEST

STAGING DIR
STAGING DIR_HOST
STAGING DIR_MATIVE
STAGING_DIR_TARGET

The do_package and do_packagedata tasks combine to analyze the files found in the D directory and split them into subsets
based on available packages and files. Analysis involves the following as well as other items: splitting out debugging

symbols, looking at shared library dependencies between packages, and looking at package relationships.

The do_packagedata task creates package metadata based on the analysis such that the build system can generate the
final packages. The do_populate_sysroot task stages (copies) a subset of the files installed by the do_install task into the
appropriate sysroot. Working, staged, and intermediate results of the analysis and package splitting process use several

areas:

* PKGD: The destination directory (i.e. package) for packages before they are split into individual packages.

4.4. Yocto Project Concepts 67

The Yocto Project ®, Release 5.1.1

e PKGDESTWORK: A temporary work area (i.e. pkgdata) used by the do_package task to save package metadata.
e PKGDEST: The parent directory (i.e. packages—split) for packages after they have been split.

e PKGDATA_DIR: A shared, global-state directory that holds packaging metadata generated during the packaging
process. The packaging process copies metadata from PKGDESTWORK to the PKGDATA_DIR area where it be-

comes globally available.

* STAGING _DIR_HOST: The path for the sysroot for the system on which a component is built to run (i.e.
recipe-sysroot).
e STAGING _DIR_NATIVE: The path for the sysroot used when building components for the build host (i.e.

recipe-sysroot—native).

e STAGING _DIR_TARGET: The path for the sysroot used when a component that is built to execute on a system and

it generates code for yet another machine (e.g. cross-canadian recipes).

Packages for a recipe are listed in the PACKAGES variable. The bitbake.conf configuration file defines the following
default list of packages:

PACKAGES = "$ —src S —-dbg $ —-staticdev $ —-dev $ —-doc $ —-locale $

. $ n

Each of these packages contains a default list of files defined with the FILES variable. For example, the package
${PN}-dev represents files useful to the development of applications depending on ${PN}. The default list of files

for ${PN}-dev, also defined in bitbake.conf, is defined as follows:

FILES:${PN}-dev = "S${includedir} S${FILES_SOLIBSDEV} ${libdir}/*.la \
${libdir}/*.0 ${libdir}/pkgconfig ${datadir}/pkgconfig \
S{datadir}/aclocal ${base_libdir}/*.o \
${1libdir}/S$S{BPN}/*.la S{base_libdir}/*.la \
${libdir}/cmake ${datadir}/cmake"

The paths in this list must be absolute paths from the point of view of the root filesystem on the target, and must not make

a reference to the variable D or any WORKDIR related variable. A correct example would be:

${sysconfdir}/foo.conf

Note

The list of files for a package is defined using the override syntax by separating F/LES and the package name by a

semi-colon (:).

A given file can only ever be in one package. By iterating from the leftmost to rightmost package in PACKAGES, each file

matching one of the patterns defined in the corresponding F/LES definition is included in the package.

68 Chapter 4. Yocto Project Overview and Concepts Manual

https://git.openembedded.org/openembedded-core/tree/meta/conf/bitbake.conf
https://git.openembedded.org/openembedded-core/tree/meta/conf/bitbake.conf

The Yocto Project ®, Release 5.1.1

Note

To find out which package installs a file, the oe-pkgdata-util command-line utility can be used:

$ oe-pkgdata-util find-path '/etc/fstab'
base-files: /etc/fstab

For more information on the ce-pkgdata-util utility, see the section Viewing Package Information with oe-

pkgdata-util of the Yocto Project Development Tasks Manual.

To add a custom package variant of the ${PN} recipe named ${PN}-extra (name is arbitrary), one can add it to the
PACKAGE_BEFORE_PN variable:

PACKAGE_BEFORE_PN += "$ —extra"

Alternatively, a custom package can be added by adding it to the PACKAGES variable using the prepend operator (=+):

PACKAGES =+ "S$ —extra"

Depending on the type of packages being created (RPM, DEB, or IPK), the do_package_write_* task creates the actual
packages and places them in the Package Feed area, which is ${TMPDIR}/deploy. You can see the “Package Feeds”

section for more detail on that part of the build process.

Note

Support for creating feeds directly from the deploy/* directories does not exist. Creating such feeds usually requires
some kind of feed maintenance mechanism that would upload the new packages into an official package feed (e.g. the

Angstrom distribution). This functionality is highly distribution-specific and thus is not provided out of the box.

Image Generation

Once packages are split and stored in the Package Feeds area, the build system uses BitBake to generate the root filesystem

image:

4.4. Yocto Project Concepts 69

The Yocto Project ®, Release 5.1.1

Upstream
Project
Releases

Local SCMs
Projects (optional)

Image Generation

Optimization
Manifest
Generation

do_image_complete

The image generation process consists of several stages and depends on several tasks and variables. The do_rootfs task

creates the root filesystem (file and directory structure) for an image. This task uses several key variables to help create

70 Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

the list of packages to actually install:
e IMAGE_INSTALL: Lists out the base set of packages from which to install from the Package Feeds area.
e PACKAGE_EXCLUDE: Specifies packages that should not be installed into the image.

* IMAGE_FEATURES: Specifies features to include in the image. Most of these features map to additional packages

for installation.

* PACKAGE_CLASSES: Specifies the package backend (e.g. RPM, DEB, or IPK) to use and consequently helps

determine where to locate packages within the Package Feeds area.
e IMAGE_LINGUAS: Determines the language(s) for which additional language support packages are installed.
* PACKAGE_INSTALL: The final list of packages passed to the package manager for installation into the image.

With IMAGE_ROOTFS pointing to the location of the filesystem under construction and the PACKAGE_INSTALL variable

providing the final list of packages to install, the root file system is created.

Package installation is under control of the package manager (e.g. dnf/rpm, opkg, or apt/dpkg) regardless of whether or
not package management is enabled for the target. At the end of the process, if package management is not enabled for
the target, the package manager’ s data files are deleted from the root filesystem. As part of the final stage of package
installation, post installation scripts that are part of the packages are run. Any scripts that fail to run on the build host are
run on the target when the target system is first booted. If you are using a read-only root filesystem, all the post installation
scripts must succeed on the build host during the package installation phase since the root filesystem on the target is

read-only.

The final stages of the do_rootfs task handle post processing. Post processing includes creation of a manifest file and

optimizations.

The manifest file (.manifest) resides in the same directory as the root filesystem image. This file lists out, line-by-line,
the installed packages. The manifest file is useful for the restimage class, for example, to determine whether or not to run
specific tests. See the IMAGE_MANIFEST variable for additional information.

Optimizing processes that are run across the image include mk1ibs and any other post-processing commands as defined
by the ROOTFS_POSTPROCESS_COMMAND variable. The mk1ibs process optimizes the size of the libraries.

After the root filesystem is built, processing begins on the image through the do_image task. The build system runs any
pre-processing commands as defined by the IMAGE _PREPROCESS_COMMAND variable. This variable specifies a list of

functions to call before the build system creates the final image output files.

The build system dynamically creates do_image_* tasks as needed, based on the image types specified in the /M-
AGE_FSTYPES variable. The process turns everything into an image file or a set of image files and can compress the
root filesystem image to reduce the overall size of the image. The formats used for the root filesystem depend on the

IMAGE_FSTYPES variable. Compression depends on whether the formats support compression.

As an example, a dynamically created task when creating a particular image type would take the following form:

do_image_type

So, if the type as specified by the IMAGE_FSTYPES were ext 4, the dynamically generated task would be as follows:

4.4. Yocto Project Concepts 71

The Yocto Project ®, Release 5.1.1

do_image_ext4

The final task involved in image creation is the do_image_complete task. This task completes the image by applying any
image post processing as defined through the IMAGE_POSTPROCESS_COMMAND variable. The variable specifies a list

of functions to call once the build system has created the final image output files.

Note

The entire image generation process is run under Pseudo. Running under Pseudo ensures that the files in the root

filesystem have correct ownership.

SDK Generation

The OpenEmbedded build system uses BitBake to generate the Software Development Kit (SDK) installer scripts for both
the standard SDK and the extensible SDK (eSDK):

Sl Local SCMs
Projects (optional)

Project
Releases

Extensible SDK Generation || Standard SDK Generation
do_populate sdk_ext do_populate_sdk

DEFLOY_DIR
SDKIMAGE_FEATURES
== Toocan.

TOOLCHAIN_ HOST TASK
[build/tmp/deploy/sdk/*.sh [build/tmp/deploy/sdk/*.sh

DEPLOY_DIR
SDK_EXT_TYPE

SDK_INCLUDE_PKGDATA
SDK_LOCAL_CONF_WHITELIST
SDK_LOCAL CONF BLACKLIST
SDK_INHERIT_BLACKLIST

TOOLCHAIN TARGET_TASK

72 Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

Note

For more information on the cross-development toolchain generation, see the “Cross-Development Toolchain Gen-
eration” section. For information on advantages gained when building a cross-development toolchain using the
do_populate_sdk task, see the “Building an SDK Installer” section in the Yocto Project Application Development
and the Extensible Software Development Kit (eSDK) manual.

Like image generation, the SDK script process consists of several stages and depends on many variables. The
do_populate_sdk and do_populate_sdk_ext tasks use these key variables to help create the list of packages to actually

install. For information on the variables listed in the figure, see the “Application Development SDK” section.

The do_populate_sdk task helps create the standard SDK and handles two parts: a target part and a host part. The target
part is the part built for the target hardware and includes libraries and headers. The host part is the part of the SDK that
runs on the SDKMACHINE.

The do_populate_sdk_ext task helps create the extensible SDK and handles host and target parts differently than its counter
part does for the standard SDK. For the extensible SDK, the task encapsulates the build system, which includes everything
needed (host and target) for the SDK.

Regardless of the type of SDK being constructed, the tasks perform some cleanup after which a cross-development envi-
ronment setup script and any needed configuration files are created. The final output is the Cross-development toolchain

installation script (. sh file), which includes the environment setup script.

Stamp Files and the Rerunning of Tasks

For each task that completes successfully, BitBake writes a stamp file into the STAMPS_DIR directory. The beginning of
the stamp file’ s filename is determined by the STAMP variable, and the end of the name consists of the task’ s name

and current input checksum.

Note

This naming scheme assumes that BB_SIGNATURE_HANDLER is “OEBasicHash” , which is almost always the case
in current OpenEmbedded.

To determine if a task needs to be rerun, BitBake checks if a stamp file with a matching input checksum exists for the

task. In this case, the task’ s output is assumed to exist and still be valid. Otherwise, the task is rerun.

Note

The stamp mechanism is more general than the shared state (sstate) cache mechanism described in the “Setscene
Tasks and Shared State” section. BitBake avoids rerunning any task that has a valid stamp file, not just tasks that can

be accelerated through the sstate cache.

However, you should realize that stamp files only serve as a marker that some work has been done and that these files

4.4. Yocto Project Concepts 73

The Yocto Project ®, Release 5.1.1

do not record task output. The actual task output would usually be somewhere in TMPDIR (e.g. in some recipe’ s
WORKDIR.) What the sstate cache mechanism adds is a way to cache task output that can then be shared between

build machines.

Since STAMPS_DIR is usually a subdirectory of TMPDIR, removing TMPDIR will also remove STAMPS_DIR, which
means tasks will properly be rerun to repopulate 7TMPDIR.

If you want some task to always be considered ‘“out of date” , you can mark it with the nostamp varflag. If some other

task depends on such a task, then that task will also always be considered out of date, which might not be what you want.

For details on how to view information about a task’ s signature, see the “Viewing Task Variable Dependencies” section

in the Yocto Project Development Tasks Manual.

Setscene Tasks and Shared State

The description of tasks so far assumes that BitBake needs to build everything and no available prebuilt objects exist.
BitBake does support skipping tasks if prebuilt objects are available. These objects are usually made available in the form

of a shared state (sstate) cache.

Note

For information on variables affecting sstate, see the SSTATE_DIR and SSTATE_MIRRORS variables.

The idea of a setscene task (i.e do_taskname_setscene) is a version of the task where instead of building something,
BitBake can skip to the end result and simply place a set of files into specific locations as needed. In some cases, it makes
sense to have a setscene task variant (e.g. generating package files in the do_package_write_* task). In other cases, it
does not make sense (e.g. a do_patch task or a do_unpack task) since the work involved would be equal to or greater than

the underlying task.

In the build system, the common tasks that have setscene variants are do_package, do_package_write_*, do_deploy,
do_packagedata, and do_populate_sysroot. Notice that these tasks represent most of the tasks whose output is an end

result.

The build system has knowledge of the relationship between these tasks and other preceding tasks. For example, if
BitBake runs do_populate_sysroot_setscene for something, it does not make sense to run any of the do_ferch,
do_unpack, do_patch, do_configure, do_compile, and do_install tasks. However, if do_package needs to be run, BitBake

needs to run those other tasks.

It becomes more complicated if everything can come from an sstate cache because some objects are simply not required
at all. For example, you do not need a compiler or native tools, such as quilt, if there isn’ t anything to compile or patch.

If the do_package_write_* packages are available from sstate, BitBake does not need the do_package task data.

To handle all these complexities, BitBake runs in two phases. The first is the “setscene” stage. During this stage, BitBake

first checks the sstate cache for any targets it is planning to build. BitBake does a fast check to see if the object exists

74 Chapter 4. Yocto Project Overview and Concepts Manual

https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#variable-flags

The Yocto Project ®, Release 5.1.1

rather than doing a complete download. If nothing exists, the second phase, which is the setscene stage, completes and

the main build proceeds.

If objects are found in the sstate cache, the build system works backwards from the end targets specified by the user. For
example, if an image is being built, the build system first looks for the packages needed for that image and the tools needed
to construct an image. If those are available, the compiler is not needed. Thus, the compiler is not even downloaded.
If something was found to be unavailable, or the download or setscene task fails, the build system then tries to install

dependencies, such as the compiler, from the cache.

The availability of objects in the sstate cache is handled by the function specified by the BB_ HASHCHECK _FUNCTION
variable and returns a list of available objects. The function specified by the BB_SETSCENE_DEPVALID variable is the
function that determines whether a given dependency needs to be followed, and whether for any given relationship the

function needs to be passed. The function returns a True or False value.

Images

The images produced by the build system are compressed forms of the root filesystem and are ready to boot on a target
device. You can see from the general workflow figure that BitBake output, in part, consists of images. This section takes

a closer look at this output:

BitBake

bitbake <image>

build
tmp
deploy < DEPLOY DIR
images

<machine> < DEPLOY_DIR_IMAGE
<kernel-image> KERNEL_IMAGETYPE
<root-filesystem-image> IMAGE_FSTYPES
<kernel-modules= MODULE_TARBALL DEPLOY
<bootloaders>

<symlinks=

4.4. Yocto Project Concepts 75

The Yocto Project ®, Release 5.1.1

Note

For a list of example images that the Yocto Project provides, see the “/mages” chapter in the Yocto Project Reference

Manual.

The build process writes images out to the Build Directory inside the tmp/deploy/images/machine/ folder as shown

in the figure. This folder contains any files expected to be loaded on the target device. The DEPLOY_DIR variable points

to the deploy directory, while the DEPLOY_DIR_IMAGE variable points to the appropriate directory containing images

for the current configuration.

kernel-image: A kernel binary file. The KERNEL IMAGETYPE variable determines the naming scheme for the
kernel image file. Depending on this variable, the file could begin with a variety of naming strings. The deploy/

images/machine directory can contain multiple image files for the machine.

root-filesystem-image: Root filesystems for the target device (e.g. *.ext3 or *.bz?2 files). The IMAGE_FSTYPES
variable determines the root filesystem image type. The deploy/images/machine directory can contain multiple

root filesystems for the machine.

kernel-modules: Tarballs that contain all the modules built for the kernel. Kernel module tarballs exist for legacy
purposes and can be suppressed by setting the MODULE_TARBALL_DEPLOY variable to “0” . The deploy/

images/machine directory can contain multiple kernel module tarballs for the machine.

bootloaders: If applicable to the target machine, bootloaders supporting the image. The deploy/images/

machine directory can contain multiple bootloaders for the machine.

symlinks: The deploy/images/machine folder contains a symbolic link that points to the most recently built file

for each machine. These links might be useful for external scripts that need to obtain the latest version of each file.

Application Development SDK

In the general workflow figure, the output labeled “Application Development SDK” represents an SDK. The SDK

generation process differs depending on whether you build an extensible SDK (e.g. bitbake -c populate_sdk_ext

imagename) or a standard SDK (e.g. bitbake -c populate_sdk imagename). This section takes a closer look at

this output:

76

Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

BitBake

SDK

Generation

bitbake -c populate_sdk <=imagename=>
bitbake -c populate sdk_ext <imagename=>

Application

Development SDK

build
Extensible SDK tmp Standard SDK

DEPLOY_DIR deploy -} DEPLOY_DIR

SDK_EXT_TYPE :3: e SDKIMAGE_FEATURES
SDE_INCLUDE_PKGDATA SDEMACHINE
SDK_LOCAL CONF WHITELST installer_files TOOLCHAIN_HOST TASK
SDE LOCAL COMF BLACKUST !mst_maniﬁest_ﬁ.l'es TOOLCHAIN_TARGET TASK

SDK_INHERIT BLACKLIST target_manifest_files SDKPATH
- - . SDK_HOST MANIFEST
sdk_test_files SDK_TARGET MANIFEST

The specific form of this output is a set of files that includes a self-extracting SDK installer (*.sh), host and target
manifest files, and files used for SDK testing. When the SDK installer file is run, it installs the SDK. The SDK consists of
a cross-development toolchain, a set of libraries and headers, and an SDK environment setup script. Running this installer
essentially sets up your cross-development environment. You can think of the cross-toolchain as the “host” part because
it runs on the SDK machine. You can think of the libraries and headers as the “target” part because they are built for the

target hardware. The environment setup script is added so that you can initialize the environment before using the tools.

Note

* The Yocto Project supports several methods by which you can set up this cross-development environment.

These methods include downloading pre-built SDK installers or building and installing your own SDK installer.

* For background information on cross-development toolchains in the Yocto Project development environment,

see the “Cross-Development Toolchain Generation” section.

* For information on setting up a cross-development environment, see the Yocto Project Application Development
and the Extensible Software Development Kit (eSDK) manual.

All the output files for an SDK are written to the deploy/sdk folder inside the Build Directory as shown in the previous

4.4. Yocto Project Concepts 77

The Yocto Project ®, Release 5.1.1

figure. Depending on the type of SDK, there are several variables to configure these files. The variables associated with

an extensible SDK are:

DEPLOY_DIR: Points to the deploy directory.

SDK_EXT _TYPE: Controls whether or not shared state artifacts are copied into the extensible SDK. By default, all

required shared state artifacts are copied into the SDK.

SDK_INCLUDE_PKGDATA: Specifies whether or not packagedata is included in the extensible SDK for all recipes

inthe “world” target.

SDK_INCLUDE_TOOLCHAIN: Specifies whether or not the toolchain is included when building the extensible
SDK.

ESDK_LOCALCONF_ALLOW: A list of variables allowed through from the build system configuration into the

extensible SDK configuration.

ESDK_LOCALCONF_REMOVE: A list of variables not allowed through from the build system configuration into

the extensible SDK configuration.

ESDK_CLASS_INHERIT _DISABLE: A list of classes to remove from the INHERIT value globally within the exten-
sible SDK configuration.

This next list, shows the variables associated with a standard SDK:

DEPLOY_DIR: Points to the deploy directory.

SDKMACHINE: Specifies the architecture of the machine on which the cross-development tools are run to create

packages for the target hardware.
SDKIMAGE_FEATURES: Lists the features to include in the “target” part of the SDK.

TOOLCHAIN_HOST _TASK: Lists packages that make up the host part of the SDK (i.e. the part that runs on the
SDKMACHINE). When you use bitbake —c populate_sdk imagename to create the SDK, a set of default
packages apply. This variable allows you to add more packages.

TOOLCHAIN_TARGET _TASK: Lists packages that make up the target part of the SDK (i.e. the part built for the

target hardware).
SDKPATHINSTALL: Defines the default SDK installation path offered by the installation script.

SDK_HOST_MANIFEST: Lists all the installed packages that make up the host part of the SDK. This variable also

plays a minor role for extensible SDK development as well. However, it is mainly used for the standard SDK.

SDK_TARGET_MANIFEST: Lists all the installed packages that make up the target part of the SDK. This variable

also plays a minor role for extensible SDK development as well. However, it is mainly used for the standard SDK.

78

Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

4.4.4 Cross-Development Toolchain Generation

The Yocto Project does most of the work for you when it comes to creating 7he Cross-Development Toolchain. This section
provides some technical background on how cross-development toolchains are created and used. For more information

on toolchains, you can also see the Yocto Project Application Development and the Extensible Software Development Kit
(eSDK) manual.

In the Yocto Project development environment, cross-development toolchains are used to build images and applications
that run on the target hardware. With just a few commands, the OpenEmbedded build system creates these necessary

toolchains for you.

The following figure shows a high-level build environment regarding toolchain construction and use.

®

Build Host

vocto - gcec-cross —} Target Image
bitbake <target=

Relocatable SDK

gcc-cross-canadian
gcc-crosssdk == binutils-cross-canadian

meta-toolchain Other nativesdk-* Tools
bitbake <imagename= -c populate_sdk_ext

®

SDKMACHINE

Installed SDK

gece-cross-canadian Target Device

binutils-cross-canadian
Other nativesdk-* Tools Target Image
Target Target
Applications Applications

The Build Host produces three toolchains: 1) goc-cross, which builds the target image. 2) goc-
crosssdk, which is a transitory toolchain and produces relocatable code that executes on the
SDEMACHINE. 3) gcc-cross-canadian, which executes on the SDKMACHINE and produces target
applications.

®

The SDEKMACHINE, which may or may not be the same as the Build Host, runs goccross-canadian to
create target applications.

The Target Device runs the Target Image and Target Applications.

® @

4.4. Yocto Project Concepts 79

The Yocto Project ®, Release 5.1.1

Most of the work occurs on the Build Host. This is the machine used to build images and generally work within the
Yocto Project environment. When you run BitBake to create an image, the OpenEmbedded build system uses the host
gcc compiler to bootstrap a cross-compiler named gcc-cross. The gcc-cross compiler is what BitBake uses to
compile source files when creating the target image. You can think of gcc-cross simply as an automatically generated

cross-compiler that is used internally within BitBake only.

Note

The extensible SDK does not use gcc-cross-canadian since this SDK ships a copy of the OpenEmbedded build

system and the sysroot within it contains gcc—-cross.

The chain of events that occurs when the standard toolchain is bootstrapped:

binutils-cross —-> linux-libc-headers -> gcc-cross —> libgcc-initial -> glibc —>_

—~libgcc —> gcc-runtime

e gcc: The compiler, GNU Compiler Collection (GCC).

* binutils—cross: The binary utilities needed in order to run the gcc-cross phase of the bootstrap operation
and build the headers for the C library.

e linux-libc-headers: Headers needed for the cross-compiler and C library build.

e libgcc-initial: An initial version of the gcc support library needed to bootstrap glibc.

¢ libgcc: The final version of the gcc support library which can only be built once there is a C library to link against.
* glibc: The GNU C Library.

¢ gcc-cross: The final stage of the bootstrap process for the cross-compiler. This stage results in the actual cross-

compiler that BitBake uses when it builds an image for a targeted device.
This tool is a “native” tool (i.e. it is designed to run on the build host).

* gcc-runtime: Runtime libraries resulting from the toolchain bootstrapping process. This tool produces a binary

that consists of the runtime libraries need for the targeted device.

You can use the OpenEmbedded build system to build an installer for the relocatable SDK used to develop applications.
When you run the installer, it installs the toolchain, which contains the development tools (e.g., gcc-cross—-canadian,
binutils—-cross-canadian, and other nativesdk-* tools), which are tools native to the SDK (i.e. native to
SDK_ARCH), you need to cross-compile and test your software. The figure shows the commands you use to easily build
out this toolchain. This cross-development toolchain is built to execute on the SDKMACHINE, which might or might not

be the same machine as the Build Host.

Note

80 Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

If your target architecture is supported by the Yocto Project, you can take advantage of pre-built images that ship with

the Yocto Project and already contain cross-development toolchain installers.

Here is the bootstrap process for the relocatable toolchain:

gcc —> binutils-crosssdk —-> gcc-crosssdk—initial -> linux-libc-headers -> glibc-—

—~initial —-> nativesdk-glibc —-> gcc-crosssdk -> gcc-cross—canadian

¢ gcc: The build host” s GNU Compiler Collection (GCC).

* binutils-crosssdk: The bare minimum binary utilities needed in order to run the gcc-crosssdk-initial

phase of the bootstrap operation.

* gcc—crosssdk-initial: An early stage of the bootstrap process for creating the cross-compiler. This stage
builds enough of the gcc-crosssdk and supporting pieces so that the final stage of the bootstrap process can

produce the finished cross-compiler. This tool is a “native” binary that runs on the build host.
e linux-libc-headers: Headers needed for the cross-compiler.
* glibc-initial: An initial version of the Embedded GLIBC needed to bootstrap nativesdk—-glibc.
* nativesdk-glibc: The Embedded GLIBC needed to bootstrap the gcc-crosssdk.

* gcc-crosssdk: The final stage of the bootstrap process for the relocatable cross-compiler. The gcc—crosssdk
is a transitory compiler and never leaves the build host. Its purpose is to help in the bootstrap process to create the
eventual gcc-cross-canadian compiler, which is relocatable. This tool is also a “native” package (i.e. it is

designed to run on the build host).

* gcc-cross—canadian: The final relocatable cross-compiler. When run on the SDKMACHINE, this tool produces
executable code that runs on the target device. Only one cross-canadian compiler is produced per architecture since
they can be targeted at different processor optimizations using configurations passed to the compiler through the

compile commands. This circumvents the need for multiple compilers and thus reduces the size of the toolchains.

Note

For information on advantages gained when building a cross-development toolchain installer, see the “Building an
SDK Installer” appendix in the Yocto Project Application Development and the Extensible Software Development
Kit (eSDK) manual.

4.4.5 Shared State Cache

By design, the OpenEmbedded build system builds everything from scratch unless BitBake can determine that parts do
not need to be rebuilt. Fundamentally, building from scratch is attractive as it means all parts are built fresh and there is
no possibility of stale data that can cause problems. When developers hit problems, they typically default back to building

from scratch so they have a known state from the start.

4.4. Yocto Project Concepts 81

The Yocto Project ®, Release 5.1.1

Building an image from scratch is both an advantage and a disadvantage to the process. As mentioned in the previous
paragraph, building from scratch ensures that everything is current and starts from a known state. However, building from

scratch also takes much longer as it generally means rebuilding things that do not necessarily need to be rebuilt.

The Yocto Project implements shared state code that supports incremental builds. The implementation of the shared state
code answers the following questions that were fundamental roadblocks within the OpenEmbedded incremental build

support system:
¢ What pieces of the system have changed and what pieces have not changed?
* How are changed pieces of software removed and replaced?
* How are pre-built components that do not need to be rebuilt from scratch used when they are available?

For the first question, the build system detects changes in the “inputs” to a given task by creating a checksum (or signature)
of the task’ s inputs. If the checksum changes, the system assumes the inputs have changed and the task needs to be
rerun. For the second question, the shared state (sstate) code tracks which tasks add which output to the build process.
This means the output from a given task can be removed, upgraded or otherwise manipulated. The third question is partly
addressed by the solution for the second question assuming the build system can fetch the sstate objects from remote

locations and install them if they are deemed to be valid.

Note

 The build system does not maintain PR information as part of the shared state packages. Consequently, there
are considerations that affect maintaining shared state feeds. For information on how the build system works
with packages and can track incrementing PR information, see the ‘““Automatically Incrementing a Package

Version Number” section in the Yocto Project Development Tasks Manual.

* The code in the build system that supports incremental builds is complex. For techniques that help you work
around issues related to shared state code, see the “ Viewing Metadata Used to Create the Input Signature of a
Shared State Task” and “Invalidating Shared State to Force a Task to Run” sections both in the Yocto Project

Development Tasks Manual.

The rest of this section goes into detail about the overall incremental build architecture, the checksums (signatures), and

shared state.

Overall Architecture

When determining what parts of the system need to be built, BitBake works on a per-task basis rather than a per-recipe
basis. You might wonder why using a per-task basis is preferred over a per-recipe basis. To help explain, consider having
the IPK packaging backend enabled and then switching to DEB. In this case, the do_install and do_package task outputs
are still valid. However, with a per-recipe approach, the build would not include the . deb files. Consequently, you would
have to invalidate the whole build and rerun it. Rerunning everything is not the best solution. Also, in this case, the core
must be “taught” much about specific tasks. This methodology does not scale well and does not allow users to easily

add new tasks in layers or as external recipes without touching the packaged-staging core.

82 Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

Checksums (Signatures)

The shared state code uses a checksum, which is a unique signature of a task’ s inputs, to determine if a task needs to
be run again. Because it is a change in a task’ s inputs that triggers a rerun, the process needs to detect all the inputs to
a given task. For shell tasks, this turns out to be fairly easy because the build process generates a “run” shell script for

each task and it is possible to create a checksum that gives you a good idea of when the task’ s data changes.

To complicate the problem, there are things that should not be included in the checksum. First, there is the actual specific
build path of a given task —the WORKDIR. It does not matter if the work directory changes because it should not affect

the output for target packages. Also, the build process has the objective of making native or cross packages relocatable.

Note

Both native and cross packages run on the build host. However, cross packages generate output for the target archi-

tecture.

The checksum therefore needs to exclude WORKDIR. The simplistic approach for excluding the work directory is to set

WORKDIR to some fixed value and create the checksum for the “run” script.

Another problem results from the “run” scripts containing functions that might or might not get called. The incremental

13 k2

build solution contains code that figures out dependencies between shell functions. This code is used to prune the “run
scripts down to the minimum set, thereby alleviating this problem and making the “run” scripts much more readable as

a bonus.

So far, there are solutions for shell scripts. What about Python tasks? The same approach applies even though these tasks
are more difficult. The process needs to figure out what variables a Python function accesses and what functions it calls.
Again, the incremental build solution contains code that first figures out the variable and function dependencies, and then

creates a checksum for the data used as the input to the task.

Like the WORKDIR case, there can be situations where dependencies should be ignored. For these situations, you can

instruct the build process to ignore a dependency by using a line like the following:

PACKAGE_ARCHS [vardepsexclude] = "MACHINE"

This example ensures that the PACKAGE_ARCHS variable does not depend on the value of MACHINE, even if it does

reference it.

Equally, there are cases where you need to add dependencies BitBake is not able to find. You can accomplish this by

using a line like the following:

PACKAGE_ARCHS [vardeps] = "MACHINE"

This example explicitly adds the MACHINE variable as a dependency for PACKAGE_ARCHS.

As an example, consider a case with in-line Python where BitBake is not able to figure out dependencies. When running

in debug mode (i.e. using -DDD), BitBake produces output when it discovers something for which it cannot figure out

4.4. Yocto Project Concepts 83

The Yocto Project ®, Release 5.1.1

dependencies. The Yocto Project team has currently not managed to cover those dependencies in detail and is aware of

the need to fix this situation.

Thus far, this section has limited discussion to the direct inputs into a task. Information based on direct inputs is referred
to as the “basehash” in the code. However, the question of a task’ s indirect inputs still exits —items already built and
present in the Build Directory. The checksum (or signature) for a particular task needs to add the hashes of all the tasks
on which the particular task depends. Choosing which dependencies to add is a policy decision. However, the effect is to

generate a checksum that combines the basehash and the hashes of the task’ s dependencies.

At the code level, there are multiple ways by which both the basehash and the dependent task hashes can be influenced.
Within the BitBake configuration file, you can give BitBake some extra information to help it construct the basehash. The
following statement effectively results in a list of global variable dependency excludes (i.e. variables never included in any

checksum):

BB_BASEHASH_IGNORE_VARS ?= "TMPDIR FILE PATH PWD BB_TASKHASH BBPATH DL_DIR \\
SSTATE_DIR THISDIR FILESEXTRAPATHS FILE_DIRNAME HOME LOGNAME SHELL TERM \\
USER FILESPATH STAGING_DIR_HOST STAGING_DIR_TARGET COREBASE PRSERV_HOST \\
PRSERV_DUMPDIR PRSERV_DUMPFILE PRSERV_LOCKDOWN PARALLEL_MAKE \\

CCACHE_DIR EXTERNAL_TOOLCHAIN CCACHE CCACHE_DISABLE LICENSE_PATH SDKPKGSUFFIX"

The previous example does not include WORKDIR since that variable is actually constructed as a path within TMPDIR,

which is included above.

The rules for deciding which hashes of dependent tasks to include through dependency chains are more complex and are
generally accomplished with a Python function. The code in meta/lib/oe/sstatesig.py shows two examples of
this and also illustrates how you can insert your own policy into the system if so desired. This file defines the two basic
signature generators OpenEmbedded-Core (OE-Core) uses: “OEBasic” and “OEBasicHash” . By default, a dummy
“noop” signature handler is enabled in BitBake. This means that behavior is unchanged from previous versions. OE-Core

uses the “OEBasicHash” signature handler by default through this setting in the bitbake . conf file:

BB_SIGNATURE_HANDLER ?= "OEBasicHash"

The “OEBasicHash” BB_SIGNATURE_HANDLER is the same as the “OEBasic” version but adds the task hash to the
stamp files. This results in any metadata change that changes the task hash, automatically causing the task to be run again.

This removes the need to bump PR values, and changes to metadata automatically ripple across the build.

It is also worth noting that the end result of these signature generators is to make some dependency and hash information

available to the build. This information includes:
* BB_BASEHASH:task-taskname: The base hashes for each task in the recipe.
* BB_BASEHASH_filename : taskname: The base hashes for each dependent task.

* BB_TASKHASH: The hash of the currently running task.

84 Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

Shared State

Checksums and dependencies, as discussed in the previous section, solve half the problem of supporting a shared state.
The other half of the problem is being able to use checksum information during the build and being able to reuse or

rebuild specific components.

The sstate class is a relatively generic implementation of how to “capture” a snapshot of a given task. The idea is that the
build process does not care about the source of a task’ s output. Output could be freshly built or it could be downloaded

and unpacked from somewhere. In other words, the build process does not need to worry about its origin.

Two types of output exist. One type is just about creating a directory in WORKDIR. A good example is the output of
either do_install or do_package. The other type of output occurs when a set of data is merged into a shared directory tree

such as the sysroot.

The Yocto Project team has tried to keep the details of the implementation hidden in the sstafe class. From a user’ s

perspective, adding shared state wrapping to a task is as simple as this do_deploy example taken from the deploy class:

DEPLOYDIR = "$ /deploy—$ "

SSTATETASKS += "do_deploy"
do_deploy[sstate-inputdirs] = "$ "
do_deploy[sstate-outputdirs] = "$ w

python do_deploy_setscene () {
sstate_setscene (d)

}

addtask do_deploy_setscene

do_deploy[dirs] = "S S "

do_deploy[stamp-extra-info] = "$ "

The following list explains the previous example:

¢ Adding do_deploy to SSTATETASKS adds some required sstate-related processing, which is implemented in the

sstate class, to before and after the do_deploy task.

e Thedo_deploy[sstate—inputdirs] = "${DEPLOYDIR}" declares thatdo_deploy places its outputin ${DE—
PLOYDIR} when run normally (i.e. when not using the sstate cache). This output becomes the input to the shared

state cache.

e The do_deploy[sstate-outputdirs] = "${DEPLOY_DIR_IMAGE}" line causes the contents of the shared
state cache to be copied to ${DEPLOY_DIR_IMAGE}.

Note

If do_deploy is not already in the shared state cache or if its input checksum (signature) has changed from when
the output was cached, the task runs to populate the shared state cache, after which the contents of the shared
state cache is copied to ${ DEPLOY_DIR_IMAGE}. If do_deploy is in the shared state cache and its signature

4.4. Yocto Project Concepts 85

The Yocto Project ®, Release 5.1.1

indicates that the cached output is still valid (i.e. if no relevant task inputs have changed), then the contents
of the shared state cache copies directly to ${ DEPLOY_DIR_IMAGE} by the do_deploy_setscene task
instead, skipping the do_deploy task.

* The following task definition is glue logic needed to make the previous settings effective:

python do_deploy_setscene () {
sstate_setscene (d)

}

addtask do_deploy_setscene

sstate_setscene () takes the flags above as input and accelerates the do_deploy task through the shared state
cache if possible. If the task was accelerated, sstate_setscene () returns True. Otherwise, it returns False, and

the normal do_deploy task runs. For more information, see the “Setscene” section in the BitBake User Manual.

e Thedo_deploy[dirs] = "${DEPLOYDIR} ${B}" linecreates $ {DEPLOYDIR} and ${B} before the do_deploy
task runs, and also sets the current working directory of do_deploy to $ {B}. For more information, see the “Variable

Flags” section in the BitBake User Manual.

Note

In cases where sstate-inputdirs and sstate-outputdirs would be the same, you can use
sstate-plaindirs. For example, to preserve the ${ PKGD} and ${ PKGDEST} output from the do_package

task, use the following:

do_package[sstate-plaindirs] = "$ $ "

e The do_deploy[stamp-extra-info] = "${MACHINE_ARCH}" line appends extra metadata to the stamp file.

In this case, the metadata makes the task specific to a machine’ s architecture. See the “The Task List” section

in the BitBake User Manual for more information on the stamp-extra—info flag.

* sstate-inputdirs and sstate—-outputdirs can also be used with multiple directories. For example, the

following declares PKGDESTWORK and SHLIBWORK as shared state input directories, which populates the shared
state cache, and PKGDATA_DIR and SHLIBSDIR as the corresponding shared state output directories:

do_package[sstate-inputdirs] = "$ $ "

do_package[sstate-outputdirs] = "$ S "

» These methods also include the ability to take a lockfile when manipulating shared state directory structures, for

cases where file additions or removals are sensitive:

do_package[sstate—-lockfile] = "$ "

86

Chapter 4. Yocto Project Overview and Concepts Manual

https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-execution.html#setscene
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#variable-flags
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#variable-flags
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-execution.html#the-task-list

The Yocto Project ®, Release 5.1.1

Behind the scenes, the shared state code works by looking in SSTATE_DIR and SSTATE_MIRRORS for shared state files.

Here is an example:

SSTATE_MIRRORS ?= "\
file://.* https://someserver.tld/share/sstate/PATH;downloadfilename=PATH \

file://.* file:///some/local/dir/sstate/PATH"

Note

The shared state directory (SSTATE_DIR) is organized into two-character subdirectories, where the subdirectory
names are based on the first two characters of the hash. If the shared state directory structure for a mirror has
the same structure as SSTATE_DIR, you must specify “PATH” as part of the URI to enable the build system to map
to the appropriate subdirectory.

The shared state package validity can be detected just by looking at the filename since the filename contains the task
checksum (or signature) as described earlier in this section. If a valid shared state package is found, the build process

downloads it and uses it to accelerate the task.

The build processes use the *_setscene tasks for the task acceleration phase. BitBake goes through this phase before
the main execution code and tries to accelerate any tasks for which it can find shared state packages. If a shared state
package for a task is available, the shared state package is used. This means the task and any tasks on which it is dependent

are not executed.

As a real world example, the aim is when building an IPK-based image, only the do_package_write_ipk tasks would have
their shared state packages fetched and extracted. Since the sysroot is not used, it would never get extracted. This is
another reason why a task-based approach is preferred over a recipe-based approach, which would have to install the

output from every task.

Hash Equivalence

The above section explained how BitBake skips the execution of tasks whose output can already be found in the Shared

State cache.

During a build, it may often be the case that the output / result of a task might be unchanged despite changes in the task’
s input values. An example might be whitespace changes in some input C code. In project terms, this is what we define

as “equivalence” .
To keep track of such equivalence, BitBake has to manage three hashes for each task:

 The task hash explained earlier: computed from the recipe metadata, the task code and the task hash values from
its dependencies. When changes are made, these task hashes are therefore modified, causing the task to re-execute.
The task hashes of tasks depending on this task are therefore modified too, causing the whole dependency chain to

re-execute.

* The output hash, a new hash computed from the output of Shared State tasks, tasks that save their resulting output to

a Shared State tarball. The mapping between the task hash and its output hash is reported to a new Hash Equivalence

4.4. Yocto Project Concepts 87

The Yocto Project ®, Release 5.1.1

server. This mapping is stored in a database by the server for future reference.

» The unihash, a new hash, initially set to the task hash for the task. This is used to track the unicity of task output,

and we will explain how its value is maintained.

When Hash Equivalence is enabled, BitBake computes the task hash for each task by using the unihash of its dependencies,
instead of their task hash.

Now, imagine that a Shared State task is modified because of a change in its code or metadata, or because of a change
in its dependencies. Since this modifies its task hash, this task will need re-executing. Its output hash will therefore be

computed again.

Then, the new mapping between the new task hash and its output hash will be reported to the Hash Equivalence server.
The server will let BitBake know whether this output hash is the same as a previously reported output hash, for a different
task hash.

If the output hash is already known, BitBake will update the task’ s unihash to match the original task hash that gen-
erated that output. Thanks to this, the depending tasks will keep a previously recorded task hash, and BitBake will be
able to retrieve their output from the Shared State cache, instead of re-executing them. Similarly, the output of further

downstream tasks can also be retrieved from Shared State.

If the output hash is unknown, a new entry will be created on the Hash Equivalence server, matching the task hash to that
output. The depending tasks, still having a new task hash because of the change, will need to re-execute as expected. The

change propagates to the depending tasks.

To summarize, when Hash Equivalence is enabled, a change in one of the tasks in BitBake’ s run queue doesn’ t have to
propagate to all the downstream tasks that depend on the output of this task, causing a full rebuild of such tasks, and so
on with the next depending tasks. Instead, when the output of this task remains identical to previously recorded output,

BitBake can safely retrieve all the downstream task output from the Shared State cache.

Note

Having Reproducible Builds is a key ingredient for the stability of the task’ s output hash. Therefore, the effectiveness
of Hash Equivalence strongly depends on it.

Recipes that are not reproducible may have undesired behavior if hash equivalence is enabled, since the non-
reproducible diverging output maybe be remapped to an older sstate object in the cache by the server. If a recipe is
non-reproducible in trivial ways, such as different timestamps, this is likely not a problem. However recipes that have
more dramatic changes (such as completely different file names) will likely outright fail since the downstream sstate

objects are not actually equivalent to what was just built.

This applies to multiple scenarios:

e A “trivial” change to a recipe that doesn’ t impact its generated output, such as whitespace changes, modifications

to unused code paths or in the ordering of variables.

 Shared library updates, for example to fix a security vulnerability. For sure, the programs using such a library

should be rebuilt, but their new binaries should remain identical. The corresponding tasks should have a different

88 Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Release 5.1.1

output hash because of the change in the hash of their library dependency, but thanks to their output being identical,

Hash Equivalence will stop the propagation down the dependency chain.

 Native tool updates. Though the depending tasks should be rebuilt, it’ s likely that they will generate the same

output and be marked as equivalent.
This mechanism is enabled by default in Poky, and is controlled by three variables:
* BB_HASHSERVE, specifying a local or remote Hash Equivalence server to use.

e BB_HASHSERVE_UPSTREAM, when BB_HASHSERVE = "auto", allowing to connect the local server to an

upstream one.
* BB_SIGNATURE_HANDLER, which must be set to OEEquivHash.

Therefore, the default configuration in Poky corresponds to the below settings:

BB_HASHSERVE = "auto"
BB_SIGNATURE_HANDLER = "OEEquivHash"

Rather than starting a local server, another possibility is to rely on a Hash Equivalence server on a network, by setting:

BB_HASHSERVE = "<HOSTNAME>:<PORT>"

Note

The shared Hash Equivalence server needs to be maintained together with the Shared State cache. Otherwise, the

server could report Shared State hashes that only exist on specific clients.

We therefore recommend that one Hash Equivalence server be set up to correspond with a given Shared State cache,
and to start this server in read-only mode, so that it doesn’ t store equivalences for Shared State caches that are local

to clients.

See the BB_ HASHSERVE reference for details about starting a Hash Equivalence server.

See the video of Joshua Watt’ s Hash Equivalence and Reproducible Builds presentation at ELC 2020 for a very synthetic

introduction to the Hash Equivalence implementation in the Yocto Project.

4.4.6 Automatically Added Runtime Dependencies

The OpenEmbedded build system automatically adds common types of runtime dependencies between packages, which
means that you do not need to explicitly declare the packages using RDEPENDS. There are three automatic mechanisms
(shlibdeps, pcdeps, and depchains) that handle shared libraries, package configuration (pkg-config) modules, and
—-dev and -dbg packages, respectively. For other types of runtime dependencies, you must manually declare the depen-

dencies.

* shlibdeps: During the do_package task of each recipe, all shared libraries installed by the recipe are located.
For each shared library, the package that contains the shared library is registered as providing the shared library.

4.4. Yocto Project Concepts 89

https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-ref-variables.html#term-BB_HASHSERVE
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-ref-variables.html#term-BB_SIGNATURE_HANDLER
https://www.youtube.com/watch?v=zXEdqGS62Wc
https://elinux.org/images/3/37/Hash_Equivalence_and_Reproducible_Builds.pdf

The Yocto Project ®, Release 5.1.1

More specifically, the package is registered as providing the soname of the library. The resulting shared-library-

to-package mapping is saved globally in PKGDATA_DIR by the do_packagedata task.

Simultaneously, all executables and shared libraries installed by the recipe are inspected to see what shared libraries
they link against. For each shared library dependency that is found, PKGDATA_DIR is queried to see if some
package (likely from a different recipe) contains the shared library. If such a package is found, a runtime dependency

is added from the package that depends on the shared library to the package that contains the library.

The automatically added runtime dependency also includes a version restriction. This version restriction specifies
that at least the current version of the package that provides the shared library must be used, as if “package (>=
version)” had been added to RDEPENDS. This forces an upgrade of the package containing the shared library when
installing the package that depends on the library, if needed.

If you want to avoid a package being registered as providing a particular shared library (e.g. because the library is

for internal use only), then add the library to PRIVATE_LIBS inside the package’ s recipe.

* pcdeps: During the do_package task of each recipe, all pkg-config modules (* . pc files) installed by the recipe
are located. For each module, the package that contains the module is registered as providing the module. The

resulting module-to-package mapping is saved globally in PKGDATA_DIR by the do_packagedata task.

Simultaneously, all pkg-config modules installed by the recipe are inspected to see what other pkg-config modules
they depend on. A module is seen as depending on another module if it contains a “Requires:” line that specifies
the other module. For each module dependency, PKGDATA_DIR is queried to see if some package contains the
module. If such a package is found, a runtime dependency is added from the package that depends on the module

to the package that contains the module.

Note

The pcdeps mechanism most often infers dependencies between -dev packages.

e depchains: If a package foo depends on a package bar, then foo-dev and foo-dbg are also made to depend
on bar-dev and bar-dbg, respectively. Taking the —~dev packages as an example, the bar-dev package might
provide headers and shared library symlinks needed by foo-dev, which shows the need for a dependency between

the packages.

The dependencies added by depchains are in the form of RRECOMMENDS.

Note

By default, foo-dev also has an RDEPENDS-style dependency on foo, because the default value of RDE-

PENDS:${PN}-dev (set in bitbake.conf) includes “${PN}” .

To ensure that the dependency chain is never broken, —dev and —dbg packages are always generated by default,

even if the packages turn out to be empty. See the ALLOW_EMPTY variable for more information.

920 Chapter 4. Yocto Project Overview and Concepts Manual

https://en.wikipedia.org/wiki/Soname

The Yocto Project ®, Release 5.1.1

The do_package task depends on the do_packagedata task of each recipe in DEPENDS through use of a [deptask]
declaration, which guarantees that the required shared-library / module-to-package mapping information will be available

when needed as long as DEPENDS has been correctly set.

4.4.7 Fakeroot and Pseudo

Some tasks are easier to implement when allowed to perform certain operations that are normally reserved for the root
user (e.g. do_install, do_package_write*, do_rootfs, and do_image_*). For example, the do_install task benefits from

being able to set the UID and GID of installed files to arbitrary values.

One approach to allowing tasks to perform root-only operations would be to require BitBake to run as root. However, this
method is cumbersome and has security issues. The approach that is actually used is to run tasks that benefit from root
privileges ina “fake” root environment. Within this environment, the task and its child processes believe that they are
running as the root user, and see an internally consistent view of the filesystem. As long as generating the final output (e.g.
a package or an image) does not require root privileges, the fact that some earlier steps ran in a fake root environment

does not cause problems.

The capability to run tasks in a fake root environment is known as “fakeroot” , which is derived from the BitBake

keyword/variable flag that requests a fake root environment for a task.

In the OpenEmbedded Build System, the program that implements fakeroot is known as Pseudo. Pseudo overrides system
calls by using the environment variable LD_PRELOAD, which results in the illusion of running as root. To keep track of
“fake” file ownership and permissions resulting from operations that require root permissions, Pseudo uses an SQLite 3
database. This database is stored in ${ WORKDIR} /pseudo/files.db for individual recipes. Storing the database in

a file as opposed to in memory gives persistence between tasks and builds, which is not accomplished using fakeroot.

Note

If you add your own task that manipulates the same files or directories as a fakeroot task, then that task
also needs to run under fakeroot. Otherwise, the task cannot run root-only operations, and cannot see the
fake file ownership and permissions set by the other task. You need to also add a dependency on virtual/

fakeroot-native:do_populate_sysroot, giving the following:

fakeroot do_mytask () {

}

do_mytask [depends] += "virtual/fakeroot-native:do_populate_sysroot"

For more information, see the FAKEROOT?* variables in the BitBake User Manual. You can also reference the “Why

Not Fakeroot?” article for background information on Fakeroot and Pseudo.

4.4. Yocto Project Concepts 91

https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#variable-flags
http://man.he.net/man1/fakeroot
https://www.yoctoproject.org/software-item/pseudo/
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-ref-variables.html#term-FAKEROOT
https://github.com/wrpseudo/pseudo/wiki/WhyNotFakeroot
https://github.com/wrpseudo/pseudo/wiki/WhyNotFakeroot

The Yocto Project ®, Release 5.1.1

4.4.8 BitBake Tasks Map

To understand how BitBake operates in the build directory and environment we can consider the following recipes and

diagram, to have full picture about the tasks that BitBake runs to generate the final package file for the recipe.
We will have two recipes as an example:
e libhello: A recipe that provides a shared library

e sayhello: A recipe that uses 1ibhello library to do its job

Note

sayhello depends on 1ibhello at compile time as it needs the shared library to do the dynamic linking process. It
also depends on it at runtime as the shared library loader needs to find the library. For more details about dependencies

check Dependencies.

libhello sources are as follows:
e LICENSE: This is the license associated with this library
¢ Makefile: The file used by make to build the library
* hellolib.c: The implementation of the library
* hellolib.h: The C header of the library
sayhello sources are as follows:
e LICENSE: This is the license associated with this project
* Makefile: The file used by make to build the project
e sayhello.c: The source file of the project

Before presenting the contents of each file, here are the steps that we need to follow to accomplish what we want in the

first place, which is integrating sayhello in our root file system:
1. Create a Git repository for each project with the corresponding files
2. Create a recipe for each project
3. Make sure that sayhello recipe DEPENDS on 1ibhello
4. Make sure that sayhello recipe RDEPENDS on 1ibhello
5. Add sayhello to IMAGE_INSTALL to integrate it into the root file system

The contents of 1ibhello/Makefile are:

LIB=libhello.so

all: $(LIB)
(continues on next page)

92 Chapter 4. Yocto Project Overview and Concepts Manual

The Yocto Project ®, Rel<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>