The Yocto Project ®
Release 5.1.3

The Linux Foundation

Mar 07, 2025






INTRODUCTION AND OVERVIEW

1 Yocto Project Quick Build

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

4.1

4.2

4.3

Compatible Linux Distribution . . . . . . ... .. ... ... ...
Build Host Packages . . . . . . . . . . .
UseGittoClone Poky . . . . . . .. . .. . . .
Building Your Image . . . . . . . . . . . e
Customizing Your Build for Specific Hardware . . . . . ... ... ... ... ..
Creating Your Own General Layer . . . . . . ... ... ... .. .. .......
Where TOGONEXt . . . . . . . oo i it

What I wish I’ d known about Yocto Project
Transitioning to a custom environment for systems development

Yocto Project Overview and Concepts Manual

The Yocto Project Overview and Concepts Manual . . . . . . ... ... .. ...
411 Welcome . . . .. . e e e
4.1.2  Other Information . . . . . . . .. .. ...
Introducing the Yocto Project . . . . . . . . . .. ... ... ...
4.2.1  Whatis the Yocto Project? . . . .. ... ... ... ... ... ...
4.2.2  The Yocto Project Layer Model . . . . . ... ... ... .........
423 Componentsand Tools . . . . .. ... ... ... ... ... ... .
424 Development Methods . . . . . ... ... ... ... ...
4.2.5 Reference Embedded Distribution (Poky) . . . . . .. ... ... .. ...
4.2.6  The OpenEmbedded Build System Workflow . . . . . ... ... ... ..
427 SomeBasicTerms. . . . ... .. ... ... ...
The Yocto Project Development Environment . . . . . . . ... ... ... ....
4.3.1  Open Source Philosophy . . . ... ... ... ... ... ... ...,
4.3.2 TheDevelopment Host . . . .. ... ... ................
4.3.3  Yocto Project Source Repositories . . . . . ... ... Lo
4.3.4  Git Workflows and the Yocto Project . . . . . .. ... ... ... . ...

o N A B W VLW W

10
10

13

19

23
23
23
24
24
24
27
28
32
33
35
36
38
38
38
40
42




435 Git. o ov ot 45

43.6  Licensing . . . . . . i e e e e e e e e e 48

44  Yocto Project Concepts . . . . . . . . . e e e e e 49
44.1  Yocto Project Components . . . . . . ... ... 49

442 Layers . . .. o. . e e e e e 51

443  OpenEmbedded Build System Concepts . . . . . . . . . . .. v it 51

4.4.4  Cross-Development Toolchain Generation . . . . . . ... ... ... ... ......... 79

445 Shared State Cache . . . . . . . . . . L e 81

44.6  Automatically Added Runtime Dependencies . . . . . . ... ... ... ... ........ 89

447 Fakerootand Pseudo . . . . . . ... .. ... e 91

448 BitBake Tasks Map . . . . . . . . . L e 92

5 Yocto Project and OpenEmbedded Contributor Guide 97
5.1 Identify the component . . . . . . . . . . . . o e e e e e e e e 97
5.2 Reporting a Defect Against the Yocto Project and OpenEmbedded . . . . . . . ... ... ... ... 97
53 RecipeStyleGuide . . . . . . . . .. e 98
5.3.1  Recipe Naming Conventions . . . . . . . . v v v v v v vt et e e e e e e e e 98

5.3.2  VersionPolicy . . . . . . . . o e e e e 99

5.3.3  Version Number Changes . . . . . . . . .. ... ... e 99

534 Recipeformatting . . . . . . . . ... e e e e 100

5.3.5 Recipemetadata . . . . . . . ... e e e e e e e e e e e e e 100

5.3.6  Patch Upstream Status . . . . . . . . . . o 0 i e e e e e e e e e e e e 103

537 CVEpatches . . .. . . e 105

53.8 Patchformat . . . . . . . . . . . . e 106

5.4 Contributing Changes toa Component . . . . . . . . . . . vt i i it e e e e 106
5.4.1  Contributing through mailing lists —Why not using web-based workflows? . . . . ... ... 106

5.4.2  Preparing Changes for Submission . . . . . . . . ... L o Lo 107

543 CreatingPatches . . . . . . . . . . . 111

5.4.4  Validating Patches with Patchtest . . . . . . . .. .. ... ... 112

5.4.5 Sending the Patches viaEmail . . . . . . . . . . ... . 113

5.4.6  Using Scripts to Push a Change Upstream and RequestaPull . . . . . . .. ... ... ... 116

5.4.7  Submitting Changes to Stable Release Branches . . . . . . . ... ... .. ......... 118

5.4.8  Taking Patch Review into Account . . . . . . . . . . . . .. e 119

549  Tracking the Status of Patches . . . . . . . . . . .. . .. . . 119
5.4.10 Acceptance of Al Generated Code . . . . . .. ... .. .. ... ... 120

6 Yocto Project Reference Manual 123
6.1 System Requirements . . . . . . . . . ... e e e e 123
6.1.1  Minimum Free Disk Space . . . . . . . . . ... e 123

6.1.2  Minimum System RAM . . . . . . . . . e 124

6.1.3  Supported Linux Distributions . . . . . . . . . . .. e e e 124

6.1.4  Required Packages forthe Build Host . . . . . . . .. ... ... ... . ... ... . ... 125




6.2
6.3

6.4

6.5

6.1.5 Required Git, tar, Python, make and gcc Versions . . . . . . ... ... ... ... ..... 128
Yocto Project Terms . . . . . . . . o o e e e e e e e e e e e 132
Yocto Project Releases and the Stable Release Process . . . . . . . . .. ... ... ... ..., 140
6.3.1  Major and Minor Release Cadence . . . . . . . ... ... ... ... ... 140
6.3.2  Major Release Codenames . . . . . . . . . o .ot e e e 141
6.3.3  Stable Release Process . . . . . . . . . e 141
6.3.4  Long Term Support Releases . . . . . . . . . . .. . e 141
6.3.5  Testing and Quality ASSUrance . . . . . . . . . . . v i ittt e e e e e e e 142
Source Directory StruCture . . . . . . . . . L. e e e e e e e e 144
6.4.1  Top-Level Core COMPONENtS . . . . . . v v v v v v v et e et e e e e e e e e e e 144
6.4.2  The Build Directory —build/ . . . . . . . . oo v i it 147
6.43 The Metadata —meta/ . . . . . .« o i i e e e e e e e e e e 153
CLasSeS . . v v v e e e e e 156
6.5.1  allarch . . v v i i e e e e e e e e e e e e 156
0.5.2 archiver . . . . v v i i e e e e e e e e e 157
6.5.3 AULOLOOLS* . vt it i e e e e e e e e e e 157
6.5.4  base ..o e e e e e e e e e e 157
6.5.5 bash-completion . . . v v v v v i i i e e e e e e e e e e e e 158
6.5.6 bin_package . . .. i e e e e e e e e e e e e 158
6.5.7  binconfig . . . ... e e e e e e 158
6.5.8 binconfig-disabled . . . . . . i it e e e e e e e e e 159
6.5.9  bULldhistory . . v v v v v vt e e e e e e e e 159
6.5.10 Duildstats . . v v v v v e e e e e e e e e e e e e e e e e e 159
6.5.11 DbuildstatS—SUMMATY .+ « v v v v v v e b e e e e e e e e e e e e e e 159
0.5.12 CATgo . . i i e e 159
6.5.13  Cargo_C . o e e e e e e 160
6.5.14 CaArgo_COMMON . + v v v v v v e e e e e e e e e e e e e e e e e e e e 160
6.5.15 cargo-update-recipe—Crates . . . .« v v v v v v i i e e e e e e e e e e 160
6.5.16 ccache . . . v v v i i e e e e e e e e e e e e e e e 160
6.5.17 chrpath . . . o o e e e e e e e 160
6.5.18 cmake . . . . e e e e e e e e e e e 161
6.5.19 cmake—gemu . . . . . .t e e e e e e e e e e e e e 161
6.5.20 cmll ... e e 161
6.5.21 compress_dOC . .« v v v e e e e e e e e e e 161
6.5.22 copyleft_complianCe . . . v v v v v v i e e e e e e e e e e e e e e e e 162
6.5.23 copyleft_filter . . . . v v i v v i i e e e e e e e e e e e e e e 162
6.5.24 COre—image . . . . i i i i e e e e e e e e e e e e e e e e e 162
6.5.25  cpan® . . . e e e e e e 162
6.5.26 create—sSpPAxX . . .t i e e e e e e e e e e e e e e 162
0.5.27  CTOSS v v v v v i e e e e e e e e e e e e 163
6.5.28 cross—canadian . . ... i i e e e e e e e 163
6.529 crosssdk . ... .o 163




6.5.30
6.5.31
6.5.32
6.5.33
6.5.34
6.5.35
6.5.36
6.5.37
6.5.38
6.5.39
6.5.40
6.5.41
6.5.42
6.5.43
6.5.44
6.5.45
6.5.46
6.5.47
6.5.48
6.5.49
6.5.50
6.5.51
6.5.52
6.5.53
6.5.54
6.5.55
6.5.56
6.5.57
6.5.58
6.5.59
6.5.60
6.5.61
6.5.62
6.5.63
6.5.64
6.5.65
6.5.660
6.5.67
6.5.68
6.5.69
6.5.70
6.5.71

CVE=CRECK & v v v v e e e e e e e e e e e e e e e e e e e e e e e 163
AEDIAN v v v v e e e e e e e e e e e e e e e e e e e e e e 164
AEPLOY v v v e e e e e e e e e e e e e e e e e 164
deviceltree . . . . . i i e e e e e e e e e e e e 165
devshell . . . v i it e e e e e e e e e e e e e e e e e e e 165
AeVUPSETEAM v v v v v o e e e e e e e e e e e e e e e e e e e e e 165
eXteTNALSTC v v v v vt e e e e e e e e e e e e e e e e e e e e e e e e e e e 166
EXETAUSEIS & v v v v v e e i e e e e e e e e e e e e e e e e e e e 166
features_check . . . . o i i i e e e e e e e s 168
FONECACRE + v v v o e e e e e e e e e e e e e e e e e e e e e 168
fs—uudld . . L e e e e e e e e e e e e e e 168
GCONE & v v it e e e e e e e e e e e e e e e e 169
o 7 o o = A 169
JithUub—Teleases . v v v v v v v i e e e e e e e e e e e e e e 169
GROMEDASE & v v v v e e e e e e e e e e e e e e e e e e e e e e e 169
GO v e e e e e e e e e e e e e e s e 169
GO=MOA + v v e v e e e e e e e e e e e e e e e e e e e e e e e e e e 169
GO—VENAOTL & v v v e e e e e e e e e e e e e e e e e e 169
gobject—introspection . . . . . it e e e e e e e e e e e e e e 170
grub—efl . . . . e e e e e e e e e e e e e e e 170
gSELLANGS & v v v e e e e e e e e e e e e e e e e e e e e e e e e e e 170
GER=AOC v v e e e e e e e e e e 170
gtk—icon-cache . . . . . i i i i e e e e e e e 170
gtk—immodules—cache . . . . . v v i i i i e e e e e e e e e e e e e e e 171
gzipnative . . . . . e e e e e e e e e e e e e 171
1O v v e e e e e e e e e e e e e 171
IMAGE © v v o e e e e e e e e e e e e e e e e e e e e 172
image-buildinfo . . . . v v it i e e e e e e e e e e e e e e e e e e 172
IMAGE_LYDPES v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e e 173
IMAge—1iVe o v v v v i e e e e e e e e e e e e e 173
INSANE v v v v e e e e e e e e e e e e e e e e e 173
KeTnel . . v vttt e e e e e e e e e e e e e e e e e e e 178
kernel—arch . . . . . o it e e e e e e e e e e e e e e 179
kernel-devicCetree . . . v v v i v v i e e e e e e e e e e e e e e e e e 179
kernel—fitimage . . . . v v v i i i e e e e e e e e e e e e e 179
kernel—grub . . . . v i i e e e e e e e e e e e e e e e e e e 180
kernel-module—split . . . . . i i i it e e e e e e e e e e e e e e e e 180
kernel-uboot . . . . . L L L L e e e e e e e e e e e e e e e e e e e e e 180
kernel—Uimage . . v v v v v v i e e e e e e e e e e e e e e e e e 180
Kernel—yOoChtO « v v v v v e e e e e e e e e e e e e e e e e e e e e e e 180
KEXrNELSTC « v v v v v i e e i e e e e e e e e e e e e e e e e e e e e e 180
1ib_package . v v v i e e e e e e e e e e e e e e 180




6.5.72
6.5.73
6.5.74
6.5.75
6.5.76
6.5.77
6.5.78
6.5.79
6.5.80
6.5.81
6.5.82
6.5.83
6.5.84
6.5.85
6.5.86
6.5.87
6.5.88
6.5.89
6.5.90
6.5.91
6.5.92
6.5.93
6.5.94
6.5.95
6.5.96
6.5.97
6.5.98
6.5.99
6.5.100
6.5.101
6.5.102
6.5.103
6.5.104
6.5.105
6.5.106
6.5.107
6.5.108
6.5.109
6.5.110
6.5.111
6.5.112
6.5.113

1ADCH L vt e e 181
TiCENSE v v v v e e e e e e e e e e e e e e e e e e e e 181
1inux—kernel-base . . . v v v v v it e e e e e e e e e e e e e e e e 181
1inuxloader . . v vt v i e e e e e e e e e e e e e e e e e e 181
IR Y Fo 15 o Y 181
MESOM « v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 181
Mmetadata SCIM . v v v v v v e e e e e e e e e e e e e e e s, 181
Migrate_localCoUunt . . v v v v v v it e e e e e e e e e e e e e e e e e e e e e e 182
MIME o v v e e e e e e e e e e e e e e e e e e e e e e e e e e 182
MIME=XAG + v v v v v e e e e e e e e e e e e e e e e e e e e e 182
MITLOTS v v v v e v i e e e e e e e e e e e e e e e e e e e e e e e e e e e e 182
MOAULE . v vttt e e e e e e e e e e e e e e e e e e e e e e e e 182
MOAULE=—DASE v v v v v e i e e e e e e e e e e e e e e e e e e e e e e e e 182
multilib* ..o e 183
NALIVE v v v v o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 183
Nativesdk . . . v ot i e e e e e e e e e e e e e e e e e 183
NOPACKAGES '+ v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e e 184
NOSPAX v v v v v e e e e e e e e e e e e e e e e 184
o)1 184
0LINT + v vt e e e e e e e e e e e e e e e e e 184
OVETL1AVES v v v v i e e e e e e e e e e e e e e e e e e e e e 185
OVEeTrlayEs—etC . v v v i e e e e e e e e e e e e e e 186
OWN-MMAITTOTS v v v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e e e 187
PACKAGE  + v v v v e e e e e e e e e e e e e e e e e e e e e e e e 187
package_deb . .. .. e e e e e e e e e e e e e e 188
Package_iPK v i v i e e e e e e e e e e e e 188
PACKAGE_TPIM v v v v e et e e e e e e e e e e e e e e e e e e e 188
packagedata . . ... L e e e e e e e e e e e e e e 188
PACKAGEGIOUDR + v+ « v v e e e e e e e e e e e e e e e e e e e e e e e e e e e 188
PAtCh « v o e e e 189
Perlnative . . . v i e e e e e e e e e e e e e e e e e 189
PYPL o e e e e e e e e e e e e e e e e 189
PYERON_flit_COTE . v v v i i e e e e e e e e e e e e e e e e e e e e e e e e e e e 189
PYERON_ Maturin . . . v v v e e e e e e e e e e e e e e e e e e e 189
PYERON_MESONDY v v v v v e e e e e e e e e e e e e e e e e e e e e e e 189
PYLthON_PepS5L7 v v v v v o e e e e e e e e e e e e e e e e e e e e e 189
PYthon_poetry_core . . . . . . i i i it i i e e e e e e e e e e 190
PYLhon_pyo3 . . o e e e e e e e e e e e e e e e e e e e e e e e e e e e 190
PYEhoN-—setuptoolS3_TUSE « v v v v v v v e e e e e e e e e e e e e e e e 190
pixbufcache . . . . . . i e e e e e e e e e e e 190
PRKCONELIg .« v v v o o e e e e e e e e e e e e 190
populate_sdk . . . it i e e e e e e e e e e e e e e e e e e e e e e e e 190




6.5.114
6.5.115
6.5.116
6.5.117
6.5.118
6.5.119
6.5.120
6.5.121
6.5.122
6.5.123
6.5.124
6.5.125
6.5.126
6.5.127
6.5.128
6.5.129
6.5.130
6.5.131
6.5.132
6.5.133
6.5.134
6.5.135
6.5.136
6.5.137
6.5.138
6.5.139
6.5.140
6.5.141
6.5.142
6.5.143
6.5.144
6.5.145
6.5.146
6.5.147
6.5.148
6.5.149
6.5.150
6.5.151
6.5.152
6.5.153
6.5.154
6.5.155

populate_sAdK_* . . i i e e e e e e e e e e e e e e e 191
PLEXPOTE v v v v e e e e e e e e e e e e e e e e e e e e e e e e e 191
PrimpPoTrt . v v e e e e e e e e e e e e e e e e e e 192
PISEIV vttt e e e e e e e e e e e e e e e e e e e e e e e e e 192
5= = vt 192
PLESE—CATgO v v v i o e e e e e e e e e e e e e e 192
PLESE—QROME . . .« v i e e e e e e e e e e e e e e e e e e e e 192
python3—dir . . . . . . i e e e e e e e e e 192
PYLhon3native . . . . o v i i i e e e e e e e e e e e e e e e e e e e e e e 193
python3targetconfig .« v v v v v v v i e e e e e e e e e e e e e e 193
TEMU & v v v v e e e e e e e e e e e e e e e e 193
recipe_sanity . . . o it e e e e e e e e e e e e e 193
relocatable . . . .t it e e e e e e e e e e e e e e e e e 193
remove—1ibtool . . . i i e e e e e e e e e e e e e e e e e e e 193
TEPOTE—EITOL v v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e 194
TELAIN .« v vt e e e e e e e e e e e e e e e e e e 194
T WOTK v v v v ettt e it e e e e e e e e e e e e e e e e e e e e e 194
TOOLES™ i it i e e e e e e e e e e e e e e e e e e e e e e 195
TUSE v v v o e e e e e e e e e e e e e e e e e e e e e e e e e e 195
TUST=COMIMON v v v v v v vt e e e e e e e e e e e e e e e e e e e e e e e e e 195
SANILY « v o e e e e e e e e e e e e e e e e 195
SCOMS 4 v v v v e e e e e e e e e e e e e e e e e e e e e e e 195
SAL 195
python_setuptools_build_meta . . . . . . . v v v v v v i v it et 196
SEtuptools3 . .. L e e e e e e e e e e e e e e e e 196
SELUPLOOLS3_L1@TACY v v v v v v e e e e e e e e e e e e e e e e e e e 196
SELUPLOOLS3=0aSE v v v v v e e e e e e e e e e e e e e e e e e e e e e 196
SION_TPIM o v v v v i e e e e e e e e e e e e e e e e e e e e e e e e e e e e 197
SIteinfo . « v v i e e e e e e e e e e e 197
SSEALE v v i e e e e e e e e e e e e e e e e e e e e 197
SEAGING v v vt e e e e e e e e e e e e e e e e e 197
SYSLINUX « v v v v v e e e e e e e e e e e e e e e e e e e e e e 199
systemd . ... e e e e e e e e e e e e 199
SYSEEmMA—D00T « v v v i e e e e e e e e e e e e e e e e e e e 200
EeIrMANAL v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e e 200
LesStAMage . v v i e e e e e e e e e e e e e e e e e 200
£eSESAK v v v e e e e e e e e e e e e e e 201
LeXAINFO v v i e e e e e e e e e e e e e e e e e e e e 201
EOASERT v v v v e e e e e e e e e e e e e e e e e e e e e e e e 201
£001chain=—scripts . . . v i i e e e e e e e e e e e e e e 201
LYPEChECK o v v vt e e e e e e e e e e e e e e e e 201
Uboot—config . . v v i i e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 202

vi



6.6

6.7

6.8

6.9

6.5.156 Ub0oOL—Sign . . . . i i e e e e e e e e e e e e e e e 202

6.5.157 uninative . . . .. i e e e e e e e e e e e e e e e 203
6.5.158 update—alternativVes . . . . v v v v i i e e e e e e e e e e e e e e e e e e 203
6.5.159 update—rc.d . ... e e e e e e e e e e e e e e e e e e e e e 204
6.5.160 useradd® . . . ... e e e e e e e e e e e e e e e e e e 204
6.5.161 Utility—tasks . . v v v v i e e e e e e e e e e e e 205
6.5.162 utils . . . oo i e 205
6.5.163 vala . . .o e e e 205
6.5.164 vex . ... e 205
6.5.165 waf . . . .o 205
Tasks . . . oL 206
6.6.1 Normal Recipe Build Tasks . . . . . . . .. ... ... . o 206
6.6.2 Manually Called Tasks . . . . . . . . . e 211
6.6.3 Image-Related Tasks . . . . . . . . . . . i e e e 213
6.6.4 Kernel-Related Tasks . . . . . . . ... .. . 214
devtool Quick Reference . . . . . . . . . . . .. e e e e e 216
6.7.1 GettingHelp . . . . . . . . 216
6.7.2  The Workspace Layer Structure . . . . . . . . . . . . o it e e e 219
6.7.3  Adding a New Recipe to the Workspace Layer . . . . . ... ... ... ... ........ 221
6.7.4  Extracting the Source for an ExistingRecipe . . . . . ... ... ... ... 222
6.7.5  Synchronizing a Recipe’ s Extracted Source Tree . . . . . . ... . ... ... ... .... 222
6.7.6  Modifying an Existing Recipe . . . . . . . . . . . .. e e 222
6.7.7 Editan ExistingRecipe . . . . . . . . . L e 223
6.7.8 UpdatingaRecipe . . . . . . . . . .. e 223
6.7.9  Checking on the Upgrade Statusof aRecipe . . . . . . ... ... ... .. ... ...... 224
6.7.10 UpgradingaRecipe . . . . . . . . . . e 225
6.7.11 ResettingaRecipe. . . . . . . . . o o e e e e e 226
6.7.12 Finish WorkingonaRecipe . . . . . . . . ... ... Lo o 226
6.7.13 Building YourRecipe . . . . . . . . .. 226
6.7.14 Building YourImage . . . . . . . . . . e 227
6.7.15 Deploying Your Software on the Target Machine . . . . . .. ... ... ... ... ..... 227
6.7.16 Removing Your Software from the Target Machine . . . . . . . . ... .. ... ... .... 228
6.7.17 Creating the Workspace Layer in an Alternative Location . . . . . .. ... ... ...... 228
6.7.18 Get the Status of the Recipes in Your Workspace . . . . . . .. ... ... ... .. ... 229
6.7.19 Search for Available Target Recipes . . . . . . . . . . . . . . . e 229
6.7.20  Get Information on Recipe Configuration Scripts . . . . . . . . . .. ... ... ... ... 229
6.7.21 Generate an IDE Configuration foraRecipe . . . . ... ... ... ... ... ... ... 229
OpenEmbedded Kickstart (.wks) Reference . . . . . . . . . ... ... . L . 230
6.8.1 Introduction . . . . . . . . .. 230
6.8.2  Command: part or partition . . . . . . . . . ... L. e 230
6.8.3 Command: bootloader . . . . . . . . . . . 233
QA Error and Warning Messages . . . . . . . v v v it it e e e e e e e e e e e e 233

vii



6.9.1 Introduction . . . . . . . . . ... e e e e e 233

6.9.2  Errorsand Warnings . . . . . . . . ...t e e e e e e e e e e e e 234

6.9.3  Configuring and Disabling QA Checks . . . . . . . . . . . .. . . 244

6.10 Tmages . . . . . . . e e e e e e e 244
6.11 Features . . . . . . . o L e e e 246
6.11.1 Machine Features . . . . . . . . . . . . e 247
6.11.2 Distro Features . . . . . . . . . . .. e e e 248
6.11.3 TImage Features . . . . . . . . . . . . . e 250
6.11.4 Feature Backfilling . . . . . . . . . . . e 252

6.12 Variables GloSSary . . . . . . . i e e e e e e e e e e e e e e 253
6.13 Variable Context . . . . . . . . . ... e e e e e 422
6.13.1 Configuration . . . . . . . . . .. L. e e e e e e e 422
6.13.2 ReCIPES . . . v v v i e e e 424

6.14 FAQ . . . . 425
6.14.1 General QUESHIONS . . . . . . . . . i e e e e e e e e e e e e e e e 426
6.14.2 Building environment . . . . . . . .. L L Lo e e e e e e e e e 427
6.14.3 Using the OpenEmbedded Build system . . . . . ... ... .. ... ... ... ... .. 429
6.14.4 Customizing generated IMaZES . . . . .« v v v v v v e e e e e e e e e e e e e e e 430
6.14.5 TIssues on the running SYStEM . . . . . . . . o v v it e e e e e e e e e e e e e 433

6.15 Contributions and Additional Information . . . . . . . .. ... ... L Lo o 433
6.15.1 Introduction . . . . . . . . . . .. e e e 433
6.15.2 Contributions . . . . . . . . L e e e e e e e e e 434

6.15.3 Yocto Project Bugzilla . . . . . . . . . . e 434
6.15.4 Mailinglists . . . . . . . .o 434
6.15.5 InternetRelay Chat (IRC) . . . . . . . . . . . . i e 435
6.15.6 Links and Related Documentation . . . . . . . . . . .. ... oo 435

7 Yocto Project Board Support Package Developer’ s Guide 437
7.1  Board Support Packages (BSP) —Developer’ sGuide . . . ... ... ... ... ... ....... 437
T.1.1 BSPLayers . . . . . o i e e e e e 437

7.1.2  Preparing Your Build Host to Work With BSP Layers . . . . ... .. ... ......... 439

7.1.3  Example Filesystem Layout . . . . . . . .. . ... ... 441

7.1.4  Developing a Board Support Package (BSP) . . . . ... ... ... . ... ... ... 450

7.1.5  Requirements and Recommendations for Released BSPs . . . . . . .. .. ... ... .... 452

7.1.6  CustomizingaRecipeforaBSP . . . .. . ... . ... o oo 455

7.1.7  BSP Licensing Considerations . . . . . . . . . . . . . e 456

7.1.8  Creating a new BSP Layer Using the bitbake-layers Script . . . . . ... ... ..... 457

8 Yocto Project Development Tasks Manual 465
8.1  The Yocto Project Development Tasks Manual . . . . . . . .. ... ... .. ... ... 465
8.1.1  Welcome . . . . . . . . e e e 465

8.1.2  Other Information . . . . . . . . . ... e 466

viii



8.2

8.3

8.4

8.5

Setting Up to Use the Yocto Project . . . . . . . . . . . . . . e 466
8.2.1  Creating a Team Development Environment . . . . . . .. ... ... ... ......... 466
8.2.2  Preparingthe Build Host . . . . . . ... .. ... 469
8.2.3  Locating Yocto Project Source Files . . . . . . . . . .. .. ... 474
8.2.4  Cloning and Checking Out Branches . . . . . ... .. ... ... ... .. ........ 476
8.2.5  Inmitializing the Build Environment . . . . . . . . . ... .. L. o 479
Understanding and Creating Layers . . . . . . . . . . .. . .. e 479
83.1 Creating YourOwn Layer . . . . . . .. ... .. ... Lo 479
8.3.2  Following Best Practices When Creating Layers . . . . . . . . ... ... ... ....... 482
8.3.3  Making Sure Your Layer is Compatible With Yocto Project . . . . . ... ... .. ..... 484
8.3.4  Enabling Your Layer . . . . . . . . . . . e 486
8.3.5  Appending Other Layers Metadata With Your Layer . . . . . .. ... ... ... ...... 486
8.3.6  Prioritizing Your Layer . . . . . .. ... e 490
8.3.7 Managing Layers . . . . . . . ... e e e e e e e e e e e 492
8.3.8  Creating a General Layer Using the bitbake-layers Script . . . . . . . ... ... .... 493
8.3.9  Adding a Layer Using the bitbake-layers Script . . . . . .. ... ... .. ....... 495
8.3.10 Saving and restoring the layerssetup . . . . . . .. ... Lo oo 496
Customizing Images . . . . . . . . . o i e e e e e e e e e e e e e e 497
8.4.1  Customizing Images Using local.conf . . . . . o v v v v v vt i v it et e e e 497
8.4.2  Customizing Images Using Custom IMAGE_FEATURES and EXTRA_IMAGE_FEATURES . . . . 498
8.4.3  Customizing Images Using Custom .bbFiles . . . . . ... ... ... ... ... ...... 499
8.4.4  Customizing Images Using Custom Package Groups . . . . . . ... ... ... ....... 499
8.4.5 Customizing an Image Hostname . . . . . . . .. ... . ... ... .. . 500
Writinga New Recipe . . . . . . . . . . . e 501
5.1  OVeIVIEW . . . . v v i e e 501
8.5.2  Locate or Automatically Create a Base Recipe . . . . . .. . ... ... ... ........ 502
8.5.3 Storing and Naming the Recipe . . . . . . . . . . . . . . e 505
854 RunmningaBuildontheRecipe . . ... ... ... ... . ... . 505
855 FetchingCode . . . . . . . . . e 506
85.6 UnpackingCode . . . . . . . . . . o e e e 508
85.7 PatchingCode . . . . . . . . . e e e e e e 509
8.5.8 Licensing . . . . . ... e e e e e e e e e 509
8.5.9  Dependencies . . . . . . ... e e e 509
8.5.10 Configuringthe Recipe . . . . . . . . . . e 510
8.5.11 Using Headers to Interface with Devices . . . . . . . . . . . .. .. .. ..., 511
8.5.12 Compilation . . . . . . . L L. e e e e e e e e e e e 512
85.13 Inmstalling. . . . . . . . L e e e 513
8.5.14 Enabling System Services . . . . . . . . . . i e e 514
8.5.15 Packaging . . . . . . .. e e e e e 515
8.5.16 Sharing Files Between Recipes . . . . . . . . .. . ... .. oo 516
8.5.17 Using Virtual Providers . . . . . . . . .. e 516
8.5.18 Properly Versioning Pre-Release Recipes . . . . . . . ... . ... ... ... 518




8.6

8.7

8.8
8.9
8.10
8.11
8.12

8.13
8.14

8.15

8.16
8.17

8.18
8.19

8.5.19 Post-Installation Scripts . . . . . . . . ..o e e e e 518

8.5.20 Testing. . . . v v i e e e e e e e e e e e e e 519
8.5.21 Examples . . . . . .. e e e e e e e e e e 519
8.5.22 Following Recipe Style Guidelines . . . . . . . . .. ... ... ... ... 524
8.5.23 ReCIpe SYNtaX . . . . v v v i i e e e e e e e e e e e e e 524
AddingaNew Machine . . . . . . . . . . o L e e e e e e e 528
8.6.1  Adding the Machine Configuration File . . . . . . . .. ... ... ... ... ... .. .. 528
8.6.2  Adding a Kernel for the Machine . . . . . ... ... ... ... ... ... . . ... .. 529
8.6.3  Adding a Formfactor Configuration File . . . . . . . ... ... ... ... ... . ...... 529
Upgrading Recipes . . . . . . . . i o e e e e e e e e e 530
8.7.1  Using the Auto Upgrade Helper (AUH) . . . . . . . .. ... .. ... . ... .. .. 530
8.7.2 Using devtool UPGrade . . « v v v v v v vt et e e e e e e e e e e e e 533
8.7.3 Manually UpgradingaRecipe . . . . . . . . . . .. 536
Finding Temporary Source Code . . . . . . . . . . . . i e e e e 537
Using Quiltin Your Workflow . . . . . . . . . . e 538
Usinga Development Shell . . . . . . ... .. . 540
Using a Python Development Shell . . . . . . . . ... . . 541
Building . . . . . . . 542
8.12.1 Buildinga Simple Image . . . . . . . . . . e 542
8.12.2 Building Images for Multiple Targets Using Multiple Configurations . . . . . . . . ... ... 544
8.12.3 Building an Initial RAM Filesystem (Initramfs) Image . . . . ... ... .. ... ...... 547
8.12.4 Buildinga Tiny System . . . . . . . . . . e e e e e e e e e e e 549
8.12.5 Building Images for More than One Machine . . . . . . . .. . ... ... ... ....... 554
8.12.6 Building Software from an External Source . . . . . . . . .. ... ... L. 556
8.12.7 Replicatinga Build Offine . . . . . . . . . . ... ... 557
Speeding UpaBuild . . . . . . .. .. e 558
Working With Libraries . . . . . . . . . o o o e e e e e e e e e 560
8.14.1 Including Static Library Files . . . . . . . .. .. ... L o 560
8.14.2 Combining Multiple Versions of Library Files into One Image . . . . . ... .. ... .... 561
8.14.3 Installing Multiple Versions of the Same Library . . . . . . . . ... ... ... ... ..., 563
Working with Pre-Built Libraries . . . . . . . . . . . ... e 564
8.15.1 Introduction . . . . . . . . . . . e e e e e e e 564
8.15.2 Versioned Libraries . . . . . . . . . . .. e e 564
8.15.3 Non-Versioned Libraries . . . . . . . ... . . e 566
Using x32 psABIL . . . . . o e e e 568
Enabling GObject Introspection SUpport . . . . . . . . . . . oL e 569
8.17.1 Enabling the Generation of Introspection Data . . . . . . ... ... ... ... ....... 569
8.17.2 Disabling the Generation of Introspection Data . . . . . . . . . ... ... ... ....... 570
8.17.3 Testing that Introspection WorksinanImage . . . . . .. ... ... ... ... ....... 571
8.17.4 Knownlssues . . . . . . . . . e 571
Optionally Using an External Toolchain . . . . . . . ... ... ... .. .. ... ... ....... 571

Creating Partitioned Images Using Wic . . . . . . . . . . . . o e 572




8.20
8.21

8.22

8.23

8.24

8.25

8.26

8.27

8.28

8.29
8.30

8.19.1 Background . . . . . . ... e 573

8.19.2 Requirements . . . . . . . v v v vt e e e e e e e e e e e e e e e e e e e 573
8.19.3 GettingHelp . . . . . . . . e e e 574
8.19.4 Operational Modes . . . . . . . ... e e 575
8.19.5 Using an Existing Kickstart File . . . . . . . . ... ... . . 577
8.19.6 Using the Wic Plugin Interface . . . . . . . . . . . . . .. . e 578
8.19.7 WicExamples . . . . . . . . . o e e e e e e e e 581
Flashing Images Using bmaptool . . . . . . . . . . . . e 587
Making Images More Secure . . . . . . . . ... e e 588
8.21.1 General Considerations . . . . . . . . . . .. e 588
8.21.2 Security Flags . . . . . . . . . e e e e e 589
8.21.3 Considerations Specific to the OpenEmbedded Build System . . . . . . ... ... ... ... 589
8.21.4 Tools for Hardening Your Image . . . . . ... . . ... ... ... ... .. ... .. 590
Creating Your Own Distribution . . . . . . . . . . o 0 e e e e e e e e e e 590
8.22.1 Copying and modifying the Poky distribution . . . . . . . .. ... ... ... 592
Creating a Custom Template Configuration Directory . . . . . . . . ... ... ... ... ... ... 592
Conserving Disk Space . . . . . . . . . . L 593
8.24.1 Conserving Disk Space DuringBuilds . . . . . . ... ... ... ... .. ... . ... .. 593
8.24.2 Purging Obsolete Shared State Cache Files . . . . . . . ... .. ... ... .. ....... 593
Working with Packages . . . . . . . . . . . L 594
8.25.1 Excluding Packages fromanImage . . . . ... ... ... ... ... ... . ... .. 594
8.25.2 Incrementinga Package Version. . . . . . . . . . . . . o e e 595
8.25.3 Handling Optional Module Packaging . . . . . . . ... . ... ... ... ... ...... 598
8.25.4 Using Runtime Package Management . . . . . . . . .. ... ... ... ... ... .. 602
8.25.5 Generating and Using Signed Packages . . . . . . . . . ... ... . 607
8.25.6 Testing Packages Withptest . . . . . . . . . . . . .. 608
8.25.7 Creating Node Package Manager (NPM) Packages . . . . . . . ... ... ... .. ..... 608
8.25.8 Adding custom metadata to packages . . . . . .. ...l o 613
Efficiently Fetching Source Files DuringaBuild . . . . . . ... ... .. ... .. ... 613
8.26.1 Setting up Effective MITors . . . . . . . . . . o oL e e e 613
8.26.2 Getting Source Files and Suppressing the Build . . . . . . ... ... ... .. ........ 614
Selecting an Initialization Manager . . . . . . . . . . .. ... L e 614
8.27.1 Using SysVinitwithudev . . . . . . . . . .. L 615
8.27.2 Using BusyBox init with BusyBoxmdev . . . . . .. ... ... ... .. L. 615
8273 Usingsystemd . . . . . . . . . e e e e e e e e e e e e 615
Selecting a Device Manager . . . . . . . . . . . e e 617
8.28.1 Using Persistent and Pre-Populated /dev . . . . . . ... ... oL 617
8.28.2 Using devtmpfs and a Device Manager . . . . . . . ... ... ... ... ... 617
Usingan External SCM . . . . . . . . . . 0 e e e e e e e e e 618
Creating a Read-Only Root Filesystem . . . . . . . . .. . ... .. ... 619
8.30.1 Creatingthe Root Filesystem . . . . . . ... ... ... .. ... .. ... 619
8.30.2 Post-Installation Scripts and Read-Only Root Filesystem . . . . . . . ... ... ... .... 620

Xi



8.31

8.32

8.33

8.34

8.35

8.36
8.37

8.38

8.30.3 Areas With Write ACCESS . . . . . . v v i i e e e e e e e e e e e e 620

Maintaining Build Output Quality . . . . . . . . . . . . e e e 620
8.31.1 Enabling and Disabling Build History . . . . . . . ... ... ... ... ... .. 621
8.31.2 Understanding What the Build History Contains . . . . . . ... ... ... ......... 621
Debugging Tools and Techniques . . . . . . . . . . ... ... 629
8.32.1 Viewing Logs from Failed Tasks . . . . . . . . . . .. .. . e 630
8.32.2 Viewing Variable Values . . . . . . . ... ... e 631
8.32.3 Viewing Package Information with oe-pkgdata-util . .. .. ... ... ... ... ... 632
8.32.4 Viewing Dependencies Between Recipesand Tasks . . . . . . ... ... ... ... ..... 633
8.32.5 Viewing Task Variable Dependencies . . . . . . . . . . .. . ... . 634
8.32.6 Debugging signature construction and unexpected task executions . . . . . . .. ... .. .. 635
8.32.7 Viewing Metadata Used to Create the Input Signature of a Shared State Task . . . . . .. .. 635
8.32.8 Invalidating Shared State to Forcea TasktoRun . . . . . . . ... ... ... .. ... ... 635
8.32.9 Running Specific Tasks . . . . . . . . . . L e e 636
8.32.10 General BitBake Problems . . . . . ... ... ... 638
8.32.11 Building with No Dependencies . . . . . . . . .. ... ... ... .. ... .. 638
8.32.12 Recipe Logging Mechanisms . . . . . . . . . ... L it e 638
8.32.13 Debugging Parallel Make Races . . . . . . . . . . . . . . e 640
8.32.14 Debugging With the GNU Project Debugger (GDB) Remotely . . . . . ... ... ... ... 645
8.32.15 Debugging with the GNU Project Debugger (GDB) on the Target . . . . . . ... ... ... 650
8.32.16 Enabling Minidebuginfo . . . . . . . . . . .. L 650
8.32.17 Other Debug@ing Tips . . . .« v v v v it et e e e e e e e e e e e e e e 651
Working With Licenses . . . . . . . . . . o i i e e e e e e e e e 652
8.33.1 Tracking License Changes . . . . . . . . . . .. ... ... e 652
8.33.2 Enabling Commercially Licensed Recipes . . . . . . . ... ... ... ... ... ..... 654
8.33.3 Maintaining Open Source License Compliance During Your Product’ s Lifecycle . ... .. 657
8.33.4 Copying Non Standard Licenses . . . . . . . . . . o o v i vt i i it i e 661
Dealing with Vulnerability Reports . . . . . . . . . . . . .. 661
8.34.1 How to report a potential security vulnerability? . . . . ... ... .. ... ... ... 661
8.34.2 Security team . . . . . . .. e e e e e e e e 662
Checking for Vulnerabilities . . . . . . . . . . . e e e e 664
8.35.1 Vulnerabilities in Poky and OE-Core . . . . . . . ... ... ... ... ... ... .. 664
8.35.2 Vulnerability check atbuild time . . . . . . . . . . . ... L 664
8.35.3 Fixing CVE product name and version mappings . . . . . . .« . v v v v vt v v vt 666
8.35.4 Fixing vulnerabilities in 1€CIPES . . . . . . . v o v i i e e e e e e e e e e 667
8.35.5 Implementationdetails . . . . . . . ... L e 669
Creating a Software Bill of Materials . . . . . . . . . . ... 670
Using the Error Reporting Tool . . . . . . . . . . ..o o e 671
8.37.1 Enablingand Using the Tool . . . . . . . . . . . . . ittt 671
8.37.2 Disablingthe Tool . . . . . . . . . . .. e 672
8.37.3 Setting Up Your Own Error Reporting Server . . . . . ... .. ... ... .. ....... 672
Using Wayland and Weston . . . . . . . . . . o oo e e e e e 672

xii



8.38.1 Enabling WaylandinanImage . . . ... .. ... . ... ... . 673
8.38.2 Running Weston . . . . . . . . . . . e e e e e e e e e e e e 673

8.39 Using the Quick EMUlator (QEMU) . . . . . . . . . . . e 674
8.39.1 OVerview . . . . . .. e e 674

8.39.2 Running QEMU . . . . . . . . e 674
8.39.3 Switching Between Consoles . . . . . . . . . . . e e e e 676
8.39.4 Removing the Splash Screen . . . . . . . . . ... L 676
8.39.5 Disablingthe Cursor Grab . . . . . . . ... ... e 676
8.39.6 Running Under a Network File System (NFS) Server . . . . . . ... ... ... ... .... 676
8.39.7 QEMU CPU Compatibility Under KVM . . . . . ... ... ... . ..., 677
8.39.8 QEMU Performance . . . . . . . . . . . . . . . e e e e e e 678
8.39.9 QEMU Command-Line Syntax . . . . . . .. ... ... .. ... ... 678
8.39.10 rungemu Command-Line Options . . . . . . . . . . ... .. 680

8.40 Locking and Unlocking Recipes Using bblock . . . . v v v v v v v v v v i e e e e e e e e e e e 681
8.40.1 Lockingtasks and reCipes . . . . . . . o o i i i e e e e e e e e e e 682
8.40.2 Unlocking tasks and reCipes . . . . . . . . . . . . . Lo e 682
8.40.3 Configurationfile . . . . . . . . .. L e 683
8.40.4 Lockingmechanism . . . . . . . . . . L e e e e e e e e 683
8.40.5 Example . . . . . . . L e e e e e e e e 683

9 Yocto Project Linux Kernel Development Manual 685
9.1 Introduction . . . . . . . . . . . . . e 685
0.1 OVEIVIEW . . o v o o e e e e e e e e e e e e e e e e e e e e e e 685

9.1.2  Kernel Modification Workflow . . . . . .. . ... . oo 686

9.2 CommonTasks . . . . . . . . . . 688
9.2.1  Preparing the Build Host to Work on the Kernel . . . . .. ... ... ... ... .... 688

9.2.2  Creating and Preparinga Layer . . . . . . . ... .. . ... ... ... 693

9.2.3  Modifying an Existing Recipe . . . . . . . . . ... 694

9.2.4  UsingdevtooltoPatchtheKernel . . . . . . . ... ... .. ... .. ... . .... 699

9.2.5  Using Traditional Kernel Development to Patch the Kernel . . . . . .. ... ... ... ... 702

9.2.6  Configuringthe Kernel . . . ... .. ... ... .. ... 705

9.2.7 Expanding Variables . . . . . . . . ... e 713

9.2.8  Working witha “Dirty” Kernel Version String . . . . . . .. ... ... .. ... .... 713

9.2.9  Working With Your Own Sources . . . . . . . . . . i v v i ittt e i e e e 714
9.2.10 Working with Out-of-Tree Modules . . . . . . .. .. ... . ... ... ... . .... 715
9.2.11 Inspecting Changes and Commits . . . . . . . . . . ... v v i i 717
9.2.12 Adding Recipe-Space Kernel Features . . . . . . ... ... ... ... ... . .... 718

9.3  Working with Advanced Metadata (yocto-kernel-cache) . . . . . . v v v v v v v v v v v v v v .. 720
9.3.1  OVEIVIEW . . . . o i it e e e e e e 720

9.3.2  Using Kernel MetadatainaRecipe . . . . . . ... ... ... .. . . . ... 720

9.3.3 Kernel Metadata Syntax . . . . . . . . . ... e e e e 721

9.3.4  Kernel Metadata Location . . . . . . . .. ... ... e 731




9.3.5  Organizing Your SOUICE . . . . . . v v v v vt e e e e e e e e e
9.3.6  SCC Description File Reference . . . . . .. . . . ... .. . . . . ...

9.4 Advanced Kernel Concepts . . . . . . . . . . . L e e
9.4.1  Yocto Project Kernel Development and Maintenance . . . . . . ... ... ... .......
9.4.2  Yocto Linux Kernel Architecture and Branching Strategies . . . . . . ... ... ... ....
9.4.3 Kernel Build File Hierarchy . . . . . . . . . . . .. .. . . . e
9.4.4  Determining Hardware and Non-Hardware Features for the Kernel Configuration Audit Phase

9.5 Kernel Maintenance . . . . . . . . .. ... e e e e e e
9.5.1  Tree ConstruCtion . . . . . . . . . v v ittt e e e e e e e e e e e
052 BuildStrategy . . . . . . . o e e e e e e e e e e

9.6 Kernel Development FAQ . . . . . . . . . . e e e
9.6.1 Common Questions and Solutions . . . . . . . . . . . . ... ... e

10 Yocto Project Profiling and Tracing Manual

10.1 Yocto Project Profiling and Tracing Manual . . . . . . . . . ... ... ... ... ... ......
10.1.1 Introduction . . . . . . . . . . . . e e e e e
10.1.2  General SEtup . . . . o o vt e e e e e e e e e e e e e e e e e e

10.2  Overall Architecture of the Linux Tracing and Profiling Tools . . . . . . ... ... ... .. .....
10.2.1  Architecture of the Tracing and Profiling Tools . . . . . . . . ... ... ... ... .....

10.3 Basic Usage (with examples) for each of the Yocto Tracing Tools . . . . . . ... ... .. ... ...
1031 perf . o e e e e e e e e e e e e
1032 ftrace . . . . .
1033 SystemTap. . . . . . . o ..
10.3.4  Sysprof . . . oL e
10.3.5 LTTng (Linux Trace Toolkit, next generation) . . . . . . . . . . . . .« v v v v oo
10.3.6 blktrace . . . . . . . .

10.4 Real-World Examples . . . . . . . . . . e
10.4.1 Slow Write Speed on Live Images . . . . . . . . . . . . ... ...

11 Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

I1.1 Introduction . . . . . . . . . o i i i e e e e e e
11.1.1 eSDKIntroduction . . . . . . . . . . . . ... e
11.1.2 SDK Development Model . . . . . . . . . . . . . e e

11.2 Using the Extensible SDK . . . . . . . . . . .. e
11.2.1 Why use the Extensible SDK and WhatisinIt? . . .. ... ... ... ...........
11.2.2 Installing the Extensible SDK . . . . . . . . . ...
11.2.3 Running the Extensible SDK Environment Setup Script . . . . . . ... ... ... .....
11.2.4 Using devtoolin Your SDK Workflow . . . .. ... ... ... ... ... . ....
11.2.5 ACloser Look at devtool add . . . v v v v v v v v it e e e e e e e e
11.2.6  Working With Recipes . . . . . . . . . . . e
11.2.7 Restoring the Target Device to its Original State . . . . . . . . . . . .. ... ... .....
11.2.8 Installing Additional Items Into the Extensible SDK . . . . . .. ... ... ... .. ....

749
749
749
749
750
750
751
751
785
802
805
807
813
820
821

Xiv



11.2.9 Applying Updates to an Installed Extensible SDK . . . . . .. ... ... ... ... .... 857

11.2.10 Creating a Derivative SDK With Additional Components . . . . . . . ... ... ... .... 858

11.3 Using the Standard SDK . . . . . . . . .o L 858
11.3.1 Why use the Standard SDK and WhatisinIt? . . . ... ... ... ... .. ........ 858
11.3.2 Installingthe SDK . . . . . . . . e 859

11.3.3 Running the SDK Environment Setup Script . . . . . . . . . . ... .. .. ... 860

11.4 Using the SDK Toolchain Directly . . . . . . . . ... . ... . 861
11.4.1 Autotools-Based Projects . . . . . . . . . ... 861

11.4.2 Makefile-Based Projects . . . . . . . . . . .. e 864

11.5 Obtainingthe SDK . . . . . . . e e e e e 869
11.5.1 Working with the SDK components directly ina Yoctobuild . . . . . . ... ... ... ... 869
11.5.2 Working with standalone SDK Installers . . . . . ... ... ... ... ... ....... 870

11.5.3 Extracting the Root Filesystem . . . . . . . . .. . ... 872

11.5.4 Installed Standard SDK Directory Structure . . . . . . . . . . . . . v v v i 873

11.5.5 Installed Extensible SDK Directory Structure . . . . . . . . ... .. ... ... ....... 875

11.6 Customizing the Extensible SDK standalone installer . . . . . ... ... ... ... ... ..... 877
11.6.1 Configuring the Extensible SDK . . . . . . . .. ... ... . 877
11.6.2 Adjusting the Extensible SDK to Suit Your Build Host” sSetup . . . ... ... ... .... 878

11.6.3 Changing the Extensible SDK Installer Title . . . . . ... ... ... ... ... . .... 879
11.6.4 Providing Updates to the Extensible SDK After Installation . . . . ... .. ... ... ... 879

11.6.5 Changing the Default SDK Installation Directory . . . . . . . . ... ... ... ... .... 880
11.6.6 Providing Additional Installable Extensible SDK Content . . . . . . . .. .. ... ...... 880
11.6.7 Minimizing the Size of the Extensible SDK Installer Download . . . . ... ... ... ... 881

11.7 Customizing the Standard SDK . . . . . . . . . . . . o e 882
11.7.1 Adding Individual Packages to the Standard SDK . . . . . . . ... .. ... .. ... .... 882
11.7.2  Adding API Documentation to the Standard SDK . . . . . ... .. ... ... ... ... 882

12 Toaster User Manual 883
12.1 IntroduCtion . . . . . . . . i i e e e e e e e e e e 883
12.1.1 Toaster Features . . . . . . . . . . o o i i e e e e e e e e e 883
12.1.2 Installation Options . . . . . . . . . . .. L e e e 884

12.2 Preparing to Use Toaster . . . . . . . . . . o oo i ittt e e 885
12.2.1 Setting Up the Basic System Requirements . . . . . . . . ... ... ... ... ....... 885
12.2.2 Establishing Toaster System Dependencies . . . . . . . . . .. .. ... ... ... 885

12.3 SettingUpand Using Toaster . . . . . . . . . . . .. o ittt 886
12.3.1 Starting Toaster for Local Development . . . . . . . .. ... ... ... ... ... .... 886
12.3.2 Setting a Different Port . . . . . . . . .. L 886

12.3.3 Setting Up Toaster Withouta Web Server . . . . . . . . . . ... ... .. .. ..... 887
12.3.4  Setting Up Toaster Without a Build Server . . . . . . ... ... ... ... ... ..... 887
12.3.5 Settingup External Access . . . . . . .. ... oL e 887
12.3.6  The Directory for Cloning Layers . . . . . . . . . . . . ... i 888
12.3.7 The Build Directory . . . . . . . . . o o i e e e e e e e e e e e 888

XV



12.3.8 Creating a Django SUPEruser . . . . . . . . . o v v ittt e e e e e e 888

12.3.9 Setting Up a Production Instance of Toaster . . . . . . . .. ... ... ... ....... 889
12.3.10 Using the Toaster Web Interface . . . . . . . .. ... ... ... ... ... . ... . 894

124 Conceptsand Reference . . . . . . . . . . .. L e 901
12.4.1 Layer Source . . . . . . . e e e e e e e e 901
1242 Releases . . . . . . o o 903

12.43 Configuring Toaster . . . . . . . . .« .. e e e e e e 904
12.4.4 Remote Toaster Monitoring . . . . . . . . . . . . L e 907

1245 Useful Commands . . . . . . . . . .. e 910

13 Yocto Project Test Environment Manual 913
13.1 The Yocto Project Test Environment Manual . . . . . .. ... ... ... ... ........... 913
I3.1.1 Welcome . . . . ... 913
13.1.2  Yocto Project Autobuilder Overview . . . . . . . .. .. .. ... .. ... 914
13.1.3  Yocto Project Tests —Types of Testing Overview . . . . . . ... .. .. ... ... .... 915
13.1.4 How Tests Mapto Areasof Code . . . . . . . . . . ... i 916
13.1.5 TestExamples . . . . . . . . o o e e e e e e e e e e e e e 919
13.1.6 Considerations When Writing Tests . . . . . . . . . . . . . o o it i ittt 922

13.2 Project Testing and Release Process . . . . . . . ... ... ... .. L 923
13.2.1 DaytoDay Development . . . . . . ... ... .. ... 923
1322 Release Builds . . . . . . . . . .. 924

13.3 Testing Packages With ptest . . . . . . . . . . . . e e e e e 924
13.3.1 Addingptestto Your Build . . . . .. ... ... oo 925
13.3.2 Running ptest . . . . . . o o e e e e e e e e e e e 925

13.3.3 Getting Your Package Ready . . . . . .. . ... ... . 925

13.4 Performing Automated Runtime Testing . . . . . . . . .. ... ... ... L . 926
13.4.1 Enabling Tests . . . . . . . . . . . e e e 927

1342 Running Tests . . . . . . . . e e e e e e e 931

13.43 Exporting Tests . . . . . . . o o o i e e e e e e 933

13.44 Writing New Tests . . . . . . o o o o o e e e e e e e e e e 933

13.4.5 Installing Packages in the DUT Without the Package Manager . . . . . .. ... ... .... 935

13.5 Understanding the Yocto Project Autobuilder . . . . . . . ... ... ... ... 936
13.5.1 Execution Flow within the Autobuilder . . . . . .. ... ... ... ... .. ........ 936
13.5.2 Autobuilder Target Execution Overview . . . . . . . . . . o v v v i vt v e 937

13.5.3 Autobuilder Technology . . . . . . . . . . . ... 938
13.5.4 run-config Target Execution . . . . . . . . . . . .. ... 939
13.5.5 Deploying Yocto Autobuilder . . . . . . . .. .. oL 940

13.6 Reproducible Builds . . . . . . . . . . e e e e 941
13.6.1 Howwedefineit. . . . . . . . . . . e 941
13.6.2 Whyitmatters . . . . . . . . . . . e e 941
13.6.3 Howweimplementit . . . . . . . . . . . ... . 941

13.6.4 Can we prove the projectis reproducible? . . . . . . . . . . . ... L e 942

xvi



13.7

13.6.5 Canltestmy layer or recipes? . . . . . . . . . . i e e
Yocto Project Compatible . . . . . . . . L e e e e e
13.7.1 Introduction . . . . . . . . . . . . e e
13.7.2 Benefits . . . . . . e
13.7.3 Validatingalayer . . . . . . . . . . e e

14 BitBake Documentation

15 Release Information

15.1

15.2

15.3

15.4

15.5

15.6

Introduction . . . . . . . . L e e e e
15.1.1 General Migration Considerations . . . . . . . . . . . . . oot vttt e
Release 5.1 (styhead) . . . . . . . . o o i i e e e e e e e
15.2.1 Release 5.1 (styhead) . . . . . . . . . . e
15.2.2 Release notes for 5.1 (styhead) . . . . . . . . . ... L
15.2.3 Release notes for Yocto-5.1.1 (Styhead) . . . . .. .. ... ... L oo,
15.2.4 Release notes for Yocto-5.1.2 (Styhead) . . . . . .. .. . . ... ... ... .
Release 5.0 (scarthgap) . . . . . . . o o . o o e e e e e e
15.3.1 Release 5.0 LTS (scarthgap) . . . . . . . . . . o 0 i e e e
15.3.2 Release notes for 5.0 (scarthgap) . . . . . . . . . . L L
15.3.3 Release notes for Yocto-5.0.1 (Scarthgap) . . . . . . .. . . . .. .. . ...
15.3.4 Release notes for Yocto-5.0.2 (Scarthgap) . . . . . . . . . . ... ... o
15.3.5 Release notes for Yocto-5.0.3 (Scarthgap) . . . . . .. ... ... ... ..
15.3.6 Release notes for Yocto-5.0.4 (Scarthgap) . . . . . . . . ... ... .
15.3.7 Release notes for Yocto-5.0.5 (Scarthgap) . . . . . . ... ... ...
15.3.8 Release notes for Yocto-5.0.6 (Scarthgap) . . . . . . . . . . ... ... oo
15.3.9 Release notes for Yocto-5.0.7 (Scarthgap) . . . . . .. ... ... L oL,
Release 4.3 (nanbield) . . . . . . . . . . . . e e e
154.1 Release 4.3 (nanbield) . . . . . . . . . . . .. e e e
15.4.2 Release notes for 4.3 (nanbield) . . . . . . . . . . . ... .. e
15.4.3 Release notes for Yocto-4.3.1 (Nanbield) . . . . ... ... ... ... ... .........
15.4.4 Release notes for Yocto-4.3.2 (Nanbield) . . . . . .. .. .. .. .. ... ... .......
15.4.5 Release notes for Yocto-4.3.3 (Nanbield) . . . . . ... ... .. ... .. .. .. ......
15.4.6 Release notes for Yocto-4.3.4 (Nanbield) . . . . . ... ... ... . ... ... . .. ....
Release 4.2 (mickledore) . . . . . . . . . . . . e e e e e e e e e e
15.5.1 Release 4.2 (mickledore) . . . . . . . . . . . . . . e e
15.5.2 Release notes for 4.2 (mickledore) . . . . . . . . . . . . . ...
15.5.3 Release notes for Yocto-4.2.1 (Mickledore) . . . . . . . . . . ... . .. . .
15.5.4 Release notes for Yocto-4.2.2 (Mickledore) . . . . . . . .. . .. .. ... .. .. .. ...,
15.5.5 Release notes for Yocto-4.2.3 (Mickledore) . . . . . . . . . . .. .. ... .. .. .. ...
15.5.6 Release notes for Yocto-4.2.4 (Mickledore) . . . . . . . . . . .. . .. .. .. ... ...
Release 4.1 (langdale) . . . . . . . o o i e e e e e e e e e
15.6.1 Release 4.1 (langdale) . . . . . . . . . . o L e e

947

949

949

949

951

951

954

980

990

998

998

1001
1027
1030
1037
1049
1055
1062
1068
1076
1076
1080
1105
1112
1119
1125
1131
1131
1135
1163
1169
1179
1187
1207
1207

xvii



15.7

15.8

15.9

15.6.2 Release notes for 4.1 (langdale) . . . . . . . . . . .. .. e 1211

15.6.3 Release notes for Yocto-4.1.1 (Langdale) . . . . . . . .. . . ... .. 1234
15.6.4 Release notes for Yocto-4.1.2 (Langdale) . . . . . .. .. .. ... .. ... ... ..., 1243
15.6.5 Release notes for Yocto-4.1.3 (Langdale) . . . . . . .. ... ... ... ... .... 1252
15.6.6 Release notes for Yocto-4.1.4 (Langdale) . . . . . . . ... ... ... ... ... . ..., 1261
Release 4.0 (kirkstone) . . . . . . . . . . L e e e e 1269
15.7.1 Release 4.0 (kirkstone) . . . . . . . . . . . . e e e e e e e e e e e 1269
15.7.2 Release notes for 4.0 (kirkstone) . . . . . . . . . . ... 1274
15.7.3 Release notes for 4.0.1 (kirkstone) . . . . . . . . . . .. ... e 1302
15.7.4 Release notes for Yocto-4.0.2 (Kirkstone) . . . . . . . . . . . ... .. . o 1309
15.7.5 Release notes for Yocto-4.0.3 (Kirkstone) . . . . . .. .. . .. . ... 1318
15.7.6 Release notes for Yocto-4.0.4 (Kirkstone) . . . . . . . . .. .. ... ... ... ... 1328
15.7.7 Release notes for Yocto-4.0.5 (Kirkstone) . . . . . . . . . . .. ... ... e 1337
15.7.8 Release notes for Yocto-4.0.6 (Kirkstone) . . . . . . . . . . . ... ... .. 1342
15.7.9 Release notes for Yocto-4.0.7 (Kirkstone) . . . . . . . . . . . .. .. . ... ... 1352
15.7.10 Release notes for Yocto-4.0.8 (Kirkstone) . . . . . . . . . . .. ... ... . ... ..., 1359
15.7.11 Release notes for Yocto-4.0.9 (Kirkstone) . . . . . . . . . . .. .. ... 1365
15.7.12 Release notes for Yocto-4.0.10 (Kirkstone) . . . . . . . . . . . . . .. .. ... .. .. ... 1372
15.7.13 Release notes for Yocto-4.0.11 (Kirkstone) . . . . . . . . . . . ... .. .. . ... .. ... 1377
15.7.14 Release notes for Yocto-4.0.12 (Kirkstone) . . . . . . . . . . . . .. ... .. .. .. ..., 1383
15.7.15 Release notes for Yocto-4.0.13 (Kirkstone) . . . . . . . . . . . . . . vt 1391
15.7.16 Release notes for Yocto-4.0.14 (Kirkstone) . . . . . . . . . . . . . ... .. .. .. ... 1405
15.7.17 Release notes for Yocto-4.0.15 (Kirkstone) . . . . . . . . . . . . . . . 1420
15.7.18 Release notes for Yocto-4.0.16 (Kirkstone) . . . . . . . . . . .. .. ... ... ....... 1425
15.7.19 Release notes for Yocto-4.0.17 (Kirkstone) . . . . . . . . . . . . .. . .. .. .. .. ..., 1431
15.7.20 Release notes for Yocto-4.0.18 (Kirkstone) . . . . . . . . . .. .. .. ... .. ... . ... 1438
15.7.21 Release notes for Yocto-4.0.19 (Kirkstone) . . . . . . . . . . . . . . . e 1443
15.7.22 Release notes for Yocto-4.0.20 (Kirkstone) . . . . . . . . . . . . .. ... .. ... ..., 1450
15.7.23 Release notes for Yocto-4.0.21 (Kirkstone) . . . . . . . . . . .. .. ... .. .. ..., 1454
15.7.24 Release notes for Yocto-4.0.22 (Kirkstone) . . . . . . . . . . . . . ... ... .. ... 1459
15.7.25 Release notes for Yocto-4.0.23 (Kirkstone) . . . . . . . . . . . . . . e 1465
15.7.26 Release notes for Yocto-4.0.24 (Kirkstone) . . . . . . . . . . . . .. ... ... 0. 1471
Release 3.4 (honister) . . . . . . . . . . . . e e e e e e e 1480
15.8.1 Migration notes for 3.4 (honister) . . . . . . . . . . L e 1480
15.8.2 Release notes for 3.4 (honiSter) . . . . . . . . . v i i e e e e e e e e e 1484
15.8.3 Release notes for 3.4.1 (honister) . . . . . . . . . . o . i i i e e e e e 1510
15.8.4 Release notes for 3.4.2 (honister) . . . . . . . . . . . o i e e e e e 1517
15.8.5 Release notes for 3.4.3 (honister) . . . . . . . . . . . . e e e e 1524
15.8.6 Release notes for 3.4.4 (honiSter) . . . . . . . . . . . e e e e 1530
Release 3.3 (hardknott) . . . . . . . . . . . . e e e e e e e e e e e e e 1535
15.9.1 Minimum system requirements . . . . . . . . . . ..o L e 1535
1592 Removed reCipes . . . . . v v v v v i i e e e e e e e e 1535

xviii



15.9.3 Single version common license file naming . . . . . . ... ... 1535

15.9.4 New python3targetconfigeclass . . . . . . . . . . i it e 1536
15.9.5 setup.py pathfor Pythonmodules . . . . .. ... ... . ... ... ... ... ... 1536
159.6 BitBakechanges . . . . . . . ... 1536
15.9.7 Packagingchanges. . . . . . . . . . e e 1536
15.9.8 Miscellaneous changes . . . . . . . . . . L i e e e e e e e e 1537
15.10 Release 3.2 (gatesgarth) . . . . . . . . . . L 1537
15.10.1 Minimum system requirements . . . . . . . . . . . .. ... Lo 1537
15.10.2 Removed reCipes . . . . . v v v v v i e e e e e e e e e e 1538
15.10.3 Removedclasses . . . . . . . . . . .. 1538
15.10.4 pseudo path filtering and mismatch behaviour . . . . . . . .. ... oo oo 1538
15.10.5 MLPREFIX now required for multilib when runtime dependencies conditionally added . . . . . 1539
15.10.6 packagegroup-core-device-devel no longer included in images built for gemu* machines . . . 1539
15.10.7 DHCP server/client replaced . . . . . . . . . . . . . i e e e 1540
15.10.8 Packagingchanges . . . . . . . . . . . . L e e e e e 1540
15.10.9 Package QA checkchanges . . . . . . .. .. ... ... o 1540
15.10.10Globbing no longer supported in file:// entriesin SRC_URT . . . . . . . . v v v oo v .. 1541
15.10.11deploy class now cleans DEPLOYDIR before do_deploy . . . . . . . . o o oo v vttt 1541
15.10.12Custom SDK / SDK-style recipes need to include nat ivesdk-sdk-provides—dummy . . . 1541
15.10.131d. so.conf now moved back to main glibc package . . ... ... ... ... .. .... 1541
15.10.14Host DRI drivers now used for GL support within rungemu . . . . . . . .. ... ... ... 1542
15.10.15Initramfs images now use a blank suffix . . . . . ... ... . ... ... .. .. 1542
15.10.16Image artifact name variables now centralised in image-artifact-names class . . . . . . . . .. 1542
15.10.17Miscellaneous changes . . . . . . . . .. . ... oL e 1542
15.11 Release 3.1 (dunfell) . . . . . . . . . . . e 1543
15.11.1 Minimum System requiremMents . . . . . . .« v v v v v vt et e e e e e e e e e e e e e 1543
15.11.2 mpc8315e-rdb machine removed . . . . . . . . . . . ... L e 1543
15.11.3 Python2removed . . . . . . . . . . L e 1544
15.11.4 Reproducible builds now enabled by default . . . . . . . ... ... ... ... . 0., 1544
15.11.5 Impact of ptest feature is now more significant . . . . . . . . . ... ... ... ... 1544
15.11.6 Removed reCipes . . . . v v v v v i i e e e e e e e e e e e e e e e e e e e e e e 1544
15.11.7 features_check class replaces distro_features_check . . . . ... ... ... ... .. .... 1545
15.11.8 Removed classes . . . . . . . . . . i i e e 1545
15.11.9 SRC_URI checksum behaviour . . . . . . . . . . . . o v o i e e e e e e e e e 1545
15.11.10npm fetcher changes . . . . . . . . . . . . . e e e 1545
15.11.11Packaging changes . . . . . . . . . . . . . L e e e 1546
15.11.12Additional warnings . . . . . . . . .. L. e e e e e e e e e e e 1546
15.11.13wic image type now used instead of 1ive by defaultforx86. . . . . . ... ... ... ... 1546
15.11.14Miscellaneous changes . . . . . . . . . 0 i i i e e e e e e e e e e e e e 1547
15,12 Release 3.0 (ZEUS) . . . . . v v v i i e e e e e e e e e e e e e e e e e e e e 1547
15.12.1 Init System Selection . . . . . . . . . . L. 1547
15.12.2 LSB Support Removed . . . . . . . . . L e 1547

Xix



15.12.3 Removed Recipes . . . . . . . . . o i e 1547

15.12.4 Packaging Changes . . . . . . . . . o v i i i et e e e e e e e e e e e e 1548
15.12.5 CVE Checking . . . . . . 0 o i i e e e e e e e e e e e e 1549
15.12.6 BitBake Changes . . . . . . . . . . . . ... e 1549
15.12.7 Sanity Checks . . . . . . . . L e e 1550
15.12.8 Miscellaneous Changes . . . . . . . . . o v v i i et e e e e e e e 1550
15.13 Release 2.7 (WAITIOT) . . . . . v v v o e e e e e e e e e e e e e e e e e e e e 1551
15.13.1 BitBake Changes . . . . . . . . . . . . ... e 1552
15.13.2 Eclipse Support Removed . . . . . . . . ... e 1552
15.13.3 gemu-native Splits the System and User-Mode Parts . . . . . ... ... ... ....... 1552
15.13.4 The upstream-tracking.inc File Has Been Removed . . . . . ... ... ... ..... 1552
15.13.5 The DISTRO_FEATURES_LIBC Variable Has Been Removed . . . . ... ... ... .... 1552
15.13.6 License Value Corrections . . . . . . . . . . . v v v v i it it e e et 1552
15.13.7 Packaging Changes . . . . . . . . . o v i i i e i e e e e e e e e e e e 1553
15.13.8 Removed Recipes . . . . . . . . . o o i e e e e e e 1553
15.13.9 Removed CIasses . . . . . . . o v i i i e e e e e e e e e e e e 1554
15.13.10Miscellaneous Changes . . . . . . . . . . . . L i i e e 1554
15.14 Release 2.6 (thud) . . . . . . . . . e e e e e 1554
15.14.1 GCC8.2isNow Usedby Default . . . . . . .. ... ... .. . .. 1554
15.14.2 Removed Recipes . . . . . . . . . . L e 1554
15.14.3 Packaging Changes . . . . . . . . . . . e 1556
15.14.4 XOrg Protocol dependencies . . . . . . . . . . i v v i i v it e e e e e e e 1556
15.14.5 distutils and distutils3 Now Prevent Fetching Dependencies During the
do_configureTask . . . . . . . . . e e 1557
15.14.6 1inux-yocto Configuration Audit Issues Now Correctly Reported . . . . . . ... .. ... 1557
15.14.7 Image/Kernel Artifact Naming Changes . . . . . . . . .. ... .. ... ... ... 1557
15.14.8 SERIAL_CONSOLE Deprecated . . . . . . . . . . . . i i it 1558
15.14.9 Configure Script Reports Unknown Options as Errors . . . . . . ... ... ... ... ... 1558
15.14.100verride Changes . . . . . . . . . . o i i e e e e e 1558
15.14.11systemd Configuration is Now Split Into systemd-conf . . . . . . . . . ... .. ... .. 1559
15.14.12Automatic Testing Changes . . . . . . . . . . 0 vt i it e e e e e 1560
15.14.130penSSL Changes . . . . . . . . o o i e e e e e e e e e e e 1560
15.14.14BitBake Changes . . . . . . . . . . o i e e e 1560
15.14.15Security Changes . . . . . . . . . v i it e e e e e e e 1560
15.14.16Post Installation Changes . . . . . . . . . . . i i i e e e e e e e e 1560
15.14.17Python 3 Profile-Guided Optimization . . . . . . . . .. . ... ... ... ... 1560
15.14.18Miscellaneous Changes . . . . . . . . . . . ottt e e e e e 1561
15.15 Release 2.5 (SUMO) . . . v v v v v e e e e e e e e e e e e e e e 1562
15.15.1 Packaging Changes . . . . . . . . . o v i i i i i e e e e e e e e e e e 1562
15.15.2 Removed Recipes . . . . . . . . . . o e 1562
15.15.3 Scriptsand Tools Changes . . . . . . . . . .. .. . e 1563

15.15.4 BitBake Changes . . . . . . . . . i i e e e 1563




15.15.5 Pythonand Python 3 Changes . . . . . . . . . . . . . i i v i i it e e i e e 1564

15.15.6 Miscellaneous Changes . . . . . . . . . o i v i i et e e e e e e e e e 1564
15.16 Release 2.4 (rocko) . . . . . . . . . L e e e e e e e e 1566
15.16.1 Memory ResidentMode . . . . . . .. ... ... L 1566
15.16.2 Packaging Changes . . . . . . . . . . e e 1566
15.16.3 Removed Recipes . . . . . . . . . o i i e e e e e e e e e 1567
15.16.4 Kernel Device Tree Move . . . . . . . . . . . . 0 i e 1568
15.16.5 Package QA Changes . . . . . . . . . . . ... e 1569
15.16.6 README File Changes . . . . . . . . . . . . o i e e 1569
15.16.7 Miscellaneous Changes . . . . . . . . . o v v i it et e e e e e e e e e 1569
15.17 Release 2.3 (PYTO) . . . o o o v v it e e e e e e e e e e e e e e 1570
15.17.1 Recipe-specific Sysroots . . . . . . . . . . ... e 1570
15.17.2 pATH Variable . . . . . . . . L 1571
15.17.3 Changes to SCTIPLS . . . . v v v v v e i e e e e e e e e e e e e e e e e e e e e 1572
15.17.4 Changes to Functions . . . . . . . . . . . . . . . e e 1572
15.17.5 BitBake Changes . . . . . . . . . . . .. e 1572
15.17.6 Absolute Symbolic Links . . . . . . . . . .. e 1573
15.17.7 GPLv2 Versions of GPLv3 RecipesMoved . . . . . . . . . . . ... .. ... 1573
15.17.8 Package Management Changes . . . . . . . . . . .. .. . ... 1574
15.17.9 Removed Recipes . . . . . . . . . . e 1575
15.17.10Wic Changes . . . . . . . o v i e e e e e e e e 1575
ISA7.11QA Changes . . . . o v o v e e et e e e e e e e e e e e e e e e e e e e e e 1576
15.17.12Miscellaneous Changes . . . . . . . . . o i v i i e e e e e e e e e 1576
15,18 Release 2.2 (MOTtY) . . . . v v v v v e e e e e e e e e e e e e e e e e e e e e e e 1578
15.18.1 Minimum Kernel Version . . . . . . . . ... . e 1578
15.18.2 Staging Directories in Sysroot Has Been Simplified . . . . . . . . ... ... ... ... ... 1578
15.18.3 Removal of Old Images and Other Files in tmp/deploy Now Enabled . . . ... ... ... 1578
15.18.4 Python Changes . . . . . . . . . . . e 1578
15.18.5 uClibc Replaced by musl . . . . . . . . . ... ... 1579
15.18.6 ${B} No Longer Default Working Directory for Tasks . . . . . .. ... ... ... ..... 1579
15.18.7 rungemu PortedtoPython . . . . . . . . . .. ... .. 1579
15.18.8 Default Linker Hash Style Changed . . . . . . .. .. ... ... .. .. ... ..... 1582
15.18.9 KERNEL_IMAGE_BASE_NAME no Longer Uses KERNEL_IMAGETYPE . . . . . ... ..... 1582
15.18.10IMGDEPLOYDIR Replaces DEPLOY_DIR_IMAGE for Most Use Cases . . . . . ... ... .. 1582
15.18.11BitBake Changes . . . . . . . . . i i i e e e e e e e e e e e 1582
15.18.12Swabber has Been Removed . . . . . . . . . ... . o o o 1583
15.18.13Removed Recipes . . . . . . . . . . L e 1583
15.18.14Removed CIasses . . . . . . o o v v it i e e e e e e e 1584
15.18.15Minor Packaging Changes . . . . . . . . . . . . 0 i i e e e e e 1584
15.18.16Miscellaneous Changes . . . . . . . . . . . . .. e 1584
15.19 Release 2.1 (krogoth) . . . . . . . . . o L o e e e e e e e e 1585
15.19.1 Variable Expansion in Python Functions . . . . . ... ... ... ... ... ........ 1585

xxi



15.19.2 Overrides Must Now be Lower-Case . . . . . . . . . . . i v i i i it i i i e 1585

15.19.3 Expand Parameter to getVar () and getVarFlag () is Now Mandatory . . . ... ... .. 1585
15.19.4 Makefile Environment Changes . . . . . . . . .. .. ... . ... . ... 1586
15.19.5 libexecdir Reverted to S{prefix}/libexec . . . . . . . v i v i v v i i v i 1586
15.19.6 ac_cv_sizeof_off_t is No Longer Cachedin Site Files . . . . .. ... .. ... .... 1586
15.19.7 Image Generation is Now Split Out from Filesystem Generation . . . . . ... ... ... .. 1586
15.19.8 Removed Recipes . . . . . . . . . . o e 1587
15.19.9 ClassChanges . . . . . . . . .. o i e 1587
15.19.10Build System User Interface Changes . . . . . . . . . . ... ... . ... 1588
I5.19.1TADT Removed . . . . . . . o o o e e e e 1588
15.19.12Poky Reference Distribution Changes . . . . . . . . . ... . ... ... ... ... 1588
15.19.13Packaging Changes . . . . . . . . . . ... e 1589
15.19.14Tuning File Changes . . . . . . . . . . . . . i e 1589
15.19.15Supporting GObject Introspection . . . . . . . . . . . v v v vt e e e e e e e 1589
15.19.16Miscellaneous Changes . . . . . . . . . o o v v i i i it e e e e e e e e e e 1590
15.20 Release 2.0 (jethro) . . . . . . . o L o e e e e e e e e e e 1591
15.20.1 GCCS . . e 1591
15.20.2 Gstreamer 0.10 Removed . . . . . . . . . . .. 1591
15.20.3 Removed Recipes . . . . . . . . 0 i i e e e e e e 1591
15.20.4 BitBake datastore improvements . . . . . . . .. ..o e 1592
15.20.5 Shell Message Function Changes . . . . . .. ... ... ... .. ... 1592
15.20.6 Extra Development/Debug Package Cleanup . . . . . . . . . . ... ... ... .. ..... 1592
15.20.7 Recipe Maintenance Tracking Data Moved to OE-Core . . . . . .. ... ... ... .... 1593
15.20.8 Automatic Stale Sysroot File Cleanup . . . . . . . ... ... ... ... ... 1593
15.20.9 1linux-yocto Kernel Metadata Repository Now Split from Source . . . . . ... ... ... 1594
15.20.10Additional QA checks . . . . . . . . . . e e e e e 1594
15.20.11Miscellaneous Changes . . . . . . . . . o i i i e e e e e e e e e e 1594
15.21 Release 1.8 (fido) . . . . . . . . . . o e e e e 1595
15.21.1 Removed Recipes . . . . . . . . . . . L e 1595
15.21.2 BlueZ4.x/5.xSelection . . . . . . . ... e 1595
15.21.3 Kernel Build Changes . . . . . . . . . . . e e e e e 1596
15.21.4 SSL 3.0is Now Disabled in OpenSSL . . . . . . . ... .. ... . ... ... . .... 1596
15.21.5 Default Sysroot Poisoning . . . . . . . . . . ... 1596
15.21.6 Rebuild Improvements . . . . . . . . . ... e e e e 1596
15.21.7 QA Check and Validation Changes . . . . . . . . . .« . v i i i v i i it e e 1597
15.21.8 Miscellaneous Changes . . . . . . . . .. . . .. e 1597
15.22 Release 1.7 (dizzy) . . . . . . o o o o e e e e e e e 1597
15.22.1 Changes to Setting QEMU PACKAGECONFIG Options in local.conf . . . .. ... .... 1597
15.22.2 Minimum Git Version . . . . . . . . . o it e e e e e e e e e e 1598
15.22.3 Autotools Class Changes . . . . . . . . . . . . . i e 1598
15.22.4 Binary Configuration Scripts Disabled . . . . . .. ... ... ... ... .. ..., 1598
15.22.5 eglibc 2.19 Replaced with glibc 2.20 . . . . . . ... . i o 1599

xxii



15.22.6 Kernel Module Autoloading . . . . . . . . . . . . . . e e e 1599

15227 QA Check Changes . . . . . . . . i v it e e e e e e e e 1599
15.22.8 Removed Recipes . . . . . . . . . . e 1600
15.22.9 Miscellaneous Changes . . . . . . . . . .. ... Lo e 1600
15.23 Release 1.6 (daisy) . . . . . . o o o i i i e e e e 1600
15.23.1 archiver Class . . . . . v i v v it e e e e e e e e e e e e e 1600
15.23.2 Packaging Changes . . . . . . . . . . . ... e e 1601
15233 BitBake . . . . . . . e e e 1601
15.23.4 Changes to Variables . . . . . . . . . . . .. e e 1602
15.23.5 Package Test (PLESt) . . . o v v v v i i e e e e e e e e e e e e e e e e e e e e 1603
15.23.6 Build Changes . . . . . . . . . . . e 1604
15.23.7 gemu—native . . . . i e e e e e e e e e e 1604
15.23.8 core—-image—basicC . . . . v i i e e e e e e e e e e e e 1604
15.23.9 LACeNSING . . . v o v v i e e e e e e e e e e e e e e e e e e e e e e e 1604
1523, 10CFLAGS OPLIONS « & v v v v v o e e e e e e e e e e e e e e e e e e e e e e 1604
15.23.11Custom Image Output Types . . . . . . . . . .. . o e 1605
15.23.12Tasks . . . o o o e e 1605
15.23.13update-alternative Provider . . . . . . . . . . . . . .. e 1605
15.23.14virtclass Overrides . . . . . . o o o i i e e e e e e e e e e 1605
15.23.15Removed and Renamed Recipes . . . . . . . .. ... ... ... L oL, 1605
15.23.16Removed CIasses . . . . . . . o v v it i e e e e e e e 1606
15.23.17Reference Board Support Packages (BSPs) . . . . . . . . . . ... .. .. ... ... ... 1606
15.24 Release 1.5 (dora) . . . . . . . o i e e e e e e e e 1606
15.24.1 Host Dependency Changes . . . . . . . . . . . . . ... i 1606
15.24.2 atom-pc Board Support Package (BSP) . . . . . . .. ... ... oo, 1607
15243 BitBake . . . . . .. 1607
15.24.4 QA Warnings . . . . . . o v it e e e e e e e e e e e e e e e 1607
15.24.5 Directory Layout Changes . . . . . . . . . . . . . . L e 1608
15.24.6 Shortened Git SRCREV Values . . . . . . . . . . . oottt 1608
15.24.77 IMAGE_FEATURES . .+ v v v vt vttt et et e e e e e e e e e e e e e e e 1608
15.24.8 /1un . . o e e e e e e e e e e e e e e 1609
15.24.9 Removal of Package Manager Database Within Image Recipes. . . . . . . . ... .. .. .. 1609
15.24.10Images Now Rebuild Only on Changes Instead of Every Time . . . . . .. . ... ... ... 1609
15.24.11Task Recipes . . . . . . o i it e e e e e e e e e e e e e 1609
15.24.12BusyBoX . . . . . oo e e e e 1609
15.24.13Automated Image Testing . . . . . . . . . . . . . L e 1609
15.24.14Build History . . . . . . . 0 o e e e e e e e e 1609
15.24.15udev . . o oo e e 1610
15.24.16Removed and Renamed Recipes . . . . . . . . . . . . . . . e 1610
15.24.170ther Changes . . . . . . . . . . . . o e e e e e 1610
1525 Release 1.4 (dylan) . . . . . . . o L o e e e e e e 1611
15.25.1 BitBake . . . . . . . e e 1611




15.25.2 Build Behavior . . . . . . . . . . e e e e e e 1611

15.25.3 Proxies and Fetching Source . . . . . . . . . . . . . e 1612

15.25.4 Custom Interfaces File (netbase change) . . . . . .. .. . . ... ... ... ... .... 1612

15.25.5 Remote Debugging . . . . . . . . . . . L 1612

15.25.6 Variables . . . . . . . .. e e e e e e e 1612

15.25.7 Target Package Management withRPM . . . . . . . ... .. ... .. ... ... .. .. 1612

15.25.8 Recipes Moved . . . . . . . ... e 1613

15.25.9 Removalsand Renames . . . . . . . . . . . . . . e e e 1613
15.26 Release 1.3 (danny) . . . . . . . . o o i e e e e 1614

15.26.1 Local Configuration . . . . . . . . o v v i i e i e e e e e e e e e e e e e e e 1614

15.26.2 RECIPES . . v v v v v e e e e e e e e e e e e e e e e e 1615

15.26.3 Linux Kernel Naming . . . . . . . . . .. .. .. . e 1616

16 Supported Release Manuals 1619
16.1 Release Series 5.1 (styhead) . . . . . . . . . . . e 1619
16.2 Release Series 5.0 (scarthgap) . . . . . . . . . . . e 1619
16.3 Release Series 4.0 (kirkstone) . . . . . . . . . e e e e 1619
17 Outdated Release Manuals 1621

17.1 Release Series 4.3 (nanbield) . . . . . . . . . . . e e e e 1621
17.2 Release Series 4.2 (mickledore) . . . . . . . . . . . . e e e e e 1621
17.3 Release Series 4.1 (langdale) . . . . . . . . . . . L e e 1621
17.4 Release Series 3.4 (honister) . . . . . . . . . . . i i e e e 1622
17.5 Release Series 3.3 (hardknott) . . . . . . . . . . . . . e 1622
17.6 Release Series 3.2 (gatesgarth) . . . . . . . . . . . L e e 1622
17.7 Release Series 3.1 (dunfell) . . . . . . . . . . . . . e e 1622
17.8 Release Series 3.0 (ZEUS) . . . . . . . . o e e 1624
17.9 Release Series 2.7 (WAITIOT) . . . . . v v i v i e e e e e e e e e e e e e e e e 1624
17.10 Release Series 2.6 (thud) . . . . . . . . . . . e e e e 1624
17.11 Release Series 2.5 (SUMO) . . . . . . v v v v i i e e e e e e e e e e e e e e e e e e e e 1624
17.12 Release Series 2.4 (rock0) . . . . . . . . . e 1625
17.13 Release Series 2.3 (DYIO) .« . v v v v v v v e e e e e e e e e e e e e e e e e e e e e e 1625
17.14 Release Series 2.2 (IMOTLY) . . . ¢ v v v v v v et e e e e e e e e e e e e e e e e e 1625
17.15 Release Series 2.1 (krogoth) . . . . . . . . . . . e e e 1625
17.16 Release Series 2.0 (jethro) . . . . . . . . . o o L L e e 1625
17.17 Release Series 1.8 (fido) . . . . . . . . . . . e 1626
17.18 Release Series 1.7 (diZzZy) . . . . . . o v o v v i e e e e e e e e e 1626
17.19 Release Series 1.6 (daisy) . . . . . . . o o v i i i e e e e e e e e e e 1626
17.20 Release Series 1.5 (dora) . . . . . . . . . . 0 i i e e e e e e 1626
17.21 Release Series 1.4 (dylan) . . . . . . . . . o L e 1627
17.22 Release Series 1.3 (danny) . . . . . . . o v i i e e e e e e e e e e e 1627
17.23 Release Series 1.2 (denzil) . . . . . . . . . . . . e e 1627

XXiv



17.24 Release Series 1.1 (edison) . . . . . . . . . . o o i i e e e e
17.25 Release Series 1.0 (bernard) . . . . . . . . . . . . e e e e
17.26 Release Series 0.9 (laverne) . . . . . . . . . . . o . e e e e e e e

18 Index
19 Documentation Downloads

Index

XXV



Xxvi



The Yocto Project ®, Release 5.1.3

INTRODUCTION AND OVERVIEW 1



The Yocto Project ®, Release 5.1.3

2 INTRODUCTION AND OVERVIEW



CHAPTER

ONE

YOCTO PROJECT QUICK BUILD

1.1 Welcome!

This short document steps you through the process for a typical image build using the Yocto Project. The document also
introduces how to configure a build for specific hardware. You will use Yocto Project to build a reference embedded OS
called Poky.

Note

e The examples in this paper assume you are using a native Linux system running a recent Ubuntu Linux distri-
bution. If the machine you want to use Yocto Project on to build an image (Build Host) is not a native Linux
system, you can still perform these steps by using CROss PlatformS (CROPS) and setting up a Poky container.
See the Setting Up to Use CROss PlatformS (CROPS) section in the Yocto Project Development Tasks Manual

for more information.

* You may use version 2 of Windows Subsystem For Linux (WSL 2) to set up a build host using Windows 10 or
later, Windows Server 2019 or later. See the Setting Up to Use Windows Subsystem For Linux (WSL 2) section

in the Yocto Project Development Tasks Manual for more information.

If you want more conceptual or background information on the Yocto Project, see the Yocto Project Overview and Concepts

Manual.

1.2 Compatible Linux Distribution

Make sure your Build Host meets the following requirements:

* Atleast 90 Gbytes of free disk space, though much more will help to run multiple builds and increase performance

by reusing build artifacts.

¢ At least 8 Gbytes of RAM, though a modern modern build host with as much RAM and as many CPU cores as

possible is strongly recommended to maximize build performance.

* Runs a supported Linux distribution (i.e. recent releases of Fedora, openSUSE, CentOS, Debian, or Ubuntu). For a




The Yocto Project ®, Release 5.1.3

list of Linux distributions that support the Yocto Project, see the Supported Linux Distributions section in the Yocto
Project Reference Manual. For detailed information on preparing your build host, see the Preparing the Build Host

section in the Yocto Project Development Tasks Manual.

Git 1.8.3.1 or greater

tar 1.28 or greater

Python 3.8.0 or greater.

gce 8.0 or greater.

GNU make 4.0 or greater

If your build host does not meet any of these three listed version requirements, you can take steps to prepare the system
so that you can still use the Yocto Project. See the Required Git, tar, Python, make and gcc Versions section in the Yocto

Project Reference Manual for information.

1.3 Build Host Packages

You must install essential host packages on your build host. The following command installs the host packages based on

an Ubuntu distribution:

$ sudo apt install build-essential chrpath cpio debianutils diffstat file gawk gcco
—~gilt iputils-ping libacll 1liblz4-tool locales python3 python3-git python3-jinja2._

—python3-pexpect python3-pip python3-subunit socat texinfo unzip wget xz-utils zstd

Note

For host package requirements on all supported Linux distributions, see the Required Packages for the Build Host

section in the Yocto Project Reference Manual.

1.4 Use Git to Clone Poky

Once you complete the setup instructions for your machine, you need to get a copy of the Poky repository on your build

host. Use the following commands to clone the Poky repository.

$ git clone git://git.yoctoproject.org/poky

Cloning into 'poky'...

remote: Counting

objects: 432160, done. remote: Compressing objects: 100%

(102056/102056), done. remote: Total 432160 (delta 323116), reused

432037 (delta 323000) Receiving objects: 100% (432160/432160), 153.81 MiB | 8.54 MiB/

—s, done.

(continues on next page)

4 Chapter 1. Yocto Project Quick Build




The Yocto Project ®, Release 5.1.3

(continued from previous page)
Resolving deltas: 100% (323116/323116), done.

Checking connectivity... done.

Go to Releases wiki page, and choose a release codename (such as styhead), corresponding to either the latest stable

release or a Long Term Support release.

Then move to the poky directory and take a look at existing branches:

$ cd poky
$ git branch -a

remotes/origin/HEAD -> origin/master
remotes/origin/dunfell

remotes/origin/dunfell-next

remotes/origin/gatesgarth

remotes/origin/gatesgarth-next

remotes/origin/master

remotes/origin/master—next

For this example, check out the st yhead branch based on the St yhead release:

$ git checkout -t origin/styhead -b my-styhead
Branch 'my-styhead' set up to track remote branch 'styhead' from 'origin'.

Switched to a new branch 'my-styhead'

The previous Git checkout command creates a local branch named my-styhead. The files available to you in that branch

exactly match the repository’ s files in the st yhead release branch.

Note that you can regularly type the following command in the same directory to keep your local files in sync with the

release branch:

1.4. Use Git to Clone Poky 5



https://wiki.yoctoproject.org/wiki/Releases

The Yocto Project ®, Release 5.1.3

$ git pull

For more options and information about accessing Yocto Project related repositories, see the Locating Yocto Project Source

Files section in the Yocto Project Development Tasks Manual.

1.5 Building Your Image

Use the following steps to build your image. The build process creates an entire Linux distribution, including the toolchain,

from source.

Note

* If you are working behind a firewall and your build host is not set up for proxies, you could encounter problems

with the build process when fetching source code (e.g. fetcher failures or Git failures).

* If you do not know your proxy settings, consult your local network infrastructure resources and get that infor-
mation. A good starting point could also be to check your web browser settings. Finally, you can find more

information on the “Working Behind a Network Proxy” page of the Yocto Project Wiki.

1. Initialize the Build Environment: From within the poky directory, run the oe-init-build-env environment setup

script to define Yocto Project’ s build environment on your build host.

$ cd poky

$ source oe-init-build-env

You had no conf/local.conf file. This configuration file has therefore been
created for you with some default values. You may wish to edit it to, for
example, select a different MACHINE (target hardware). See conf/local.conf

for more information as common configuration options are commented.

You had no conf/bblayers.conf file. This configuration file has therefore
been created for you with some default values. To add additional metadata

layers into your configuration please add entries to conf/bblayers.conf.
The Yocto Project has extensive documentation about OE including a reference
manual which can be found at:

https://docs.yoctoproject.org

For more information about OpenEmbedded see their website:

https://www.openembedded.org/

### Shell environment set up for builds. ###

(continues on next page)

6 Chapter 1. Yocto Project Quick Build



https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

The Yocto Project ®, Release 5.1.3

(continued from previous page)

You can now run 'bitbake <target>'

Common targets are:
core—-image-minimal
core-image-full-cmdline
core-image-sato
core—-image-weston
meta-toolchain

meta-ide-support

You can also run generated QEMU images with a command like 'rungemu gemux86-64"

Other commonly useful commands are:
— 'devtool' and 'recipetool' handle common recipe tasks
- 'bitbake-layers' handles common layer tasks

- 'oe-pkgdata-util' handles common target package tasks

Among other things, the script creates the Build Directory, which is bui1d in this case and is located in the Source
Directory. After the script runs, your current working directory is set to the Build Directory. Later, when the build

completes, the Build Directory contains all the files created during the build.

2. Examine Your Local Configuration File: When you set up the build environment, a local configuration file named
local.conf becomes available in a conf subdirectory of the Build Directory. For this example, the defaults are
set to build for a gemux86 target, which is suitable for emulation. The package manager used is set to the RPM

package manager.

Tip
You can significantly speed up your build and guard against fetcher failures by using Shared State Cache mirrors
and enabling Hash Equivalence. This way, you can use pre-built artifacts rather than building them. This is

relevant only when your network and the server that you use can download these artifacts faster than you would
be able to build them.

To use such mirrors, uncomment the below lines in your conf/local . conf file in the Build Directory:

BB_HASHSERVE_UPSTREAM = "wss://hashserv.yoctoproject.org/ws"

SSTATE_MIRRORS ?= "file://.* http://cdn.jsdelivr.net/yocto/sstate/all/PATH;
—downloadfilename=PATH"

BB_HASHSERVE = "auto"

BB_SIGNATURE_HANDLER = "OEEquivHash"

The hash equivalence server needs the websockets python module version 9.1 or later. Debian GNU/Linux

1.5. Building Your Image 7



The Yocto Project ®, Release 5.1.3

12 (Bookworm) and later, Fedora, CentOS Stream 9 and later, and Ubuntu 22.04 (LTS) and later, all have
a recent enough package. Other supported distributions need to get the module some other place than their

package feed, e.g. via pip.

3. Start the Build: Continue with the following command to build an OS image for the target, which is

core-image-sato in this example:

$ bitbake core-image-sato

For information on using the bitbake command, see the BitBake section in the Yocto Project Overview and

Concepts Manual, or see The BitBake Command in the BitBake User Manual.

4. Simulate Your Image Using QEMU: Once this particular image is built, you can start QEMU, which is a Quick
EMUIator that ships with the Yocto Project:

$ rungemu gemux86-64

If you want to learn more about running QEMU, see the Using the Quick EMUIator (QEMU) chapter in the Yocto

Project Development Tasks Manual.

5. Exit QEMU: Exit QEMU by either clicking on the shutdown icon or by typing Ctr1-C in the QEMU transcript
window from which you evoked QEMU.

1.6 Customizing Your Build for Specific Hardware
So far, all you have done is quickly built an image suitable for emulation only. This section shows you how to customize
your build for specific hardware by adding a hardware layer into the Yocto Project development environment.

In general, layers are repositories that contain related sets of instructions and configurations that tell the Yocto Project
what to do. Isolating related metadata into functionally specific layers facilitates modular development and makes it easier

to reuse the layer metadata.

Note

By convention, layer names start with the string “meta- “.
Follow these steps to add a hardware layer:

1. Find a Layer: Many hardware layers are available. The Yocto Project Source Repositories has many hardware

layers. This example adds the meta-altera hardware layer.

2. Clone the Layer: Use Git to make a local copy of the layer on your machine. You can put the copy in the top level

of the copy of the Poky repository created earlier:

8 Chapter 1. Yocto Project Quick Build


https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-intro.html#the-bitbake-command
https://git.yoctoproject.org
https://github.com/kraj/meta-altera

The Yocto Project ®, Release 5.1.3

$ cd poky

$ git clone https://github.com/kraj/meta-altera.git

Cloning into 'meta-altera'..

remote: Counting objects: 25170, done.

remote: Compressing objects: 100% (350/350), done.

remote: Total 25170 (delta 645), reused 719 (delta 538), pack-reused 24219
Receiving objects: 100% (25170/25170), 41.02 MiB | 1.64 MiB/s, done.
Resolving deltas: 100% (13385/13385), done.

Checking connectivity... done.

The hardware layer is now available next to other layers inside the Poky reference repository on your build host as

meta—-altera and contains all the metadata needed to support hardware from Altera, which is owned by Intel.

Note

It is recommended for layers to have a branch per Yocto Project release. Please make sure to checkout the layer

branch supporting the Yocto Project release you’ re using.

3. Change the Configuration to Build for a Specific Machine: The MACHINE variable in the 1ocal.conf file
specifies the machine for the build. For this example, set the MACHINE variable to cyclone5. These configurations

are used: https://github.com/kraj/meta-altera/blob/master/conf/machine/cycloneS.conf.

Note

See the “Examine Your Local Configuration File” step earlier for more information on configuring the build.

4. Add Your Layer to the Layer Configuration File: Before you can use a layer during a build, you must add it to

your bblayers.conf file, which is found in the Build Directory conf directory.

Use the bitbake-layers add-layer command to add the layer to the configuration file:

$ cd poky/build

$ bitbake-layers add-layer ../meta-altera

NOTE: Starting bitbake server...

Parsing recipes: 100% |###########AF#HAFFHAFFRAFFAAFFAAFHAAFHAAFHAFFRAFFHAFFRAFFES
#######| Time: 0:00:32

Parsing of 918 .bb files complete (0 cached, 918 parsed). 1401 targets,

123 skipped, 0 masked, 0 errors.

You can find more information on adding layers in the Adding a Layer Using the bitbake-layers Script section.

Completing these steps has added the met a—altera layer to your Yocto Project development environment and configured

1.6. Customizing Your Build for Specific Hardware 9


https://github.com/kraj/meta-altera/blob/master/conf/machine/cyclone5.conf

The Yocto Project ®, Release 5.1.3

it to build for the cyclone5 machine.

Note

The previous steps are for demonstration purposes only. If you were to attempt to build an image for the cyclone5

machine, you should read the Altera README.

1.7 Creating Your Own General Layer

Maybe you have an application or specific set of behaviors you need to isolate. You can create your own general layer using

the bitbake-layers create—layer command. The tool automates layer creation by setting up a subdirectory with

a layer.conf configuration file, a recipes—example subdirectory that contains an example.bb recipe, a licensing

file, and a README.

The following commands run the tool to create a layer named meta-mylayer in the poky directory:

$ cd poky

$ bitbake-layers create-layer meta-mylayer

NOTE:

Starting bitbake server...

Add your new layer with 'bitbake-layers add-layer meta-mylayer'

For more information on layers and how to create them, see the Creating a General Layer Using the bitbake-layers Script

section in the Yocto Project Development Tasks Manual.

1.8 Where To Go Next

Now that you have experienced using the Yocto Project, you might be asking yourself “What now?” . The Yocto Project

has many sources of information including the website, wiki pages, and user manuals:

* Website: The Yocto Project Website provides background information, the latest builds, breaking news, full de-

velopment documentation, and access to a rich Yocto Project Development Community into which you can tap.

Video Seminar: The Introduction to the Yocto Project and BitBake, Part 1 and Introduction to the Yocto Project
and BitBake, Part 2 videos offer a video seminar introducing you to the most important aspects of developing a

custom embedded Linux distribution with the Yocto Project.

Yocto Project Overview and Concepts Manual: The Yocto Project Overview and Concepts Manual is a great
place to start to learn about the Yocto Project. This manual introduces you to the Yocto Project and its development

environment. The manual also provides conceptual information for various aspects of the Yocto Project.

Yocto Project Wiki: The Yocto Project Wiki provides additional information on where to go next when ramping

up with the Yocto Project, release information, project planning, and QA information.

Yocto Project Mailing Lists: Related mailing lists provide a forum for discussion, patch submission and an-

nouncements. There are several mailing lists grouped by topic. See the Mailing lists section in the Yocto Project

10

Chapter 1. Yocto Project Quick Build



https://www.yoctoproject.org
https://youtu.be/yuE7my3KOpo
https://youtu.be/iZ05TTyzGHk
https://youtu.be/iZ05TTyzGHk
https://wiki.yoctoproject.org/wiki

The Yocto Project ®, Release 5.1.3

Reference Manual for a complete list of Yocto Project mailing lists.

¢ Comprehensive List of Links and Other Documentation: The Links and Related Documentation section in the

Yocto Project Reference Manual provides a comprehensive list of all related links and other user documentation.

The Yocto Project ®

<docs@lists.yoctoproject.org>

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Share Alike 2.0 UK: England & Wales as published by Creative Commons.

To report any inaccuracies or problems with this (or any other Yocto Project) manual, or to send additions or changes,
please send email/patches to the Yocto Project documentation mailing list at docs@lists.yoctoproject.org or log

into the Libera Chat #yocto channel.

1.8. Where To Go Next 11


mailto:docs@lists.yoctoproject.org
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://libera.chat/

The Yocto Project ®, Release 5.1.3

12 Chapter 1. Yocto Project Quick Build



CHAPTER

TWO

WHAT I WISH I’ D KNOWN ABOUT YOCTO PROJECT

Note

Before reading further, make sure you’ ve taken a look at the Software Overview page which presents the definitions
for many of the terms referenced here. Also, know that some of the information here won’ t make sense now, but
as you start developing, it is the information you’ 11 want to keep close at hand. These are best known methods for

working with Yocto Project and they are updated regularly.

Using the Yocto Project is fairly easy, until something goes wrong. Without an understanding of how the build process
works, you’ 1l find yourself trying to troubleshoot ‘“a black box” . Here are a few items that new users wished they had

known before embarking on their first build with Yocto Project. Feel free to contact us with other suggestions.

1. Use Git, not the tarball download: If you use git the software will be automatically updated with bug updates

because of how git works. If you download the tarball instead, you will need to be responsible for your own updates.

2. Get to know the layer index: All layers can be found in the layer index. Layers which have applied for Yocto
Project Compatible status (structure continuity assurance and testing) can be found in the Yocto Project Compatible
Layers page. Generally check the Compatible layer index first, and if you don’ t find the necessary layer check
the general layer index. The layer index is an original artifact from the Open Embedded Project. As such, that
index doesn’ t have the curating and testing that the Yocto Project provides on Yocto Project Compatible layer
list, but the latter has fewer entries. Know that when you start searching in the layer index that not all layers have
the same level of maturity, validation, or usability. Nor do searches prioritize displayed results. There is no easy
way to help you through the process of choosing the best layer to suit your needs. Consequently, it is often trial and
error, checking the mailing lists, or working with other developers through collaboration rooms that can help you

make good choices.

3. Use existing BSP layers from silicon vendors when possible: Intel, TI, NXP and others have information on
what BSP layers to use with their silicon. These layers have names such as “meta-intel” or “meta-ti” . Try
not to build layers from scratch. If you do have custom silicon, use one of these layers as a guide or template and

familiarize yourself with the Yocto Project Board Support Package Developer’ s Guide.

13


https://www.yoctoproject.org/software-overview
https://layers.openembedded.org
https://www.yoctoproject.org/development/yocto-project-compatible-layers/
https://www.yoctoproject.org/development/yocto-project-compatible-layers/

The Yocto Project ®, Release 5.1.3

4. Do not put everything into one layer: Use different layers to logically separate information in your build. As

an example, you could have a BSP layer, a GUI layer, a distro configuration, middleware, or an application (e.g.
“meta-filesystems” , “meta-python” , “meta-intel” , and so forth). Putting your entire build into one layer limits
and complicates future customization and reuse. Isolating information into layers, on the other hand, helps keep

simplify future customizations and reuse.

. Never modify the POKY layer. Never. Ever. When you update to the next release, you’ 1l lose all of your

work. ALL OF IT.

. Don’ t be fooled by documentation searching results: Yocto Project documentation is always being updated.

Unfortunately, when you use Google to search for Yocto Project concepts or terms, Google consistently searches
and retrieves older versions of Yocto Project manuals. For example, searching for a particular topic using Google
could result in a “hit” on a Yocto Project manual that is several releases old. To be sure that you are using the

most current Yocto Project documentation, use the drop-down menu at the top of any of its page.

Many developers look through the All-in-one ‘Mega’ Manual for a concept or term by doing a search through
the whole page. This manual is a concatenation of the core set of Yocto Project manual. Thus, a simple string
search using Ctrl-F in this manual produces all the “hits” for a desired term or concept. Once you find the area
in which you are interested, you can display the actual manual, if desired. It is also possible to use the search bar

in the menu or in the left navigation pane.

. Understand the basic concepts of how the build system works: the workflow: Understanding the Yocto Project

workflow is important as it can help you both pinpoint where trouble is occurring and how the build is breaking.

The workflow breaks down into the following steps:
1. Fetch —get the source code
2. Extract —unpack the sources
3. Patch —apply patches for bug fixes and new capability
4. Configure —set up your environment specifications
5. Build —compile and link
6. Install —copy files to target directories
7. Package —bundle files for installation

During “fetch” , there may be an inability to find code. During “extract”, there is likely an invalid zip or something
similar. In other words, the function of a particular part of the workflow gives you an idea of what might be going

wrong.

14

Chapter 2. What | wish I’ d known about Yocto Project


https://docs.yoctoproject.org/singleindex.html

The Yocto Project ®, Release 5.1.3

8.

10.

11.

Open Embedded Architecture Workflow

T Local scMs
oject A 5
Releases Projects (optional) Upstream Source Output Packages
Metadata/Inputs Pracess Steps (tasks)
Source Materials Build System . Output Image Data
User Package Feeds
Configuration Source .deb
Fetching generation
Meta
Output Image SDK
.bb + A
(bb + patches) Analysis for - Generation Generation
Pﬁt:h‘ package er;erarion QA
Application splitting plus 8 Tests
Machine BSP ml’.;:‘cuk:siei S
Configuration P
Config/ Application
Compile/ .ipk Development
N Autoconf generation SDK
PUI'CV‘ as needed
Configuration

Know that you can generate a dependency graph and learn how to do it: A dependency graph shows depen-
dencies between recipes, tasks, and targets. You can use the “-g” option with BitBake to generate this graph.
When you start a build and the build breaks, you could see packages you have no clue about or have any idea why
the build system has included them. The dependency graph can clarify that confusion. You can learn more about
dependency graphs and how to generate them in the Generating Dependency Graphs section in the BitBake User

Manual.

Here’ s how you decode ‘“‘magic” folder names in tmp/work: The build system fetches, unpacks, preprocesses,
and builds. If something goes wrong, the build system reports to you directly the path to a folder where the
temporary (build/tmp) files and packages reside resulting from the build. For a detailed example of this process,

see the example. Unfortunately this example is on an earlier release of Yocto Project.

“

When you perform a build, you can use the “-u” BitBake command-line option to specify a user interface viewer
into the dependency graph (e.g. knotty, ncurses, or taskexp) that helps you understand the build dependencies

better.

You can build more than just images: You can build and run a specific task for a specific package (including
devshell) or even a single recipe. When developers first start using the Yocto Project, the instructions found in the
Yocto Project Quick Build show how to create an image and then run or flash that image. However, you can actually
build just a single recipe. Thus, if some dependency or recipe isn’ t working, you can just say ‘“bitbake foo”
where “foo” is the name for a specific recipe. As you become more advanced using the Yocto Project, and if
builds are failing, it can be useful to make sure the fetch itself works as desired. Here are some valuable links:
Using a Development Shell for information on how to build and run a specific task using devshell. Also, the SDK

manual shows how to build out a specific recipe.

An ambiguous definition: Package vs Recipe: A recipe contains instructions the build system uses to create

packages. Recipes and Packages are the difference between the front end and the result of the build process.

As mentioned, the build system takes the recipe and creates packages from the recipe’ s instructions. The resulting
packages are related to the one thing the recipe is building but are different parts (packages) of the build (i.e. the
main package, the doc package, the debug symbols package, the separate utilities package, and so forth). The build

15


https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-intro.html#generating-dependency-graphs
https://wiki.yoctoproject.org/wiki/Cookbook:Example:Adding_packages_to_your_OS_image

The Yocto Project ®, Release 5.1.3

system splits out the packages so that you don’ t need to install the packages you don’ t want or need, which is

advantageous because you are building for small devices when developing for embedded and IoT.

12. You will want to learn about and know what’ s packaged in the root filesystem.

13. Create your own image recipe: There are a number of ways to create your own image recipe. We suggest you

create your own image recipe as opposed to appending an existing recipe. It is trivial and easy to write an image

recipe. Again, do not try appending to an existing image recipe. Create your own and do it right from the start.

14. Finally, here is a list of the basic skills you will need as a systems developer. You must be able to:

L]

deal with corporate proxies

add a package to an image

understand the difference between a recipe and package

build a package by itself and why that’ s useful

find out what packages are created by a recipe

find out what files are in a package

find out what files are in an image

add an ssh server to an image (enable transferring of files to target)
know the anatomy of a recipe

know how to create and use layers

find recipes (with the OpenEmbedded Layer index)

understand difference between machine and distro settings

find and use the right BSP (machine) for your hardware

find examples of distro features and know where to set them
understanding the task pipeline and executing individual tasks
understand devtool and how it simplifies your workflow

improve build speeds with shared downloads and shared state cache
generate and understand a dependency graph

generate and understand BitBake environment

build an Extensible SDK for applications development

15. Depending on what you primary interests are with the Yocto Project, you could consider any of the following

reading:

Look Through the Yocto Project Development Tasks Manual: This manual contains procedural infor-

mation grouped to help you get set up, work with layers, customize images, write new recipes, work with

16

Chapter 2. What | wish I’ d known about Yocto Project


https://layers.openembedded.org

The Yocto Project ®, Release 5.1.3

libraries, and use QEMU. The information is task-based and spans the breadth of the Yocto Project. See the

Yocto Project Development Tasks Manual.

* Look Through the Yocto Project Application Development and the Extensible Software Development
Kit (eSDK) manual: This manual describes how to use both the standard SDK and the extensible SDK,
which are used primarily for application development. The Using the Extensible SDK also provides example

workflows that use devtool. See the section Using deviool in Your SDK Workflow for more information.

* Learn About Kernel Development: If you want to see how to work with the kernel and understand Yocto
Linux kernels, see the Yocto Project Linux Kernel Development Manual. This manual provides information on

how to patch the kernel, modify kernel recipes, and configure the kernel.

¢ Learn About Board Support Packages (BSPs): If you want to learn about BSPs, see the Yocto Project
Board Support Package Developer’ s Guide. This manual also provides an example BSP creation workflow.

See the Board Support Packages (BSP) —Developer’ s Guide section.

¢ Learn About Toaster: Toaster is a web interface to the Yocto Project” s OpenEmbedded build system. If

you are interested in using this type of interface to create images, see the Toaster User Manual.

¢ Discover the VSCode extension: The Yocto Project BitBake extension for the Visual Studio Code IDE
provides language features and commands for working with the Yocto Project. If you are interested in using

this extension, visit its marketplace page.

* Have Available the Yocto Project Reference Manual: Unlike the rest of the Yocto Project manual set, this
manual is comprised of material suited for reference rather than procedures. You can get build details, a closer
look at how the pieces of the Yocto Project development environment work together, information on various
technical details, guidance on migrating to a newer Yocto Project release, reference material on the directory
structure, classes, and tasks. The Yocto Project Reference Manual also contains a fairly comprehensive glossary

of variables used within the Yocto Project.

The Yocto Project ®

<docs@lists.yoctoproject.org>

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Share Alike 2.0 UK: England & Wales as published by Creative Commons.

To report any inaccuracies or problems with this (or any other Yocto Project) manual, or to send additions or changes,
please send email/patches to the Yocto Project documentation mailing list at docs@lists.yoctoproject.org or log

into the Libera Chat #yocto channel.

17


https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
mailto:docs@lists.yoctoproject.org
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://libera.chat/

The Yocto Project ®, Release 5.1.3

18 Chapter 2. What | wish I’ d known about Yocto Project



CHAPTER

THREE

TRANSITIONING TO A CUSTOM ENVIRONMENT FOR SYSTEMS
DEVELOPMENT

Note

So you’ ve finished the Yocto Project Quick Build and glanced over the document What I wish I’ d known about Yocto
Project, the latter contains important information learned from other users. You’ re well prepared. But now, as you
are starting your own project, it isn’ t exactly straightforward what to do. And, the documentation is daunting. We'’

ve put together a few hints to get you started.

1. Make a list of the processor, target board, technologies, and capabilities that will be part of your project.
You will be finding layers with recipes and other metadata that support these things, and adding them to your

configuration. (See #3)

2. Set up your board support. Even if you’ re using custom hardware, it might be easier to start with an existing
target board that uses the same processor or at least the same architecture as your custom hardware. Knowing the
board already has a functioning Board Support Package (BSP) within the project makes it easier for you to get

comfortable with project concepts.

3. Find and acquire the best BSP for your target. Use the Yocto Project Compatible Layers or even the OpenEm-
bedded Layer Index to find and acquire the best BSP for your target board. The Yocto Project layer index BSPs
are regularly validated. The best place to get your first BSP is from your silicon manufacturer or board vendor —
they can point you to their most qualified efforts. In general, for Intel silicon use meta-intel, for Texas Instruments
use meta-ti, and so forth. Choose a BSP that has been tested with the same Yocto Project release that you’ ve
downloaded. Be aware that some BSPs may not be immediately supported on the very latest release, but they will

be eventually.

You might want to start with the build specification that Poky provides (which is reference embedded distribution)

and then add your newly chosen layers to that. Here is the information about adding layers.

4. Based on the layers you’ ve chosen, make needed changes in your configuration. For instance, you’ ve

19


https://www.yoctoproject.org/software-overview/layers/
https://layers.openembedded.org
https://layers.openembedded.org

The Yocto Project ®, Release 5.1.3

10.

11.

chosen a machine type and added in the corresponding BSP layer. You’ 1l then need to change the value of the
MACHINE variable in your configuration file (build/local.conf) to point to that same machine type. There could be
other layer-specific settings you need to change as well. Each layer has a README document that you can look at

for this type of usage information.

. Add a new layer for any custom recipes and metadata you create. Use the bitbake-layers create-layer

tool for Yocto Project 2.4+ releases. If you are using a Yocto Project release earlier than 2.4, use the yocto-layer
create tool. The bitbake-layers tool also provides a number of other useful layer-related commands. See

Creating a General Layer Using the bitbake-layers Script section.

Create your own layer for the BSP you’ re going to use. It is not common that you would need to create an
entire BSP from scratch unless you have a really special device. Even if you are using an existing BSP, create your
own layer for the BSP. For example, given a 64-bit x86-based machine, copy the conf/intel-corei7-64 definition
and give the machine a relevant name (think board name, not product name). Make sure the layer configuration
is dependent on the meta-intel layer (or at least, meta-intel remains in your bblayers.conf). Now you can put your

custom BSP settings into your layer and you can re-use it for different applications.

Write your own recipe to build additional software support that isn’ t already available in the form of a
recipe. Creating your own recipe is especially important for custom application software that you want to run on
your device. Writing new recipes is a process of refinement. Start by getting each step of the build process working
beginning with fetching all the way through packaging. Next, run the software on your target and refine further as

needed. See Writing a New Recipe in the Yocto Project Development Tasks Manual for more information.

Now you’ re ready to create an image recipe. There are a number of ways to do this. However, it is strongly
recommended that you have your own image recipe —don’ t try appending to existing image recipes. Recipes for

images are trivial to create and you usually want to fully customize their contents.

Build your image and refine it. Add what’ s missing and fix anything that’ s broken using your knowledge of

the workflow to identify where issues might be occurring.

Consider creating your own distribution. When you get to a certain level of customization, consider creating

your own distribution rather than using the default reference distribution.

Distribution settings define the packaging back-end (e.g. rpm or other) as well as the package feed and possibly the
update solution. You would create your own distribution in a new layer inheriting from Poky but overriding what
needs to change for your distribution. If you find yourself adding a lot of configuration to your local.conf file aside

from paths and other typical local settings, it’ s time to consider creating your own distribution.

You can add product specifications that can customize the distribution if needed in other layers. You can also add
other functionality specific to the product. But to update the distribution, not individual products, you update the

distribution feature through that layer.

Congratulations! You’ re well on your way. Welcome to the Yocto Project community.

The Yocto Project ®

20

Chapter 3. Transitioning to a custom environment for systems development



The Yocto Project ®, Release 5.1.3

<docs@lists.yoctoproject.org>

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Share Alike 2.0 UK: England & Wales as published by Creative Commons.

To report any inaccuracies or problems with this (or any other Yocto Project) manual, or to send additions or changes,
please send email/patches to the Yocto Project documentation mailing list at docs@lists.yoctoproject.org or log

into the Libera Chat #yocto channel.

21


mailto:docs@lists.yoctoproject.org
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://libera.chat/

The Yocto Project ®, Release 5.1.3

22 Chapter 3. Transitioning to a custom environment for systems development



CHAPTER

FOUR

YOCTO PROJECT OVERVIEW AND CONCEPTS MANUAL

4.1 The Yocto Project Overview and Concepts Manual

4.1.1 Welcome

Welcome to the Yocto Project Overview and Concepts Manual! This manual introduces the Yocto Project by providing
concepts, software overviews, best-known-methods (BKMs), and any other high-level introductory information suitable

for a new Yocto Project user.
Here is what you can get from this manual:

e Introducing the Yocto Project: This chapter provides an introduction to the Yocto Project. You will learn about
features and challenges of the Yocto Project, the layer model, components and tools, development methods, the

Poky reference distribution, the OpenEmbedded build system workflow, and some basic Yocto terms.

e The Yocto Project Development Environment: This chapter helps you get started understanding the Yocto Project
development environment. You will learn about open source, development hosts, Yocto Project source repositories,

workflows using Git and the Yocto Project, a Git primer, and information about licensing.

* Yocto Project Concepts : This chapter presents various concepts regarding the Yocto Project. You can find conceptual

information about components, development, cross-toolchains, and so forth.
This manual does not give you the following:

o Step-by-step Instructions for Development Tasks: Instructional procedures reside in other manuals within the Yocto
Project documentation set. For example, the Yocto Project Development Tasks Manual provides examples on how
to perform various development tasks. As another example, the Yocto Project Application Development and the
Extensible Software Development Kit (eSDK) manual contains detailed instructions on how to install an SDK, which

is used to develop applications for target hardware.

* Reference Material: This type of material resides in an appropriate reference manual. For example, system variables
are documented in the Yocto Project Reference Manual. As another example, the Yocto Project Board Support

Package Developer’ s Guide contains reference information on BSPs.

23



The Yocto Project ®, Release 5.1.3

¢ Detailed Public Information Not Specific to the Yocto Project: For example, exhaustive information on how to use the
Source Control Manager Git is better covered with Internet searches and official Git Documentation than through

the Yocto Project documentation.

4.1.2 Other Information

Because this manual presents information for many different topics, supplemental information is recommended for full
comprehension. For additional introductory information on the Yocto Project, see the Yocto Project Website. If you
want to build an image with no knowledge of Yocto Project as a way of quickly testing it out, see the Yocto Project Quick
Build document. For a comprehensive list of links and other documentation, see the “Links and Related Documentation”

section in the Yocto Project Reference Manual.

4.2 Introducing the Yocto Project

4.2.1 What is the Yocto Project?

The Yocto Project is an open source collaboration project that helps developers create custom Linux-based systems that
are designed for embedded products regardless of the product’ s hardware architecture. Yocto Project provides a flexible
toolset and a development environment that allows embedded device developers across the world to collaborate through

shared technologies, software stacks, configurations, and best practices used to create these tailored Linux images.

Thousands of developers worldwide have discovered that Yocto Project provides advantages in both systems and ap-
plications development, archival and management benefits, and customizations used for speed, footprint, and memory
utilization. The project is a standard when it comes to delivering embedded software stacks. The project allows software
customizations and build interchange for multiple hardware platforms as well as software stacks that can be maintained

and scaled.

YOCTO PROJECT (YP)

Umbrella Open Socurce Project
Po
Iw that Builds and Maintains
Yocto Project Open Validated Open Squce TDqu and
Open Source Build Engine e e Cumpnnentslﬁussnclated with
and Y P-Comptible Metadata Embedded Distribution Embedded Linux
for Embedded Linux

OpenEmbedded

For further introductory information on the Yocto Project, you might be interested in this article by Drew Moseley and

in this short introductory video.

24 Chapter 4. Yocto Project Overview and Concepts Manual


https://www.yoctoproject.org
https://www.embedded.com/electronics-blogs/say-what-/4458600/Why-the-Yocto-Project-for-my-IoT-Project-
https://www.youtube.com/watch?v=utZpKM7i5Z4

The Yocto Project ®, Release 5.1.3

The remainder of this section overviews advantages and challenges tied to the Yocto Project.

Features

Here are features and advantages of the Yocto Project:

Widely Adopted Across the Industry: Many semiconductor, operating system, software, and service vendors adopt
and support the Yocto Project in their products and services. For a look at the Yocto Project community and the
companies involved with the Yocto Project, see the “COMMUNITY” and “ECOSYSTEM” tabs on the Yocto

Project home page.

Architecture Agnostic: Yocto Project supports Intel, ARM, MIPS, AMD, PPC and other architectures. Most ODMs,
OSVs, and chip vendors create and supply BSPs that support their hardware. If you have custom silicon, you can

create a BSP that supports that architecture.

Aside from broad architecture support, the Yocto Project fully supports a wide range of devices emulated by the
Quick EMUlator (QEMU).

Images and Code Transfer Easily: Yocto Project output can easily move between architectures without moving to
new development environments. Additionally, if you have used the Yocto Project to create an image or application
and you find yourself not able to support it, commercial Linux vendors such as Wind River, Mentor Graphics,
Timesys, and ENEA could take it and provide ongoing support. These vendors have offerings that are built using

the Yocto Project.

Flexibility: Corporations use the Yocto Project many different ways. One example is to create an internal Linux
distribution as a code base the corporation can use across multiple product groups. Through customization and
layering, a project group can leverage the base Linux distribution to create a distribution that works for their product

needs.

Ideal for Constrained Embedded and IoT devices: Unlike a full Linux distribution, you can use the Yocto Project
to create exactly what you need for embedded devices. You only add the feature support or packages that you
absolutely need for the device. For devices that have display hardware, you can use available system components
such as X11, Wayland, GTK+, Qt, Clutter, and SDL (among others) to create a rich user experience. For devices
that do not have a display or where you want to use alternative Ul frameworks, you can choose to not build these

components.

Comprehensive Toolchain Capabilities: Toolchains for supported architectures satisfy most use cases. However, if
your hardware supports features that are not part of a standard toolchain, you can easily customize that toolchain
through specification of platform-specific tuning parameters. And, should you need to use a third-party toolchain,

mechanisms built into the Yocto Project allow for that.

Mechanism Rules Over Policy: Focusing on mechanism rather than policy ensures that you are free to set policies

based on the needs of your design instead of adopting decisions enforced by some system software provider.

Uses a Layer Model: The Yocto Project layer infrastructure groups related functionality into separate bundles. You
can incrementally add these grouped functionalities to your project as needed. Using layers to isolate and group
functionality reduces project complexity and redundancy, allows you to easily extend the system, make customiza-

tions, and keep functionality organized.

4.2

Introducing the Yocto Project 25


https://www.yoctoproject.org
https://www.yoctoproject.org

The Yocto Project ®, Release 5.1.3

Supports Partial Builds: You can build and rebuild individual packages as needed. Yocto Project accomplishes
this through its Shared State Cache (sstate) scheme. Being able to build and debug components individually eases

project development.

Releases According to a Strict Schedule: Major releases occur on a six-month cycle predictably in October and
April. The most recent two releases support point releases to address common vulnerabilities and exposures. This

predictability is crucial for projects based on the Yocto Project and allows development teams to plan activities.

Rich Ecosystem of Individuals and Organizations: For open source projects, the value of community is very impor-
tant. Support forums, expertise, and active developers who continue to push the Yocto Project forward are readily

available.

Binary Reproducibility: The Yocto Project allows you to be very specific about dependencies and achieves very
high percentages of binary reproducibility (e.g. 99.8% for core-image-minimal). When distributions are not
specific about which packages are pulled in and in what order to support dependencies, other build systems can

arbitrarily include packages.

License Manifest: The Yocto Project provides a license manifest for review by people who need to track the use of

open source licenses (e.g. legal teams).

Challenges

Here are challenges you might encounter when developing using the Yocto Project:

e Steep Learning Curve: The Yocto Project has a steep learning curve and has many different ways to accomplish

similar tasks. It can be difficult to choose between such ways.

Understanding What Changes You Need to Make For Your Design Requires Some Research: Beyond the simple
tutorial stage, understanding what changes need to be made for your particular design can require a significant
amount of research and investigation. For information that helps you transition from trying out the Yocto Project
to using it for your project, see the “What I wish I’ d known about Yocto Project” and “Transitioning to a custom

environment for systems development” documents on the Yocto Project website.

Project Workflow Could Be Confusing: The Yocto Project workflow could be confusing if you are used to traditional
desktop and server software development. In a desktop development environment, there are mechanisms to easily
pull and install new packages, which are typically pre-compiled binaries from servers accessible over the Internet.

Using the Yocto Project, you must modify your configuration and rebuild to add additional packages.

Working in a Cross-Build Environment Can Feel Unfamiliar: When developing code to run on a target, compilation,
execution, and testing done on the actual target can be faster than running a BitBake build on a development host and
then deploying binaries to the target for test. While the Yocto Project does support development tools on the target,
the additional step of integrating your changes back into the Yocto Project build environment would be required.
Yocto Project supports an intermediate approach that involves making changes on the development system within

the BitBake environment and then deploying only the updated packages to the target.

The Yocto Project OpenEmbedded Build System produces packages in standard formats (i.e. RPM, DEB, IPK, and
TAR). You can deploy these packages into the running system on the target by using utilities on the target such as

rpm Or ipk.

26

Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

e [nitial Build Times Can be Significant: Long initial build times are unfortunately unavoidable due to the large number
of packages initially built from scratch for a fully functioning Linux system. Once that initial build is completed,
however, the shared-state (sstate) cache mechanism Yocto Project uses keeps the system from rebuilding packages
that have not been “touched” since the last build. The sstate mechanism significantly reduces times for successive
builds.

4.2.2 The Yocto Project Layer Model

The Yocto Project’ s “Layer Model” is a development model for embedded and IoT Linux creation that distinguishes the
Yocto Project from other simple build systems. The Layer Model simultaneously supports collaboration and customiza-
tion. Layers are repositories that contain related sets of instructions that tell the OpenEmbedded Build System what to do.

You can collaborate, share, and reuse layers.

Layers can contain changes to previous instructions or settings at any time. This powerful override capability is what

allows you to customize previously supplied collaborative or community layers to suit your product requirements.

You use different layers to logically separate information in your build. As an example, you could have BSP, GUI, distro
configuration, middleware, or application layers. Putting your entire build into one layer limits and complicates future
customization and reuse. Isolating information into layers, on the other hand, helps simplify future customizations and
reuse. You might find it tempting to keep everything in one layer when working on a single project. However, the more

modular your Metadata, the easier it is to cope with future changes.

Note
» Use Board Support Package (BSP) layers from silicon vendors when possible.

» Familiarize yourself with the Yocto Project Compatible Layers or the OpenEmbedded Layer Index. The latter

contains more layers but they are less universally validated.

» Layers support the inclusion of technologies, hardware components, and software components. The Yocto
Project Compatible designation provides a minimum level of standardization that contributes to a strong ecosys-
tem. “YP Compatible” is applied to appropriate products and software components such as BSPs, other
OE-compatible layers, and related open-source projects, allowing the producer to use Yocto Project badges

and branding assets.

To illustrate how layers are used to keep things modular, consider machine customizations. These types of customizations
typically reside in a special layer, rather than a general layer, called a BSP Layer. Furthermore, the machine customizations
should be isolated from recipes and Metadata that support a new GUI environment, for example. This situation gives you
a couple of layers: one for the machine configurations, and one for the GUI environment. It is important to understand,
however, that the BSP layer can still make machine-specific additions to recipes within the GUI environment layer without
polluting the GUI layer itself with those machine-specific changes. You can accomplish this through a recipe that is a

BitBake append (. bbappend) file, which is described later in this section.

4.2. Introducing the Yocto Project 27


https://www.yoctoproject.org/software-overview/layers/
https://layers.openembedded.org

The Yocto Project ®, Release 5.1.3

Note

For general information on BSP layer structure, see the Yocto Project Board Support Package Developer’ s Guide.

The Source Directory contains both general layers and BSP layers right out of the box. You can easily identify layers that
ship with a Yocto Project release in the Source Directory by their names. Layers typically have names that begin with the

string meta-.

Note

It is not a requirement that a layer name begin with the prefix meta-, but it is a commonly accepted standard in the

Yocto Project community.

For example, if you were to examine the tree view of the poky repository, you will see several layers: meta,
meta-skeleton, meta-selftest, meta-poky, and meta-yocto-bsp. Each of these repositories represents a dis-

tinct layer.

For procedures on how to create layers, see the “Understanding and Creating Layers” section in the Yocto Project

Development Tasks Manual.

4.2.3 Components and Tools

The Yocto Project employs a collection of components and tools used by the project itself, by project developers, and by
those using the Yocto Project. These components and tools are open source projects and metadata that are separate from
the reference distribution (Poky) and the OpenEmbedded Build System. Most of the components and tools are downloaded

separately.

This section provides brief overviews of the components and tools associated with the Yocto Project.

Development Tools
Here are tools that help you develop images and applications using the Yocto Project:

e CROPS: CROPS is an open source, cross-platform development framework that leverages Docker Containers.
CROPS provides an easily managed, extensible environment that allows you to build binaries for a variety of ar-

chitectures on Windows, Linux and Mac OS X hosts.

¢ devtool: This command-line tool is available as part of the extensible SDK (eSDK) and is its cornerstone. You
can use devtool to help build, test, and package software within the eSDK. You can use the tool to optionally

integrate what you build into an image built by the OpenEmbedded build system.

The devtool command employs a number of sub-commands that allow you to add, modify, and upgrade recipes.
As with the OpenEmbedded build system, “recipes” represent software packages within devtool. When you use
devtool add, a recipe is automatically created. When you use devtool modify, the specified existing recipe

is used in order to determine where to get the source code and how to patch it. In both cases, an environment is set

28 Chapter 4. Yocto Project Overview and Concepts Manual


https://git.yoctoproject.org/poky/tree/
https://github.com/crops/poky-container/
https://www.docker.com/

The Yocto Project ®, Release 5.1.3

up so that when you build the recipe a source tree that is under your control is used in order to allow you to make
changes to the source as desired. By default, both new recipes and the source go into a “workspace” directory
under the eSDK. The devtool upgrade command updates an existing recipe so that you can build it for an

updated set of source files.

You can read about the devt ool workflow in the Yocto Project Application Development and Extensible Software
Development Kit (eSDK) Manual in the “Using devtool in Your SDK Workflow” section.

Extensible Software Development Kit (eSDK): The eSDK provides a cross-development toolchain and libraries tai-
lored to the contents of a specific image. The eSDK makes it easy to add new applications and libraries to an image,
modify the source for an existing component, test changes on the target hardware, and integrate into the rest of the
OpenEmbedded build system. The eSDK gives you a toolchain experience supplemented with the powerful set of

devtool commands tailored for the Yocto Project environment.

For information on the eSDK, see the Yocto Project Application Development and the Extensible Software Develop-
ment Kit (eSDK) Manual.

Toaster: Toaster is a web interface to the Yocto Project OpenEmbedded build system. Toaster allows you to

configure, run, and view information about builds. For information on Toaster, see the Toaster User Manual.

VSCode IDE Extension: The Yocto Project BitBake extension for Visual Studio Code provides a rich set of features
for working with BitBake recipes. The extension provides syntax highlighting, hover tips, and completion for
BitBake files as well as embedded Python and Bash languages. Additional views and commands allow you to
efficiently browse, build and edit recipes. It also provides SDK integration for cross-compiling and debugging

through devtool.

Learn more about the VSCode Extension on the extension’ s frontpage.

Production Tools

Here are tools that help with production related activities using the Yocto Project:

Auto Upgrade Helper: This utility when used in conjunction with the OpenEmbedded Build System (BitBake and
OE-Core) automatically generates upgrades for recipes that are based on new versions of the recipes published

upstream. See Using the Auto Upgrade Helper (AUH) for how to set it up.

Recipe Reporting System: The Recipe Reporting System tracks recipe versions available for Yocto Project. The
main purpose of the system is to help you manage the recipes you maintain and to offer a dynamic overview of the
project. The Recipe Reporting System is built on top of the OpenEmbedded Layer Index, which is a website that
indexes OpenEmbedded-Core layers.

Patchwork: Patchwork is a fork of a project originally started by OzLabs. The project is a web-based tracking system
designed to streamline the process of bringing contributions into a project. The Yocto Project uses Patchwork as

an organizational tool to handle patches, which number in the thousands for every release.

AutoBuilder: AutoBuilder is a project that automates build tests and quality assurance (QA). By using the public

AutoBuilder, anyone can determine the status of the current development branch of Poky.

4.2

Introducing the Yocto Project 29


https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
https://layers.openembedded.org
https://patchwork.yoctoproject.org/
https://ozlabs.org/

The Yocto Project ®, Release 5.1.3

Note

AutoBuilder is based on buildbot.

A goal of the Yocto Project is to lead the open source industry with a project that automates testing and QA
procedures. In doing so, the project encourages a development community that publishes QA and test plans, publicly
demonstrates QA and test plans, and encourages development of tools that automate and test and QA procedures

for the benefit of the development community.
You can learn more about the AutoBuilder used by the Yocto Project Autobuilder /ere.

Pseudo: Pseudo is the Yocto Project implementation of fakeroot, which is used to run commands in an environment

that seemingly has root privileges.

During a build, it can be necessary to perform operations that require system administrator privileges. For example,
file ownership or permissions might need to be defined. Pseudo is a tool that you can either use directly or through
the environment variable LD_PRELOAD. Either method allows these operations to succeed even without system

administrator privileges.
Thanks to Pseudo, the Yocto Project never needs root privileges to build images for your target system.

You can read more about Pseudo in the “Fakeroot and Pseudo” section.

Open-Embedded Build System Components

Here are components associated with the OpenEmbedded Build System:

* BitBake: BitBake is a core component of the Yocto Project and is used by the OpenEmbedded build system to

build images. While BitBake is key to the build system, BitBake is maintained separately from the Yocto Project.

BitBake is a generic task execution engine that allows shell and Python tasks to be run efficiently and in parallel
while working within complex inter-task dependency constraints. In short, BitBake is a build engine that works

through recipes written in a specific format in order to perform sets of tasks.
You can learn more about BitBake in the BitBake User Manual.

OpenEmbedded-Core: OpenEmbedded-Core (OE-Core) is a common layer of metadata (i.e. recipes, classes, and
associated files) used by OpenEmbedded-derived systems, which includes the Yocto Project. The Yocto Project
and the OpenEmbedded Project both maintain the OpenEmbedded-Core. You can find the OE-Core metadata in

the Yocto Project Source Repositories.

Historically, the Yocto Project integrated the OE-Core metadata throughout the Yocto Project source repository
reference system (Poky). After Yocto Project Version 1.0, the Yocto Project and OpenEmbedded agreed to work
together and share a common core set of metadata (OE-Core), which contained much of the functionality previously
found in Poky. This collaboration achieved a long-standing OpenEmbedded objective for having a more tightly
controlled and quality-assured core. The results also fit well with the Yocto Project objective of achieving a smaller

number of fully featured tools as compared to many different ones.

30

Chapter 4. Yocto Project Overview and Concepts Manual


http://man.he.net/man1/fakeroot
https://docs.yoctoproject.org/bitbake/2.10/index.html
https://git.yoctoproject.org/poky/tree/meta

The Yocto Project ®, Release 5.1.3

Sharing a core set of metadata results in Poky as an integration layer on top of OE-Core. You can see that in
this figure. The Yocto Project combines various components such as BitBake, OE-Core, script “glue” , and

documentation for its build system.

Reference Distribution (Poky)

Poky is the Yocto Project reference distribution. It contains the OpenEmbedded Build System (BitBake and OE-Core) as
well as a set of metadata to get you started building your own distribution. See the figure in “What is the Yocto Project?”

section for an illustration that shows Poky and its relationship with other parts of the Yocto Project.

To use the Yocto Project tools and components, you can download (clone) Poky and use it to bootstrap your own

distribution.

Note

Poky does not contain binary files. It is a working example of how to build your own custom Linux distribution from

source.

You can read more about Poky in the “Reference Embedded Distribution (Poky)” section.

Packages for Finished Targets
Here are components associated with packages for finished targets:

* Matchbox: Matchbox is an Open Source, base environment for the X Window System running on non-desktop,
embedded platforms such as handhelds, set-top boxes, kiosks, and anything else for which screen space, input

mechanisms, or system resources are limited.

Matchbox consists of a number of interchangeable and optional applications that you can tailor to a specific, non-

desktop platform to enhance usability in constrained environments.
You can find the Matchbox source in the Yocto Project Source Repositories.

¢ Opkg: Open PacKaGe management (opkg) is a lightweight package management system based on the itsy package
(ipkg) management system. Opkg is written in C and resembles Advanced Package Tool (APT) and Debian Package
(dpkg) in operation.

Opkg is intended for use on embedded Linux devices and is used in this capacity in the OpenEmbedded and

OpenWrt projects, as well as the Yocto Project.
Note
As best it can, opkg maintains backwards compatibility with ipkg and conforms to a subset of Debian’ s policy

manual regarding control files.

You can find the opkg source in the Yocto Project Source Repositories.

4.2. Introducing the Yocto Project 31


https://git.yoctoproject.org
https://www.openembedded.org
https://openwrt.org/
https://git.yoctoproject.org

The Yocto Project ®, Release 5.1.3

Archived Components

The Build Appliance is a virtual machine image that enables you to build and boot a custom embedded Linux image with

the Yocto Project using a non-Linux development system.

Historically, the Build Appliance was the second of three methods by which you could use the Yocto Project on a system

that was not native to Linux.

1. Hob: Hob, which is now deprecated and is no longer available since the 2.1 release of the Yocto Project provided

a rudimentary, GUI-based interface to the Yocto Project. Toaster has fully replaced Hob.

2. Build Appliance: Post Hob, the Build Appliance became available. It was never recommended that you use the
Build Appliance as a day-to-day production development environment with the Yocto Project. Build Appliance

was useful as a way to try out development in the Yocto Project environment.

3. CROPS: The final and best solution available now for developing using the Yocto Project on a system not native to
Linux is with CROPS.

4.2.4 Development Methods

The Yocto Project development environment usually involves a Build Host and target hardware. You use the Build Host

to build images and develop applications, while you use the target hardware to execute deployed software.

This section provides an introduction to the choices or development methods you have when setting up your Build Host.
Depending on your particular workflow preference and the type of operating system your Build Host runs, you have several

choices.

Note

For additional detail about the Yocto Project development environment, see the “7The Yocto Project Development

Environment” chapter.

* Native Linux Host: By far the best option for a Build Host. A system running Linux as its native operating system
allows you to develop software by directly using the BitBake tool. You can accomplish all aspects of development

from a regular shell in a supported Linux distribution.

For information on how to set up a Build Host on a system running Linux as its native operating system, see the

“Setting Up a Native Linux Host” section in the Yocto Project Development Tasks Manual.

* CROss PlatformS (CROPS): Typically, you use CROPS, which leverages Docker Containers, to set up a Build Host

that is not running Linux (e.g. Microsoft Windows or macOS).

Note

You can, however, use CROPS on a Linux-based system.

CROPS is an open source, cross-platform development framework that provides an easily managed, extensible

32 Chapter 4. Yocto Project Overview and Concepts Manual


https://github.com/crops/poky-container/
https://www.docker.com/

The Yocto Project ®, Release 5.1.3

environment for building binaries targeted for a variety of architectures on Windows, macOS, or Linux hosts.
Once the Build Host is set up using CROPS, you can prepare a shell environment to mimic that of a shell being

used on a system natively running Linux.

For information on how to set up a Build Host with CROPS,; see the “Setting Up to Use CROss PlatformS (CROPS)”

section in the Yocto Project Development Tasks Manual.

» Windows Subsystem For Linux (WSL 2): You may use Windows Subsystem For Linux version 2 to set up a Build

Host using Windows 10 or later, or Windows Server 2019 or later.

The Windows Subsystem For Linux allows Windows to run a real Linux kernel inside of a lightweight virtual
machine (VM).

For information on how to set up a Build Host with WSL 2, see the “Serting Up to Use Windows Subsystem For
Linux (WSL 2)” section in the Yocto Project Development Tasks Manual.

* Toaster: Regardless of what your Build Host is running, you can use Toaster to develop software using the Yocto
Project. Toaster is a web interface to the Yocto Project’ s OpenEmbedded Build System. The interface allows you to
configure and run your builds. Information about builds is collected and stored in a database. You can use Toaster

to configure and start builds on multiple remote build servers.
For information about and how to use Toaster, see the Toaster User Manual.

* Using the VSCode Extension: You can use the Yocto Project BitBake extension for Visual Studio Code to start your

BitBake builds through a graphical user interface.

Learn more about the VSCode Extension on the extension’ s marketplace page

4.2.5 Reference Embedded Distribution (Poky)

“Poky” , which is pronounced Pock-ee, is the name of the Yocto Project’ s reference distribution or Reference OS Kit.
Poky contains the OpenEmbedded Build System (BitBake and OpenEmbedded-Core (OE-Core)) as well as a set of Metadata
to get you started building your own distro. In other words, Poky is a base specification of the functionality needed for a
typical embedded system as well as the components from the Yocto Project that allow you to build a distribution into a

usable binary image.

Poky is a combined repository of BitBake, OpenEmbedded-Core (which is found in meta), meta-poky,
meta-yocto-bsp, and documentation provided all together and known to work well together. You can view these

items that make up the Poky repository in the Source Repositories.

Note

If you are interested in all the contents of the poky Git repository, see the “7Top-Level Core Components” section in

the Yocto Project Reference Manual.

The following figure illustrates what generally comprises Poky:

4.2. Introducing the Yocto Project 33


https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
https://git.yoctoproject.org/poky/tree/

The Yocto Project ®, Release 5.1.3

YOCTO PROJECT (YP)

YP-Compatible BSPs (e.g. meta-intel, meta-ti, and so forth)

YP-Compatible Layers
Puky Yocto Project Autobuilder (QA)
meta-poky Development Tools for the User
e e core (Mefdata) | metayocto-bsp Production Tools to Build the Project
= Documentation Other Layers and Project Components
Pseudo

Documentation

meta-openembedded
OpenEmbedded

* BitBake is a task executor and scheduler that is the heart of the OpenEmbedded build system.
* meta-poky, which is Poky-specific metadata.
* meta-yocto-bsp, which are Yocto Project-specific Board Support Packages (BSPs).

¢ OpenEmbedded-Core (OE-Core) metadata, which includes shared configurations, global variable definitions,
shared classes, packaging, and recipes. Classes define the encapsulation and inheritance of build logic. Recipes

are the logical units of software and images to be built.

* Documentation, which contains the Yocto Project source files used to make the set of user manuals.

Note

While Poky is a “complete” distribution specification and is tested and put through QA, you cannot use it as a product

“out of the box” in its current form.

To use the Yocto Project tools, you can use Git to clone (download) the Poky repository then use your local copy of the

reference distribution to bootstrap your own distribution.

Note

Poky does not contain binary files. It is a working example of how to build your own custom Linux distribution from

source.

Poky has a regular, well established, six-month release cycle under its own version. Major releases occur at the same
time major releases (point releases) occur for the Yocto Project, which are typically in the Spring and Fall. For more
information on the Yocto Project release schedule and cadence, see the “Yocto Project Releases and the Stable Release

Process” chapter in the Yocto Project Reference Manual.

Much has been said about Poky being a “default configuration” . A default configuration provides a starting image

34 Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

footprint. You can use Poky out of the box to create an image ranging from a shell-accessible minimal image all the way
up to a Linux Standard Base-compliant image that uses a GNOME Mobile and Embedded (GMAE) based reference user

interface called Sato.

One of the most powerful properties of Poky is that every aspect of a build is controlled by the metadata. You can use
metadata to augment these base image types by adding metadata /ayers that extend functionality. These layers can provide,
for example, an additional software stack for an image type, add a board support package (BSP) for additional hardware,

or even create a new image type.

Metadata is loosely grouped into configuration files or package recipes. A recipe is a collection of non-executable meta-
data used by BitBake to set variables or define additional build-time tasks. A recipe contains fields such as the recipe
description, the recipe version, the license of the package and the upstream source repository. A recipe might also indi-
cate that the build process uses autotools, make, distutils or any other build process, in which case the basic functionality
can be defined by the classes it inherits from the OE-Core layer’ s class definitions in . /meta/classes. Within a
recipe you can also define additional tasks as well as task prerequisites. Recipe syntax through BitBake also supports both
:prepend and :append operators as a method of extending task functionality. These operators inject code into the
beginning or end of a task. For information on these BitBake operators, see the “Appending and Prepending (Override

Style Syntax)” section in the BitBake User’ s Manual.

4.2.6 The OpenEmbedded Build System Workflow

The OpenEmbedded Build System uses a “workflow” to accomplish image and SDK generation. The following figure

overviews that workflow:

User
Configuration > Package Feeds

Metadata
[-bb +
patches)

QA Image SDK
Machine BSP (B Tests Generation Generation
Configuration \
Policy
Configuration Config Application

Images Development

Openembedded Architecture Workflow

Upstream Source u Cutput Packages
Metadatanputs Process steps (tasks)
Build system Output Image Data

SDK

yocto - [Juinux

FREGIECY

Here is a brief summary of the “workflow” :

4.2. Introducing the Yocto Project 35


https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#appending-and-prepending-override-style-syntax
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#appending-and-prepending-override-style-syntax

The Yocto Project ®, Release 5.1.3

. Developers specify architecture, policies, patches and configuration details.

. The build system fetches and downloads the source code from the specified location. The build system supports

standard methods such as tarballs or source code repositories systems such as Git.

. Once source code is downloaded, the build system extracts the sources into a local work area where patches are

applied and common steps for configuring and compiling the software are run.

. The build system then installs the software into a temporary staging area where the binary package format you

select (DEB, RPM, or IPK) is used to roll up the software.

. Different QA and sanity checks run throughout entire build process.

. After the binaries are created, the build system generates a binary package feed that is used to create the final root

file image.

. The build system generates the file system image and a customized Extensible SDK (eSDK) for application devel-

opment in parallel.

For a very detailed look at this workflow, see the “OpenEmbedded Build System Concepts” section.

4.2.7 Some Basic Terms

It helps to understand some basic fundamental terms when learning the Yocto Project. Although there is a list of terms in

the “Yocto Project Terms” section of the Yocto Project Reference Manual, this section provides the definitions of some

terms helpful for getting started:

* Configuration Files: Files that hold global definitions of variables, user-defined variables, and hardware configuration

information. These files tell the OpenEmbedded Build System what to build and what to put into the image to support

a particular platform.

Extensible Software Development Kit (eSDK): A custom SDK for application developers. This eSDK allows devel-
opers to incorporate their library and programming changes back into the image to make their code available to
other application developers. For information on the eSDK, see the Yocto Project Application Development and the

Extensible Software Development Kit (eSDK) manual.

Layer: A collection of related recipes. Layers allow you to consolidate related metadata to customize your build.
Layers also isolate information used when building for multiple architectures. Layers are hierarchical in their
ability to override previous specifications. You can include any number of available layers from the Yocto Project
and customize the build by adding your own layers after them. You can search the Layer Index for layers used

within Yocto Project.

For more detailed information on layers, see the “Understanding and Creating Layers” section in the Yocto Project
Development Tasks Manual. For a discussion specifically on BSP Layers, see the “BSP Layers” section in the

Yocto Project Board Support Packages (BSP) Developer’ s Guide.

Metadata: A key element of the Yocto Project is the Metadata that is used to construct a Linux distribution and is
contained in the files that the OpenEmbedded build system parses when building an image. In general, Metadata

includes recipes, configuration files, and other information that refers to the build instructions themselves, as well

36

Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

as the data used to control what things get built and the effects of the build. Metadata also includes commands and
data used to indicate what versions of software are used, from where they are obtained, and changes or additions
to the software itself (patches or auxiliary files) that are used to fix bugs or customize the software for use in a

particular situation. OpenEmbedded-Core is an important set of validated metadata.

* OpenEmbedded Build System: The terms “BitBake” and “build system” are sometimes used for the OpenEmbedded
Build System.

BitBake is a task scheduler and execution engine that parses instructions (i.e. recipes) and configuration data.
After a parsing phase, BitBake creates a dependency tree to order the compilation, schedules the compilation of
the included code, and finally executes the building of the specified custom Linux image (distribution). BitBake is

similar to the make tool.

During a build process, the build system tracks dependencies and performs a native or cross-compilation of each
package. As a first step in a cross-build setup, the framework attempts to create a cross-compiler toolchain (i.e.
Extensible SDK) suited for the target platform.

* OpenEmbedded-Core (OE-Core): OE-Core is metadata comprised of foundation recipes, classes, and associated
files that are meant to be common among many different OpenEmbedded-derived systems, including the Yocto
Project. OE-Core is a curated subset of an original repository developed by the OpenEmbedded community that
has been pared down into a smaller, core set of continuously validated recipes. The result is a tightly controlled and

quality-assured core set of recipes.
You can see the Metadata in the meta directory of the Yocto Project Source Repositories.

* Packages: In the context of the Yocto Project, this term refers to a recipe’ s packaged output produced by BitBake
(i.e. a “baked recipe” ). A package is generally the compiled binaries produced from the recipe’ s sources. You

“bake” something by running it through BitBake.

It is worth noting that the term “package” can, in general, have subtle meanings. For example, the packages
referred to in the “Required Packages for the Build Host” section in the Yocto Project Reference Manual are

compiled binaries that, when installed, add functionality to your host Linux distribution.

Another point worth noting is that historically within the Yocto Project, recipes were referred to as packages —

thus, the existence of several BitBake variables that are seemingly mis-named, (e.g. PR, PV, and PE).
* Poky: Poky is a reference embedded distribution and a reference test configuration. Poky provides the following:
— A base-level functional distro used to illustrate how to customize a distribution.
— A means by which to test the Yocto Project components (i.e. Poky is used to validate the Yocto Project).
— A vehicle through which you can download the Yocto Project.

Poky is not a product level distro. Rather, it is a good starting point for customization.

Note

Poky is an integration layer on top of OE-Core.

4.2. Introducing the Yocto Project 37


https://git.yoctoproject.org

The Yocto Project ®, Release 5.1.3

* Recipe: The most common form of metadata. A recipe contains a list of settings and tasks (i.e. instructions) for
building packages that are then used to build the binary image. A recipe describes where you get source code and
which patches to apply. Recipes describe dependencies for libraries or for other recipes as well as configuration

and compilation options. Related recipes are consolidated into a layer.

4.3 The Yocto Project Development Environment

This chapter takes a look at the Yocto Project development environment. The chapter provides Yocto Project Development
environment concepts that help you understand how work is accomplished in an open source environment, which is very

different as compared to work accomplished in a closed, proprietary environment.

Specifically, this chapter addresses open source philosophy, source repositories, workflows, Git, and licensing.

4.3.1 Open Source Philosophy

Open source philosophy is characterized by software development directed by peer production and collaboration through
an active community of developers. Contrast this to the more standard centralized development models used by com-
mercial software companies where a finite set of developers produces a product for sale using a defined set of procedures

that ultimately result in an end product whose architecture and source material are closed to the public.

Open source projects conceptually have differing concurrent agendas, approaches, and production. These facets of the
development process can come from anyone in the public (community) who has a stake in the software project. The open
source environment contains new copyright, licensing, domain, and consumer issues that differ from the more traditional
development environment. In an open source environment, the end product, source material, and documentation are all

available to the public at no cost.

A benchmark example of an open source project is the Linux kernel, which was initially conceived and created by Finnish
computer science student Linus Torvalds in 1991. Conversely, a good example of a non-open source project is the

Windows family of operating systems developed by Microsoft Corporation.

Wikipedia has a good historical description of the Open Source Philosophy. You can also find helpful information on

how to participate in the Linux Community here.

4.3.2 The Development Host

A development host or Build Host is key to using the Yocto Project. Because the goal of the Yocto Project is to develop
images or applications that run on embedded hardware, development of those images and applications generally takes

place on a system not intended to run the software —the development host.

You need to set up a development host in order to use it with the Yocto Project. Most find that it is best to have a native
Linux machine function as the development host. However, it is possible to use a system that does not run Linux as its
operating system as your development host. When you have a Mac or Windows-based system, you can set it up as the
development host by using CROPS, which leverages Docker Containers. Once you take the steps to set up a CROPS
machine, you effectively have access to a shell environment that is similar to what you see when using a Linux-based
development host. For the steps needed to set up a system using CROPS, see the “Setting Up to Use CROss PlatformS
(CROPS)” section in the Yocto Project Development Tasks Manual.

38 Chapter 4. Yocto Project Overview and Concepts Manual


https://en.wikipedia.org/wiki/Open_source
https://www.kernel.org/doc/html/latest/process/index.html
https://github.com/crops/poky-container
https://www.docker.com/

The Yocto Project ®, Release 5.1.3

If your development host is going to be a system that runs a Linux distribution, you must still take steps to prepare the
system for use with the Yocto Project. You need to be sure that the Linux distribution on the system is one that supports
the Yocto Project. You also need to be sure that the correct set of host packages are installed that allow development
using the Yocto Project. For the steps needed to set up a development host that runs Linux, see the “Serting Up a Native

Linux Host” section in the Yocto Project Development Tasks Manual.

Once your development host is set up to use the Yocto Project, there are several ways of working in the Yocto Project

environment:

e Command Lines, BitBake, and Shells: Traditional development in the Yocto Project involves using the OpenEm-
bedded Build System, which uses BitBake, in a command-line environment from a shell on your development host.
You can accomplish this from a host that is a native Linux machine or from a host that has been set up with
CROPS. Either way, you create, modify, and build images and applications all within a shell-based environment

using components and tools available through your Linux distribution and the Yocto Project.

)

For a general flow of the build procedures, see the “Building a Simple Image” section in the Yocto Project Devel-

opment Tasks Manual.

* Board Support Package (BSP) Development: Development of BSPs involves using the Yocto Project to create and
test layers that allow easy development of images and applications targeted for specific hardware. To development

BSPs, you need to take some additional steps beyond what was described in setting up a development host.

The Yocto Project Board Support Package Developer’ s Guide provides BSP-related development information. For
specifics on development host preparation, see the “Preparing Your Build Host to Work With BSP Layers” section

in the Yocto Project Board Support Package (BSP) Developer’ s Guide.

* Kernel Development: If you are going to be developing kernels using the Yocto Project you likely will be using

devtool. A workflow using devtool makes kernel development quicker by reducing iteration cycle times.

The Yocto Project Linux Kernel Development Manual provides kernel-related development information. For specifics
on development host preparation, see the *Preparing the Build Host to Work on the Kernel” section in the Yocto

Project Linux Kernel Development Manual.

 Using Toaster: The other Yocto Project development method that involves an interface that effectively puts the
Yocto Project into the background is Toaster. Toaster provides an interface to the OpenEmbedded build system.
The interface enables you to configure and run your builds. Information about builds is collected and stored in a

database. You can use Toaster to configure and start builds on multiple remote build servers.

For steps that show you how to set up your development host to use Toaster and on how to use Toaster in general,

see the Toaster User Manual.

* Using the VSCode Extension: You can use the Yocto Project BitBake extension for Visual Studio Code to start your

BitBake builds through a graphical user interface.

Learn more about the VSCode Extension on the extension’ s marketplace page.

4.3. The Yocto Project Development Environment 39


https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake
https://marketplace.visualstudio.com/items?itemName=yocto-project.yocto-bitbake

The Yocto Project ®, Release 5.1.3

4.3.3 Yocto Project Source Repositories

The Yocto Project team maintains complete source repositories for all Yocto Project files at https://git.yoctoproject.org/.
This web-based source code browser is organized into categories by function such as IDE Plugins, Matchbox, Poky, Yocto
Linux Kernel, and so forth. From the interface, you can click on any particular item in the “Name” column and see
the URL at the bottom of the page that you need to clone a Git repository for that particular item. Having a local Git
repository of the Source Directory, which is usually named “poky” , allows you to make changes, contribute to the history,

and ultimately enhance the Yocto Project’ s tools, Board Support Packages, and so forth.

For any supported release of Yocto Project, you can also go to the Yocto Project Website and select the “DOWNLOADS”
item from the “SOFTWARE” menu and get a released tarball of the poky repository, any supported BSP tarball, or

Yocto Project tools. Unpacking these tarballs gives you a snapshot of the released files.

Note

* The recommended method for setting up the Yocto Project Source Directory and the files for supported BSPs

(e.g., meta-intel) is to use Git to create a local copy of the upstream repositories.

* Be sure to always work in matching branches for both the selected BSP repository and the Source Directory
(i.e. poky) repository. For example, if you have checked out the “styhead” branch of poky and you are going

to use meta—-intel, be sure to checkout the “styhead” branch of meta-intel.

In summary, here is where you can get the project files needed for development:

» Source Repositories: This area contains Poky, Yocto documentation, metadata layers, and Linux kernel. You can

create local copies of Git repositories for each of these areas.

40 Chapter 4. Yocto Project Overview and Concepts Manual


https://git.yoctoproject.org/
https://www.yoctoproject.org
https://git.yoctoproject.org

The Yocto Project ®, Release 5.1.3

yOcto - Source Repositories

PROJECT Yocto Project
e —
Name Description Idle
-Poky
poky Poky Build Tool and Metadata 4 days
poky-contrib Poky Built Tool and Metadata - User Contributions Tree 8 hours
yocto-docs Versioned project documentation 21 min.
-Poky Support
poky-config Combo-layer configuration and support scripts for the poky repository 4 days
poky-contrib-archive User contributions older than January 1st 2013
-Yocto Automated Testing
poky-buildhistory Autobuilder Saved Build History (for Poky master) 11 hours
yocto-buildstats Build performance test results from the Yocto project 1 min.
yocto-testresults Test results published from the public autobuilder 9 hours
yocto-testresults-contrib Test results published from contributor autobuilders and QA teams 8 hours
-Yocto Metadata Layers - Platinum Members
meta-arm Layer containing support for Arm products 4 days
meta-aws Layer containing Amazon Web Services (AWS) device software support metadata 43 min.
meta-intel Layer containing Intel hardware support metadata 35 hours
meta-ti Layer containing Tl hardware support metadata 4 hours
meta-xilinx Layer containing Xilinx hardware support metadata 8 months
-Yocto Metadata Layers - Autobuilder Tested
meta-gplv2 GPLv2 versions of software where upstream has moved to GPLv3 licenses 4 weeks
meta-mingw Layer for mingw based SDKs 4 weeks
meta-yocto Yocto Project integration layers (Poky distro configuration, reference hardware ... 19 hours
-Yocto Metadata Layers - Member Layers
meta-amd Layer containing AMD hardware support metadata 3 months
meta-freescale Layer containing NXP hardware support metadata 43 min.
meta-renesas Layer supporting Renesas Electronics SoCs

For steps on how to view and access these upstream Git repositories, see the “Accessing Source Repositories” Section

in the Yocto Project Development Tasks Manual.

* Yocto release archives: This is where you can download tarballs corresponding to each Yocto Project release.
Downloading and extracting these files does not produce a local copy of a Git repository but rather a snapshot

corresponding to a particular release.

* DOWNLOADS page: The Yocto Project website includes a “DOWNLOADS” page accessible through the
“SOFTWARE” menu that allows you to download any Yocto Project release, tool, and Board Support Pack-
age (BSP) in tarball form. The hyperlinks point to the tarballs under https://downloads.yoctoproject.org/releases/

yocto/.

4.3. The Yocto Project Development Environment 41


https://downloads.yoctoproject.org/releases/yocto
https://www.yoctoproject.org/software-overview/downloads/
https://www.yoctoproject.org
https://downloads.yoctoproject.org/releases/yocto/
https://downloads.yoctoproject.org/releases/yocto/

The Yocto Project ®, Release 5.1.3

COMMUNITY

PROJECT

SOFTWARE : DOWNLOADS

RELEASE YP CORE - LANGDALE 4.1.3-2023.03.15 ~ RELEASE ARCHIVE

The Yocto Project® build system (BitBake and the OE-Core metadata) is packaged with the reference distro [ git clone -b langdale git://gityoctoproject.org/f @_
(called Poky). This allows you to try out the whole system. You can create a binary image of Poky as is, or
alter the Poky recipes and layers for use in your customized work.

or download

Git is preferred to a tarball download. If you use the former, then code updates can easily be applied to your
code base. Using the latter requires you to update your code base yourself, and the documents are slightly
older.

The tools and bsps below are not included. You must download each separately, and they are specific to the
version of software you are using.

0 RELEASE INFORMATION - YP CORE - LANGDALE 4.1.3

TOOLS
BUILD APPLIANCE -LANGDALE BUILDTOOLS ESDK - LANGDALE
413 413
The Build Appliance is a virtual This buildtools SDK contains the
machine which enables you to build needed versions of various programs
and boot a custom embedded Linux to build Yocto Project on most n
image with the Yocto Project using a distributions.FeaturesPython3
non-Linux de... READ MORE » 3.10.6git 2.37.3tar ... READ MORE » s

For steps on how to use the “DOWNLOADS” page, see the “Using the Downloads Page” section in the Yocto

Project Development Tasks Manual.

4.3.4 Git Workflows and the Yocto Project

Developing using the Yocto Project likely requires the use of Gir. Git is a free, open source distributed version control
system used as part of many collaborative design environments. This section provides workflow concepts using the Yocto
Project and Git. In particular, the information covers basic practices that describe roles and actions in a collaborative

development environment.

Note

If you are familiar with this type of development environment, you might not want to read this section.

The Yocto Project files are maintained using Git in “branches” whose Git histories track every change and whose structures

provide branches for all diverging functionality. Although there is no need to use Git, many open source projects do so.

For the Yocto Project, a key individual called the “maintainer” is responsible for the integrity of the development branch
of a given Git repository. The development branch is the “upstream” repository from which final or most recent builds
of a project occur. The maintainer is responsible for accepting changes from other developers and for organizing the

underlying branch structure to reflect release strategies and so forth.

42 Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

Note

For information on finding out who is responsible for (maintains) a particular area of code in the Yocto Project, see

the “Identify the component” section of the Yocto Project and OpenEmbedded Contributor Guide.

The Yocto Project poky Git repository also has an upstream contribution Git repository named poky-contrib. You
can see all the branches in this repository using the web interface of the Source Repositories organized within the “Poky
Support” area. These branches hold changes (commits) to the project that have been submitted or committed by the
Yocto Project development team and by community members who contribute to the project. The maintainer determines

if the changes are qualified to be moved from the “contrib” branches into the “master” branch of the Git repository.

Developers (including contributing community members) create and maintain cloned repositories of upstream branches.
The cloned repositories are local to their development platforms and are used to develop changes. When a developer is

satisfied with a particular feature or change, they “push” the change to the appropriate “contrib” repository.

Developers are responsible for keeping their local repository up-to-date with whatever upstream branch they are working
against. They are also responsible for straightening out any conflicts that might arise within files that are being worked on
simultaneously by more than one person. All this work is done locally on the development host before anything is pushed

toa “contrib” area and examined at the maintainer’ s level.

There is a somewhat formal method by which developers commit changes and push them into the ‘“contrib” area and
subsequently request that the maintainer include them into an upstream branch. This process is called “submitting a
patch” or “submitting a change.” For information on submitting patches and changes, see the “Contributing Changes

to a Component” section in the Yocto Project and OpenEmbedded Contributor Guide.

In summary, there is a single point of entry for changes into the development branch of the Git repository, which is
controlled by the project’ s maintainer. A set of developers independently develop, test, and submit changes to “contrib”
areas for the maintainer to examine. The maintainer then chooses which changes are going to become a permanent part

of the project.

git pull
project git pull and push local
O CtO "contrib" development
y PROJECT git repository git repository
project /
"master" git pull from the
project git pull and push project
source repositories "contrib" development
git repository git repository
git pull T

While each development environment is unique, there are some best practices or methods that help development run

4.3. The Yocto Project Development Environment 43


https://git.yoctoproject.org

The Yocto Project ®, Release 5.1.3

smoothly. The following list describes some of these practices. For more information about Git workflows, see the

workflow topics in the Git Community Book.

Make Small Changes: It is best to keep the changes you commit small as compared to bundling many disparate
changes into a single commit. This practice not only keeps things manageable but also allows the maintainer to

more easily include or refuse changes.

Make Complete Changes: It is also good practice to leave the repository in a state that allows you to still successfully
build your project. In other words, do not commit half of a feature, then add the other half as a separate, later

commit. Each commit should take you from one buildable project state to another buildable state.

Use Branches Liberally: Tt is very easy to create, use, and delete local branches in your working Git repository on
the development host. You can name these branches anything you like. It is helpful to give them names associated
with the particular feature or change on which you are working. Once you are done with a feature or change and

have merged it into your local development branch, simply discard the temporary branch.

Merge Changes: The git merge command allows you to take the changes from one branch and fold them into
another branch. This process is especially helpful when more than a single developer might be working on different
parts of the same feature. Merging changes also automatically identifies any collisions or “conflicts” that might

happen as a result of the same lines of code being altered by two different developers.

Manage Branches: Because branches are easy to use, you should use a system where branches indicate varying
levels of code readiness. For example, you can have a “work” branch to develop in,a “test” branch where the
code or change is tested, a “stage” branch where changes are ready to be committed, and so forth. As your project

develops, you can merge code across the branches to reflect ever-increasing stable states of the development.

Use Push and Pull: The push-pull workflow is based on the concept of developers “pushing” local commits to a
remote repository, which is usually a contribution repository. This workflow is also based on developers “pulling”
known states of the project down into their local development repositories. The workflow easily allows you to pull
changes submitted by other developers from the upstream repository into your work area ensuring that you have
the most recent software on which to develop. The Yocto Project has two scripts named create-pull-request
and send-pull-request that ship with the release to facilitate this workflow. You can find these scripts in the
scripts folder of the Source Directory. For information on how to use these scripts, see the “Using Scripts to

Push a Change Upstream and Request a Pull” section in the Yocto Project and OpenEmbedded Contributor Guide.

Patch Workflow: This workflow allows you to notify the maintainer through an email that you have a change (or
patch) you would like considered for the development branch of the Git repository. To send this type of change, you
format the patch and then send the email using the Git commands git format-patch and git send-email.
For information on how to use these scripts, see the “Contributing Changes to a Component” section in the Yocto
Project and OpenEmbedded Contributor Guide.

44

Chapter 4. Yocto Project Overview and Concepts Manual


https://book.git-scm.com

The Yocto Project ®, Release 5.1.3

4.3.5 Git

The Yocto Project makes extensive use of Git, which is a free, open source distributed version control system. Git
supports distributed development, non-linear development, and can handle large projects. It is best that you have some
fundamental understanding of how Git tracks projects and how to work with Git if you are going to use the Yocto Project
for development. This section provides a quick overview of how Git works and provides you with a summary of some

essential Git commands.

Note
* For more information on Git, see https://git-scm.com/documentation.

« If you need to download Git, it is recommended that you add Git to your system through your distribution’
s ‘“software store” (e.g. for Ubuntu, use the Ubuntu Software feature). For the Git download page, see

https://git-scm.com/download.

¢ For information beyond the introductory nature in this section, see the “Locating Yocto Project Source Files”

section in the Yocto Project Development Tasks Manual.

Repositories, Tags, and Branches

As mentioned briefly in the previous section and also in the “Git Workflows and the Yocto Project” section, the Yocto
Project maintains source repositories at https://git.yoctoproject.org/. If you look at this web-interface of the repositories,

each item is a separate Git repository.

Git repositories use branching techniques that track content change (not files) within a project (e.g. a new feature or
updated documentation). Creating a tree-like structure based on project divergence allows for excellent historical infor-
mation over the life of a project. This methodology also allows for an environment from which you can do lots of local

experimentation on projects as you develop changes or new features.

A Git repository represents all development efforts for a given project. For example, the Git repository poky contains all
changes and developments for that repository over the course of its entire life. That means that all changes that make up

all releases are captured. The repository maintains a complete history of changes.

You can create a local copy of any repository by “cloning” it with the git clone command. When you clone a Git
repository, you end up with an identical copy of the repository on your development system. Once you have a local copy
of a repository, you can take steps to develop locally. For examples on how to clone Git repositories, see the “Locating

Yocto Project Source Files” section in the Yocto Project Development Tasks Manual.

It is important to understand that Git tracks content change and not files. Git uses “branches” to organize different
development efforts. For example, the poky repository has several branches that include the current “styhead” branch,
the “master” branch, and many branches for past Yocto Project releases. You can see all the branches by going to

https://git.yoctoproject.org/poky/ and clicking on the [. . .] link beneath the “Branch” heading.

Each of these branches represents a specific area of development. The “master” branch represents the current or most

recent development. All other branches represent offshoots of the “master” branch.

4.3. The Yocto Project Development Environment 45


https://git-scm.com/documentation
https://git-scm.com/download
https://git.yoctoproject.org/
https://git.yoctoproject.org/poky/

The Yocto Project ®, Release 5.1.3

When you create a local copy of a Git repository, the copy has the same set of branches as the original. This means
you can use Git to create a local working area (also called a branch) that tracks a specific development branch from the
upstream source Git repository. In other words, you can define your local Git environment to work on any development

branch in the repository. To help illustrate, consider the following example Git commands:

$ cd ~
$ git clone git://git.yoctoproject.org/poky —-b styhead

In the previous example after moving to the home directory, the git clone command creates alocal copy of the upstream
poky Git repository and checks out a local branch named “styhead” , which tracks the upstream “origin/styhead” branch.

Changes you make while in this branch would ultimately affect the upstream “styhead” branch of the poky repository.

It is important to understand that when you create and checkout a local working branch based on a branch name, your
local environment matches the “tip” of that particular development branch at the time you created your local branch,
which could be different from the files in the “master” branch of the upstream repository. In other words, creating and
checking out a local branch based on the “styhead” branch name is not the same as checking out the “master” branch

in the repository. Keep reading to see how you create a local snapshot of a Yocto Project Release.

Gituses “tags” to mark specific changes in a repository branch structure. Typically, a tag is used to mark a special point
such as the final change (or commit) before a project is released. You can see the tags used with the poky Git repository

by going to https://git.yoctoproject.org/poky/ and clicking on the [ . . .] link beneath the “Tag” heading.

Some key tags for the poky repository are jethro-14.0.3, morty-16.0.1, pyro-17.0.0, and styhead-5.1.3.

These tags represent Yocto Project releases.

When you create a local copy of the Git repository, you also have access to all the tags in the upstream repository. Similar
to branches, you can create and checkout a local working Git branch based on a tag name. When you do this, you get a
snapshot of the Git repository that reflects the state of the files when the change was made associated with that tag. The

most common use is to checkout a working branch that matches a specific Yocto Project release. Here is an example:

el =~

git clone git://git.yoctoproject.org/poky
cd poky

git fetch --tags

v v W W W»n

git checkout tags/rocko-18.0.0 -b my_rocko-18.0.0

In this example, the name of the top-level directory of your local Yocto Project repository is poky. After moving to the
poky directory, the git fetch command makes all the upstream tags available locally in your repository. Finally, the
git checkout command creates and checks out a branch named “my-rocko-18.0.0” that is based on the upstream
branch whose “HEAD” matches the commit in the repository associated with the “rocko-18.0.0” tag. The files in
your repository now exactly match that particular Yocto Project release as it is tagged in the upstream Git repository. It
is important to understand that when you create and checkout a local working branch based on a tag, your environment

matches a specific point in time and not the entire development branch (i.e. from the “tip” of the branch backwards).

46 Chapter 4. Yocto Project Overview and Concepts Manual



https://git.yoctoproject.org/poky/

The Yocto Project ®, Release 5.1.3

Basic Commands

Git has an extensive set of commands that lets you manage changes and perform collaboration over the life of a project.

Conveniently though, you can manage with a small set of basic operations and workflows once you understand the basic

philosophy behind Git. You do not have to be an expert in Git to be functional. A good place to look for instruction on a

minimal set of Git commands is here.

The following list of Git commands briefly describes some basic Git operations as a way to get started. As with any set

of commands, this list (in most cases) simply shows the base command and omits the many arguments it supports. See

the Git documentation for complete descriptions and strategies on how to use these commands:

git init: Initializes an empty Git repository. You cannot use Git commands unless you have a . git repository.

git clone: Creates a local clone of a Git repository that is on equal footing with a fellow developer’ s Git repository

or an upstream repository.

git add: Locally stages updated file contents to the index that Git uses to track changes. You must stage all files that

have changed before you can commit them.

git commit: Creates a local “commit” that documents the changes you made. Only changes that have been staged
can be committed. Commits are used for historical purposes, for determining if a maintainer of a project will
allow the change, and for ultimately pushing the change from your local Git repository into the project’ s upstream

repository.

git status: Reports any modified files that possibly need to be staged and gives you a status of where you stand

regarding local commits as compared to the upstream repository.

git checkout branch-name: Changes your local working branch and in this form assumes the local branch already

exists. This command is analogous to “cd” .

git checkout -b working-branch upstream-branch: Creates and checks out a working branch on your local machine.
The local branch tracks the upstream branch. You can use your local branch to isolate your work. It is a good idea
to use local branches when adding specific features or changes. Using isolated branches facilitates easy removal of

changes if they do not work out.

git branch: Displays the existing local branches associated with your local repository. The branch that you have

currently checked out is noted with an asterisk character.

git branch -D branch-name: Deletes an existing local branch. You need to be in a local branch other than the one

you are deleting in order to delete branch-name.

git pull --rebase: Retrieves information from an upstream Git repository and places it in your local Git repository.
You use this command to make sure you are synchronized with the repository from which you are basing changes
(e.g. the “styhead” branch). The -—rebase option ensures that any local commits you have in your branch are

preserved at the top of your local branch.

git push repo-name local-branch:upstream-branch: Sends all your committed local changes to the upstream Git
repository that your local repository is tracking (e.g. a contribution repository). The maintainer of the project

draws from these repositories to merge changes (commits) into the appropriate branch of project’ s upstream

4.3.

The Yocto Project Development Environment 47


https://git-scm.com/documentation

The Yocto Project ®, Release 5.1.3

repository.

* git merge: Combines or adds changes from one local branch of your repository with another branch. When you
create a local Git repository, the default branch may be named “main” . A typical workflow is to create a temporary
branch that is based off “main” that you would use for isolated work. You would make your changes in that isolated
branch, stage and commit them locally, switch to the “main” branch, and then use the git merge command to
apply the changes from your isolated branch into the currently checked out branch (e.g. “main” ). After the merge

is complete and if you are done with working in that isolated branch, you can safely delete the isolated branch.

e git cherry-pick commits: Choose and apply specific commits from one branch into another branch. There are times

when you might not be able to merge all the changes in one branch with another but need to pick out certain ones.

* gitk: Provides a GUI view of the branches and changes in your local Git repository. This command is a good way

to graphically see where things have diverged in your local repository.

Note

You need to install the gitk package on your development system to use this command.

* git log: Reports a history of your commits to the repository. This report lists all commits regardless of whether you

have pushed them upstream or not.

* git diff: Displays line-by-line differences between a local working file and the same file as understood by Git. This

command is useful to see what you have changed in any given file.

4.3.6 Licensing

Because open source projects are open to the public, they have different licensing structures in place. License evolution
for both Open Source and Free Software has an interesting history. If you are interested in this history, you can find basic

information here:
* Open source license history
 Free software license history
In general, the Yocto Project is broadly licensed under the Massachusetts Institute of Technology (MIT) License. MIT

licensing permits the reuse of software within proprietary software as long as the license is distributed with that software.

Patches to the Yocto Project follow the upstream licensing scheme. You can find information on the MIT license here.

When you build an image using the Yocto Project, the build process uses a known list of licenses to ensure compliance.
You can find this list in the Source Directory at meta/files/common-licenses. Once the build completes, the list of

all licenses found and used during that build are kept in the Build Directory at tmp/deploy/licenses.

If a module requires a license that is not in the base list, the build process generates a warning during the build. These
tools make it easier for a developer to be certain of the licenses with which their shipped products must comply. However,

even with these tools it is still up to the developer to resolve potential licensing issues.

48 Chapter 4. Yocto Project Overview and Concepts Manual


https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Free_software_license
https://en.wikipedia.org/wiki/MIT_License

The Yocto Project ®, Release 5.1.3

The base list of licenses used by the build process is a combination of the Software Package Data Exchange (SPDX) list
and the Open Source Initiative (OSI) projects. SPDX Group is a working group of the Linux Foundation that maintains a
specification for a standard format for communicating the components, licenses, and copyrights associated with a software
package. OSl is a corporation dedicated to the Open Source Definition and the effort for reviewing and approving licenses

that conform to the Open Source Definition (OSD).

You can find a list of the combined SPDX and OSI licenses that the Yocto Project uses in the meta/files/

common-1licenses directory in your Source Directory.

For information that can help you maintain compliance with various open source licensing during the lifecycle of a product
created using the Yocto Project, see the “Maintaining Open Source License Compliance During Your Product’ s Lifecycle”

section in the Yocto Project Development Tasks Manual.

4.4 Yocto Project Concepts

This chapter provides explanations for Yocto Project concepts that go beyond the surface of “how-to” information
and reference (or look-up) material. Concepts such as components, the OpenEmbedded Build System workflow, cross-

development toolchains, shared state cache, and so forth are explained.

4.4.1 Yocto Project Components

The BitBake task executor together with various types of configuration files form the OpenEmbedded-Core (OE-Core).

This section overviews these components by describing their use and how they interact.
BitBake handles the parsing and execution of the data files. The data itself is of various types:
* Recipes: Provides details about particular pieces of software.
¢ Class Data: Abstracts common build information (e.g. how to build a Linux kernel).

* Configuration Data: Defines machine-specific settings, policy decisions, and so forth. Configuration data acts as

the glue to bind everything together.

BitBake knows how to combine multiple data sources together and refers to each data source as a layer. For information

on layers, see the “Understanding and Creating Layers” section of the Yocto Project Development Tasks Manual.

Here are some brief details on these core components. For additional information on how these components interact

during a build, see the “OpenEmbedded Build System Concepts” section.

BitBake

BitBake is the tool at the heart of the OpenEmbedded Build System and is responsible for parsing the Metadata, generating

a list of tasks from it, and then executing those tasks.
This section briefly introduces BitBake. If you want more information on BitBake, see the BitBake User Manual.

To see a list of the options BitBake supports, use either of the following commands:

4.4. Yocto Project Concepts 49


https://spdx.org
https://opensource.org
https://docs.yoctoproject.org/bitbake/2.10/index.html

The Yocto Project ®, Release 5.1.3

$ bitbake -h
$ bitbake --help

The most common usage for BitBake is bitbake recipename, where recipename is the name of the recipe you want
to build (referred to as the “target” ). The target often equates to the first part of a recipe’ s filename (e.g. “foo” for
a recipe named foo_1.3.0-r0.bb). So, to process the matchbox-desktop_1.2.3.bb recipe file, you might type
the following:

$ bitbake matchbox-desktop

Several different versions of matchbox-desktop might exist. BitBake chooses the one selected by the distribution
configuration. You can get more details about how BitBake chooses between different target versions and providers in the

“Preferences” section of the BitBake User Manual.

BitBake also tries to execute any dependent tasks first. So for example, before building mat chbox-desktop, BitBake

would build a cross compiler and glibc if they had not already been built.

A useful BitBake option to consider is the -k or ——cont inue option. This option instructs BitBake to try and continue
processing the job as long as possible even after encountering an error. When an error occurs, the target that failed and

those that depend on it cannot be remade. However, when you use this option other dependencies can still be processed.

Recipes

Files that have the . bb suffix are “recipes” files. In general, a recipe contains information about a single piece of software.
This information includes the location from which to download the unaltered source, any source patches to be applied to
that source (if needed), which special configuration options to apply, how to compile the source files, and how to package
the compiled output.

The term “package” is sometimes used to refer to recipes. However, since the word “package” is used for the packaged
)

output from the OpenEmbedded build system (i.e. . ipk or .deb files), this document avoids using the term “package’

when referring to recipes.

Classes

Class files (.bbclass) contain information that is useful to share between recipes files. An example is the autotools*
class, which contains common settings for any application that is built with the GNU Autotools. The “Classes” chapter

in the Yocto Project Reference Manual provides details about classes and how to use them.

Configurations

The configuration files (.conf) define various configuration variables that govern the OpenEmbedded build process.
These files fall into several areas that define machine configuration options, distribution configuration options, compiler
tuning options, general common configuration options, and user configuration options in conf/local.conf, which is

found in the Build Directory.

50 Chapter 4. Yocto Project Overview and Concepts Manual



https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-execution.html#preferences
https://en.wikipedia.org/wiki/GNU_Autotools

The Yocto Project ®, Release 5.1.3

4.4.2 Layers

Layers are repositories that contain related metadata (i.e. sets of instructions) that tell the OpenEmbedded build system
how to build a target. 7he Yocto Project Layer Model facilitates collaboration, sharing, customization, and reuse within
the Yocto Project development environment. Layers logically separate information for your project. For example, you
can use a layer to hold all the configurations for a particular piece of hardware. Isolating hardware-specific configurations
allows you to share other metadata by using a different layer where that metadata might be common across several pieces

of hardware.

There are many layers working in the Yocto Project development environment. The Yocto Project Compatible Layer

Index and OpenEmbedded Layer Index both contain layers from which you can use or leverage.

By convention, layers in the Yocto Project follow a specific form. Conforming to a known structure allows BitBake to
make assumptions during builds on where to find types of metadata. You can find procedures and learn about tools (i.e.
bitbake-layers) for creating layers suitable for the Yocto Project in the “Understanding and Creating Layers” section

of the Yocto Project Development Tasks Manual.

4.4.3 OpenEmbedded Build System Concepts

This section takes a more detailed look inside the build process used by the OpenEmbedded Build System, which is the
build system specific to the Yocto Project. At the heart of the build system is BitBake, the task executor.

The following diagram represents the high-level workflow of a build. The remainder of this section expands on the

fundamental input, output, process, and metadata logical blocks that make up the workflow.

Source Materials
User
Configuration

Metadata
(-bb +
patches)

Openembedded Architecture Workflow

bl Upstream Source u Cutput Packages
Metadatanputs Process steps (tasks)
Build system Output Image Data

Machine BSP
Configuration
Policy
Configuration Config Application

Development
SDK

yocto - [Juinux

FREGIECY

4.4. Yocto Project Concepts 51


https://www.yoctoproject.org/software-overview/layers/
https://www.yoctoproject.org/software-overview/layers/
https://layers.openembedded.org

The Yocto Project ®, Release 5.1.3

In general, the build’” s workflow consists of several functional areas:

User Configuration: metadata you can use to control the build process.
Metadata Layers: Various layers that provide software, machine, and distro metadata.
Source Files: Upstream releases, local projects, and SCMs.

Build System: Processes under the control of BitBake. This block expands on how BitBake fetches source, ap-
plies patches, completes compilation, analyzes output for package generation, creates and tests packages, generates

images, and generates cross-development tools.

Package Feeds: Directories containing output packages (RPM, DEB or IPK), which are subsequently used in the
construction of an image or Software Development Kit (SDK), produced by the build system. These feeds can
also be copied and shared using a web server or other means to facilitate extending or updating existing images on

devices at runtime if runtime package management is enabled.
Images: Images produced by the workflow.

Application Development SDK: Cross-development tools that are produced along with an image or separately with
BitBake.

User Configuration

User configuration helps define the build. Through user configuration, you can tell BitBake the target architecture for

which you are building the image, where to store downloaded source, and other build properties.

The following figure shows an expanded representation of the “User Configuration” box of the general workflow figure:

Source Directory (e.g. poky directory)

bitbake User Conl'_'lguratlon
. Edits

build

documentation * | A

meta . .

Build Directo | ;
meta-poky ryV - bitbake
meta-selftest conf <tar;_:|et>
meta-skeleton - bblayers.conf \ 4
meta-yocto-bsp local.conf
Scripts site.conf :

oe-setup-builddir auto.conf BitBake
|
oe-init-build-env D e oe-init-build-env

BitBake needs some basic configuration files in order to complete a build. These files are * . conf files. The minimally

necessary ones reside as example files in the build/conf directory of the Source Directory. For simplicity, this section

refers to the Source Directory as the “Poky Directory.”

52

Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

When you clone the Poky Git repository or you download and unpack a Yocto Project release, you can set up the Source

Directory to be named anything you want. For this discussion, the cloned repository uses the default name poky.

Note

The Poky repository is primarily an aggregation of existing repositories. It is not a canonical upstream source.

The meta-poky layer inside Poky contains a conf directory that has example configuration files. These example files
are used as a basis for creating actual configuration files when you source oe-init-build-env, which is the build environment

script.

Sourcing the build environment script creates a Build Directory if one does not already exist. BitBake uses the Build
Directory for all its work during builds. The Build Directory has a conf directory that contains default versions of your
local.conf and bblayers.conf configuration files. These default configuration files are created only if versions do

not already exist in the Build Directory at the time you source the build environment setup script.

Because the Poky repository is fundamentally an aggregation of existing repositories, some users might be familiar with
running the oe-init-build-env script in the context of separate OpenEmbedded-Core (OE-Core) and BitBake repositories
rather than a single Poky repository. This discussion assumes the script is executed from within a cloned or unpacked

version of Poky.

Depending on where the script is sourced, different sub-scripts are called to set up the Build Directory (Yocto or OpenEm-
bedded). Specifically, the script scripts/oe-setup-builddir inside the poky directory sets up the Build Directory

and seeds the directory (if necessary) with configuration files appropriate for the Yocto Project development environment.

Note

The scripts/oe-setup-builddir script uses the $TEMPLATECONF variable to determine which sample configuration files

to locate.

The local.conf file provides many basic variables that define a build environment. Here is a list of a few. To see
the default configurations in a 1ocal. conf file created by the build environment script, see the local.conf.sample in the

meta-poky layer:
 Target Machine Selection: Controlled by the MACHINE variable.
* Download Directory: Controlled by the DL_DIR variable.
e Shared State Directory: Controlled by the SSTATE_DIR variable.
* Build Output: Controlled by the TMPDIR variable.
* Distribution Policy: Controlled by the DISTRO variable.
* Packaging Format: Controlled by the PACKAGE_CLASSES variable.

* SDK Target Architecture: Controlled by the SDKMACHINE variable.

4.4. Yocto Project Concepts 53


https://git.yoctoproject.org/poky/tree/meta-poky/conf/templates/default/local.conf.sample

The Yocto Project ®, Release 5.1.3

 Extra Image Packages: Controlled by the EXTRA_IMAGE_FEATURES variable.

Note

Configurations set in the conf/local.conf file can also be set in the conf/site.conf and conf/auto.conf

configuration files.

The bblayers. conf file tells BitBake what layers you want considered during the build. By default, the layers listed in
this file include layers minimally needed by the build system. However, you must manually add any custom layers you

have created. You can find more information on working with the bblayers.conf file in the “Enabling Your Layer’

section in the Yocto Project Development Tasks Manual.

The files site.conf and auto.conf are not created by the environment initialization script. If you want the site.

conf file, you need to create it yourself. The auto. conf file is typically created by an autobuilder:

e site.conf: You can use the conf/site.conf configuration file to configure multiple build directories. For example,
suppose you had several build environments and they shared some common features. You can set these default build

properties here. A good example is perhaps the packaging format to use through the PACKAGE _CLASSES variable.

¢ auto.conf: The file is usually created and written to by an autobuilder. The settings put into the file are typically the

same as you would find in the conf/local.conf or the conf/site.conf files.

You can edit all configuration files to further define any particular build environment. This process is represented by the

“User Configuration Edits” box in the figure.

When you launch your build with the bitbake target command, BitBake sorts out the configurations to ultimately
define your build environment. It is important to understand that the OpenEmbedded Build System reads the configura-
tion files in a specific order: site.conf, auto.conf, and local.conf. And, the build system applies the normal
assignment statement rules as described in the “Syntax and Operators” chapter of the BitBake User Manual. Because
the files are parsed in a specific order, variable assignments for the same variable could be affected. For example, if the
auto.conf file and the 1ocal.conf set variablel to different values, because the build system parses local.conf

after auto.conf, variablel is assigned the value from the 1ocal. conf file.

Metadata, Machine Configuration, and Policy Configuration

The previous section described the user configurations that define BitBake’ s global behavior. This section takes a closer
look at the layers the build system uses to further control the build. These layers provide Metadata for the software,

machine, and policies.

In general, there are three types of layer input. You can see them below the “User Configuration” box in the general

workflow figure <overview-manual/concepts:openembedded build system concepts>:

* Metadata (.bb + Patches): Software layers containing user-supplied recipe files, patches, and append files. A good
example of a software layer might be the meta-qt5 layer from the OpenEmbedded Layer Index. This layer is
for version 5.0 of the popular Qt cross-platform application development framework for desktop, embedded and

mobile.

54 Chapter 4. Yocto Project Overview and Concepts Manual


https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html
https://layers.openembedded.org/layerindex/branch/master/layer/meta-qt5
https://layers.openembedded.org
https://wiki.qt.io/About_Qt

The Yocto Project ®, Release 5.1.3

* Machine BSP Configuration: Board Support Package (BSP) layers (i.e. “BSP Layer” in the following figure)
providing machine-specific configurations. This type of information is specific to a particular target architecture.

A good example of a BSP layer from the Reference Distribution (Poky) is the meta-yocto-bsp layer.

e Policy Configuration: Distribution Layers (i.e. “Distro Layer” in the following figure) providing top-level or general
policies for the images or SDKs being built for a particular distribution. For example, in the Poky Reference
Distribution the distro layer is the meta-poky layer. Within the distro layer is a conf/distro directory that

contains distro configuration files (e.g. poky.conf that contain many policy configurations for the Poky distribution.

The following figure shows an expanded representation of these three layers from the general workflow figure:

Layers
Distro Layer BSP Layer
COPYING.MIT COPYING.MIT
README README
classes conf
<class=. bbclass machine
<class= bbclass <machine=.conf
conf include
layer.conf *.inc
distro layer.conf
=distro=.conf recipes-bsp Metadata
<distro=.conf fomnfactor Machine BSP Configuration
include fomfactor Policy Configuration
* <) ne=
ine ":::E'rﬂznﬁg Build Directory
Becipes-#* fermfactor*. bbappend conf
<recipe= recipes-core bblayers.conf
<recipe> <recipe>
<recipe>.bb files
<recipe>.bbappend <recipe>.bbappend *
files recipes-graphics
<recipe> <recipe> bitbake <target>
<distro=> <recipe=
defconfig <machine>
*.conf z
Software Layer <recipe>.bbappend BitBake
COPYING.MIT recipeskemnel
README linwe
classes files
<class=.bbclass <machine=.cfg
<class>.bbclass <machine>. scc
conf <recipe=.bbappend
layer.conf
recipes-*
<recipe=
<recipe>.bb
<recipe>
=recipe=.bb
=recipe>
* patch
<recipe=
<recipe>.bb
files
* patch

In general, all layers have a similar structure. They all contain a licensing file (e.g. COPYING.MIT) if the layer is to be
distributed, a README file as good practice and especially if the layer is to be distributed, a configuration directory, and
recipe directories. You can learn about the general structure for layers used with the Yocto Project in the “Creating Your
Own Layer” section in the Yocto Project Development Tasks Manual. For a general discussion on layers and the many
layers from which you can draw, see the “Layers” and “The Yocto Project Layer Model” sections both earlier in this

manual.

If you explored the previous links, you discovered some areas where many layers that work with the Yocto Project exist.

4.4. Yocto Project Concepts 55


https://git.yoctoproject.org/poky/tree/meta-yocto-bsp
https://git.yoctoproject.org/poky/tree/meta-poky
https://git.yoctoproject.org/poky/tree/meta-poky/conf/distro/poky.conf

The Yocto Project ®, Release 5.1.3

The Source Repositories also shows layers categorized under ‘Yocto Metadata Layers.”

Note

There are layers in the Yocto Project Source Repositories that cannot be found in the OpenEmbedded Layer Index.

Such layers are either deprecated or experimental in nature.

BitBake uses the conf/bblayers.conf file, which is part of the user configuration, to find what layers it should be

using as part of the build.

Distro Layer

The distribution layer provides policy configurations for your distribution. Best practices dictate that you isolate these
types of configurations into their own layer. Settings you provide in conf/distro/distro.conf override similar

settings that BitBake finds in your conf/local.conf file in the Build Directory.
The following list provides some explanation and references for what you typically find in the distribution layer:

¢ classes: Class files (.bbclass) hold common functionality that can be shared among recipes in the distribution.
When your recipes inherit a class, they take on the settings and functions for that class. You can read more about

class files in the “Classes” chapter of the Yocto Reference Manual.

 conf: This area holds configuration files for the layer (conf/layer.conf), the distribution (conf/distro/

distro.conf), and any distribution-wide include files.

* recipes-:* Recipes and append files that affect common functionality across the distribution. This area could include
recipes and append files to add distribution-specific configuration, initialization scripts, custom image recipes, and
so forth. Examples of recipes—* directories are recipes—core and recipes—extra. Hierarchy and contents
within a recipes-* directory can vary. Generally, these directories contain recipe files (*.bb), recipe append

files (* .bbappend), directories that are distro-specific for configuration files, and so forth.

BSP Layer

The BSP Layer provides machine configurations that target specific hardware. Everything in this layer is specific to the
machine for which you are building the image or the SDK. A common structure or form is defined for BSP layers. You

can learn more about this structure in the Yocto Project Board Support Package Developer’ s Guide.

Note

In order for a BSP layer to be considered compliant with the Yocto Project, it must meet some structural requirements.

The BSP Layer’ s configuration directory contains configuration files for the machine (conf /machine/machine.conf)

and, of course, the layer (conf/layer.conf).

The remainder of the layer is dedicated to specific recipes by function: recipes-bsp, recipes-core,

56 Chapter 4. Yocto Project Overview and Concepts Manual


https://git.yoctoproject.org

The Yocto Project ®, Release 5.1.3

recipes—graphics, recipes-kernel, and so forth. There can be metadata for multiple formfactors, graphics sup-

port systems, and so forth.

Note

While the figure shows several recipes-* directories, not all these directories appear in all BSP layers.

Software Layer

The software layer provides the Metadata for additional software packages used during the build. This layer does not

include Metadata that is specific to the distribution or the machine, which are found in their respective layers.

This layer contains any recipes, append files, and patches, that your project needs.

Sources

In order for the OpenEmbedded build system to create an image or any target, it must be able to access source files.
The general workflow figure represents source files using the “Upstream Project Releases” , “Local Projects” , and
“SCMs (optional)” boxes. The figure represents mirrors, which also play a role in locating source files, with the “Source

Materials” box.

The method by which source files are ultimately organized is a function of the project. For example, for released software,
projects tend to use tarballs or other archived files that can capture the state of a release guaranteeing that it is statically
represented. On the other hand, for a project that is more dynamic or experimental in nature, a project might keep source
files in a repository controlled by a Source Control Manager (SCM) such as Git. Pulling source from a repository allows
you to control the point in the repository (the revision) from which you want to build software. A combination of the two

is also possible.

BitBake uses the SRC_URI variable to point to source files regardless of their location. Each recipe must have a SRC_URI

variable that points to the source.

Another area that plays a significant role in where source files come from is pointed to by the DL_DIR variable. This
area is a cache that can hold previously downloaded source. You can also instruct the OpenEmbedded build system
to create tarballs from Git repositories, which is not the default behavior, and store them in the DL_DIR by using the
BB_GENERATE_MIRROR_TARBALLS variable.

Judicious use of a DL_DIR directory can save the build system a trip across the Internet when looking for files. A good
method for using a download directory is to have DL_DIR point to an area outside of your Build Directory. Doing so

allows you to safely delete the Build Directory if needed without fear of removing any downloaded source file.

The remainder of this section provides a deeper look into the source files and the mirrors. Here is a more detailed look

at the source file area of the general workflow figure:

4.4. Yocto Project Concepts 57



The Yocto Project ®, Release 5.1.3

Upstream Local SCMs
Project Releases Projects {optional)
Local Source Tree
busybox meta-qts
=<directory> .
Git
busybox-1.28.3.tarbz2 <file=
=file>
qt <directory> meta-altera
<file= Git
gt-everywhere-opensource-src-5.5.1. tar.gz =file=
=directory> opkg
dbus
Local Source Tree Subwversion
dbus-1.13.2.targz R
=flle>
<recipe> <files
Tarball, ZIP File, or Other Archive Files P
<file>
=file>
<directory>
Source Material
Mirrors Pre-Mirrors (Local Shared Directories)
Remotely Stored Archive Files Locally Stored Archive Files

Upstream Project Releases

Upstream project releases exist anywhere in the form of an archived file (e.g. tarball or zip file). These files correspond
to individual recipes. For example, the figure uses specific releases each for BusyBox, Qt, and Dbus. An archive file can

be for any released product that can be built using a recipe.

Local Projects

Local projects are custom bits of software the user provides. These bits reside somewhere local to a project —perhaps

a directory into which the user checks in items (e.g. a local directory containing a development source tree used by the
group).
The canonical method through which to include a local project is to use the externalsrc class to include that local project.

You use either the 1ocal.conf orarecipe’ s append file to override or set the recipe to point to the local directory on

your disk to pull in the whole source tree.

58 Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

Source Control Managers (Optional)

Another place from which the build system can get source files is with Fetchers employing various Source Control Man-
agers (SCMs) such as Git or Subversion. In such cases, a repository is cloned or checked out. The do_fetch task inside

BitBake uses the SRC_URI variable and the argument’ s prefix to determine the correct fetcher module.

Note

For information on how to have the OpenEmbedded build system generate tarballs for Git repositories and place them
in the DL_DIR directory, see the BB_.GENERATE _MIRROR _TARBALLS variable in the Yocto Project Reference

Manual.

When fetching a repository, BitBake uses the SRCREV variable to determine the specific revision from which to build.

Source Mirror(s)

There are two kinds of mirrors: pre-mirrors and regular mirrors. The PREMIRRORS and MIRRORS variables point to
these, respectively. BitBake checks pre-mirrors before looking upstream for any source files. Pre-mirrors are appropriate
when you have a shared directory that is not a directory defined by the DL_DIR variable. A Pre-mirror typically points to

a shared directory that is local to your organization.

Regular mirrors can be any site across the Internet that is used as an alternative location for source code should the primary

site not be functioning for some reason or another.

Package Feeds

When the OpenEmbedded build system generates an image or an SDK, it gets the packages from a package feed area

located in the Build Directory. The general workflow figure shows this package feeds area in the upper-right corner.

This section looks a little closer into the package feeds area used by the build system. Here is a more detailed look at the

areca:

4.4. Yocto Project Concepts 59


https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-fetching.html#fetchers

The Yocto Project ®, Release 5.1.3

BitBake Package Feeds

Build Directory

poky
build
tmp
deploy DEPLOY_DIR
<package_type> DEPLOY_DIR_*
<package_arch> PACKAGE_ARCH

*=type=

PACKAGE_ARCH

.ipk
Generation

Package feeds are an intermediary step in the build process. The OpenEmbedded build system provides classes to generate
different package types, and you specify which classes to enable through the PACKAGE_CLASSES variable. Before placing
the packages into package feeds, the build process validates them with generated output quality assurance checks through

the insane class.

The package feed area resides in the Build Directory. The directory the build system uses to temporarily store packages is
determined by a combination of variables and the particular package manager in use. See the ‘“Package Feeds” box in
the illustration and note the information to the right of that area. In particular, the following defines where package files

are kept:
e DEPLOY_DIR: Defined as tmp/deploy in the Build Directory.

* DEPLOY_DIR_*: Depending on the package manager used, the package type sub-folder. Given RPM, IPK, or DEB
packaging and tarball creation, the DEPLOY_DIR_RPM, DEPLOY_DIR_IPK, or DEPLOY_DIR_DERB variables are

used, respectively.

* PACKAGE_ARCH: Defines architecture-specific sub-folders. For example, packages could be available for the 1586

60 Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

or gemux86 architectures.

BitBake uses the do_package_write_* tasks to generate packages and place them into the package holding area (e.g.
do_package_write_ipk for IPK packages). See the “do_package_write_deb” , “do_package_write_ipk” , and
“do_package_write_rpm” sections in the Yocto Project Reference Manual for additional information. As an example,
consider a scenario where an IPK packaging manager is being used and there is package architecture support for both
1586 and gemux86. Packages for the 1586 architecture are placed in build/tmp/deploy/ipk/i586, while packages
for the gemux86 architecture are placed in build/tmp/deploy/ipk/gemux86.

BitBake Tool

The OpenEmbedded build system uses BitBake to produce images and Software Development Kits (SDKs). You can see
from the general workflow figure, the BitBake area consists of several functional areas. This section takes a closer look at

each of those areas.

Note

Documentation for the BitBake tool is available separately. See the BitBake User Manual for reference material on
BitBake.

Source Fetching

The first stages of building a recipe are to fetch and unpack the source code:

4.4. Yocto Project Concepts 61


https://docs.yoctoproject.org/bitbake/2.10/index.html

The Yocto Project ®, Release 5.1.3

Upstream
Project
Releases

Local SCMs
Projects (optional)

Build Directory

tmp «f TMPDIR
Source Fetching work

£ {PACKAGE_ARCH}-poky-${TARGET 05}
WORKDIR

${PV}-${PR}
${BPN}-${PV} <& 5
${MACHINE}-poky-$ {TARGET 05}
${PN}
${Pv}-s{PR} < WORKDIR
${BPN}-${PV} < 5

The do_fetch and do_unpack tasks fetch the source files and unpack them into the Build Directory.

Note

For every local file (e.g. file://) thatis part of a recipe’ s SRC_URI statement, the OpenEmbedded build system
takes a checksum of the file for the recipe and inserts the checksum into the signature for the do_fetch task. If any

local file has been modified, the do_fetch task and all tasks that depend on it are re-executed.

By default, everything is accomplished in the Build Directory, which has a defined structure. For additional general

information on the Build Directory, see the “build/” section in the Yocto Project Reference Manual.

Each recipe has an area in the Build Directory where the unpacked source code resides. The S variable points to this area
for a recipe’ s unpacked source code. The name of that directory for any given recipe is defined from several different

variables. The preceding figure and the following list describe the Build Directory’ s hierarchy:

e TMPDIR: The base directory where the OpenEmbedded build system performs all its work during the build. The
default base directory is the tmp directory.

* PACKAGE_ARCH: The architecture of the built package or packages. Depending on the eventual destination of the

62 Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

package or packages (i.e. machine architecture, Build Host, SDK, or specific machine), PACKAGE_ARCH varies.

See the variable’ s description for details.

e TARGET _OS: The operating system of the target device. A typical value would be “linux” (e.g. “qemux86-
poky-linux” ).

¢ PN: The name of the recipe used to build the package. This variable can have multiple meanings. However, when

used in the context of input files, PN represents the name of the recipe.

e WORKDIR: The location where the OpenEmbedded build system builds a recipe (i.e. does the work to create the
package).

— PV: The version of the recipe used to build the package.
— PR: The revision of the recipe used to build the package.
* S: Contains the unpacked source files for a given recipe.

— BPN: The name of the recipe used to build the package. The BPN variable is a version of the PN variable but

with common prefixes and suffixes removed.

— PV: The version of the recipe used to build the package.

Note

In the previous figure, notice that there are two sample hierarchies: one based on package architecture (i.e. PACK-
AGE_ARCH) and one based on a machine (i.e. MACHINE). The underlying structures are identical. The differentiator
being what the OpenEmbedded build system is using as a build target (e.g. general architecture, a build host, an SDK,

or a specific machine).

Patching

Once source code is fetched and unpacked, BitBake locates patch files and applies them to the source files:

4.4. Yocto Project Concepts 63



The Yocto Project ®, Release 5.1.3

Upstream
Project
Releases

Local SCMs
Projects (optional)

Patch Application

Build Directory

Recipes tm‘fmf TMPDIR
SRC_URI = "... \ ${PACKAGE_ARCH}-poky-${TARGET_0OS}
=patch_file=\ s{PN}
- s{Pv}-s{Pr} & WORKDIR
${BPN}-$ {PV} < s
${MACHINE }-poky-${TARGET_OS}
s{PN}
Patch Files s{Pv}-s{PR} WORKDIR
* patch ${BPN}-${PV} < S
* diff

The do_patch task uses a recipe’ s SRC_URI statements and the FILESPATH variable to locate applicable patch files.

Default processing for patch files assumes the files have either *.patch or *.diff file types. You can use SRC_URI

parameters to change the way the build system recognizes patch files. See the do_patch task for more information.

BitBake finds and applies multiple patches for a single recipe in the order in which it locates the patches. The FILESPATH
variable defines the default set of directories that the build system uses to search for patch files. Once found, patches are

applied to the recipe’ s source files, which are located in the S directory.

For more information on how the source directories are created, see the “Source Fetching” section. For more information
on how to create patches and how the build system processes patches, see the “Patching Code” section in the Yocto Project
Development Tasks Manual. You can also see the “Use deviool modify to Modify the Source of an Existing Component”
section in the Yocto Project Application Development and the Extensible Software Development Kit (SDK) manual and
the “Using Traditional Kernel Development to Patch the Kernel” section in the Yocto Project Linux Kernel Development

Manual.

64 Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

Configuration, Compilation, and Staging

After source code is patched, BitBake executes tasks that configure and compile the source code. Once compilation

occurs, the files are copied to a holding area (staged) in preparation for packaging:

Upstream
Project
Releases

Local SCMs
Projects (optional)

Source Mirror(s)

Build Directory

Configure / Compile / g : TMPDIR
led wWol
Autoreconf as N ${PACKAGE_ARCH}-poky-${TARGET_OS}
s{PN}
${PV}-${PR} «¢ WORKDIR
${BPN}-${PV]} «f S/B

D

image o

recipe-sysroot

recipe-sysroot-native
${MACHINE }-poky-${TARGET_OS}

${PN}
${PV}-${PR} < WORKDIR
${BPN}-${PV} S/B
image D

recipe-sysroot
recipe-sysroot-native

This step in the build process consists of the following tasks:

* do_prepare_recipe_sysroot: This task sets up the two sysroots in ${ WORKDIR} (i.e. recipe-sysroot and
recipe-sysroot—-native) so that during the packaging phase the sysroots can contain the contents of the
do_populate_sysroot tasks of the recipes on which the recipe containing the tasks depends. A sysroot exists for

both the target and for the native binaries, which run on the host system.

* do_configure: This task configures the source by enabling and disabling any build-time and configuration options
for the software being built. Configurations can come from the recipe itself as well as from an inherited class.

Additionally, the software itself might configure itself depending on the target for which it is being built.

The configurations handled by the do_configure task are specific to configurations for the source code being built

by the recipe.

If you are using the autotools* class, you can add additional configuration options by using the EXTRA_OECONF
or PACKAGECONFIG _CONFARGS variables. For information on how this variable works within that class, see the

4.4. Yocto Project Concepts 65



The Yocto Project ®, Release 5.1.3

autotools* class here.

* do_compile: Once a configuration task has been satisfied, BitBake compiles the source using the do_compile task.
Compilation occurs in the directory pointed to by the B variable. Realize that the B directory is, by default, the

same as the S directory.

* do_install: After compilation completes, BitBake executes the do_install task. This task copies files from the B
directory and places them in a holding area pointed to by the D variable. Packaging occurs later using files from

this holding directory.

Package Splitting

After source code is configured, compiled, and staged, the build system analyzes the results and splits the output into

packages:

66 Chapter 4. Yocto Project Overview and Concepts Manual


https://git.yoctoproject.org/poky/tree/meta/classes-recipe/autotools.bbclass

The Yocto Project ®, Release 5.1.3

Upstream Uneal SCMs
Projects (optional)

Project
Releases

TMPDIR

tmp
work
S{PACKAGE ARCH}-poky-5{ TARGET 05}
S{PN}
${PV}-${PR} &
S{BPN}-5{PV}
image
package
pkogdata
packages-split .«
S1PN}
recipe-sysmot
recipe-sysmot-native
S{MACHINE}-poky-3{TARGET_O5}
S{PN}
s{PV}-s{PR}
S{BPN}-5{PV}
image
package
pkgdata
packages-split
S1PN}
recipe-sysmot
recipe-sysmot-native

WORKDIR
5/B

D

PKGD

PEGDESTWORK
PEGDEST

PKGD
PKGDESTWORK
PKGDEST

STAGING DIR
STAGING DIR_HOST
STAGING DIR_MATIVE
STAGING_DIR_TARGET

The do_package and do_packagedata tasks combine to analyze the files found in the D directory and split them into subsets
based on available packages and files. Analysis involves the following as well as other items: splitting out debugging

symbols, looking at shared library dependencies between packages, and looking at package relationships.

The do_packagedata task creates package metadata based on the analysis such that the build system can generate the
final packages. The do_populate_sysroot task stages (copies) a subset of the files installed by the do_install task into the
appropriate sysroot. Working, staged, and intermediate results of the analysis and package splitting process use several

areas:

* PKGD: The destination directory (i.e. package) for packages before they are split into individual packages.

4.4. Yocto Project Concepts 67



The Yocto Project ®, Release 5.1.3

e PKGDESTWORK: A temporary work area (i.e. pkgdata) used by the do_package task to save package metadata.
e PKGDEST: The parent directory (i.e. packages—split) for packages after they have been split.

e PKGDATA_DIR: A shared, global-state directory that holds packaging metadata generated during the packaging
process. The packaging process copies metadata from PKGDESTWORK to the PKGDATA_DIR area where it be-

comes globally available.

* STAGING _DIR_HOST: The path for the sysroot for the system on which a component is built to run (i.e.
recipe-sysroot).
e STAGING _DIR_NATIVE: The path for the sysroot used when building components for the build host (i.e.

recipe-sysroot—native).

e STAGING _DIR_TARGET: The path for the sysroot used when a component that is built to execute on a system and

it generates code for yet another machine (e.g. cross-canadian recipes).

Packages for a recipe are listed in the PACKAGES variable. The bitbake.conf configuration file defines the following
default list of packages:

PACKAGES = "$ —src S —-dbg $ —-staticdev $ —-dev $ —-doc $ —-locale $

. $ n

Each of these packages contains a default list of files defined with the FILES variable. For example, the package
${PN}-dev represents files useful to the development of applications depending on ${PN}. The default list of files

for ${PN}-dev, also defined in bitbake.conf, is defined as follows:

FILES:${PN}-dev = "S${includedir} S${FILES_SOLIBSDEV} ${libdir}/*.la \
${libdir}/*.0 ${libdir}/pkgconfig ${datadir}/pkgconfig \
S{datadir}/aclocal ${base_libdir}/*.o \
${1libdir}/S$S{BPN}/*.la S{base_libdir}/*.la \
${libdir}/cmake ${datadir}/cmake"

The paths in this list must be absolute paths from the point of view of the root filesystem on the target, and must not make

a reference to the variable D or any WORKDIR related variable. A correct example would be:

${sysconfdir}/foo.conf

Note

The list of files for a package is defined using the override syntax by separating F/LES and the package name by a

semi-colon (:).

A given file can only ever be in one package. By iterating from the leftmost to rightmost package in PACKAGES, each file

matching one of the patterns defined in the corresponding F/LES definition is included in the package.

68 Chapter 4. Yocto Project Overview and Concepts Manual



https://git.openembedded.org/openembedded-core/tree/meta/conf/bitbake.conf
https://git.openembedded.org/openembedded-core/tree/meta/conf/bitbake.conf

The Yocto Project ®, Release 5.1.3

Note

To find out which package installs a file, the oe-pkgdata-util command-line utility can be used:

$ oe-pkgdata-util find-path '/etc/fstab'
base-files: /etc/fstab

For more information on the ce-pkgdata-util utility, see the section Viewing Package Information with oe-

pkgdata-util of the Yocto Project Development Tasks Manual.

To add a custom package variant of the ${PN} recipe named ${PN}-extra (name is arbitrary), one can add it to the
PACKAGE_BEFORE_PN variable:

PACKAGE_BEFORE_PN += "$ —extra"

Alternatively, a custom package can be added by adding it to the PACKAGES variable using the prepend operator (=+):

PACKAGES =+ "S$ —extra"

Depending on the type of packages being created (RPM, DEB, or IPK), the do_package_write_* task creates the actual

packages and places them in the Package Feed area, which is ${TMPDIR}/deploy. You can see the “Package Feeds

section for more detail on that part of the build process.

Note

Support for creating feeds directly from the deploy/* directories does not exist. Creating such feeds usually requires
some kind of feed maintenance mechanism that would upload the new packages into an official package feed (e.g. the

Angstrom distribution). This functionality is highly distribution-specific and thus is not provided out of the box.

Image Generation

Once packages are split and stored in the Package Feeds area, the build system uses BitBake to generate the root filesystem

image:

4.4. Yocto Project Concepts 69




The Yocto Project ®, Release 5.1.3

Upstream
Project
Releases

Local SCMs
Projects (optional)

Image Generation

Optimization
Manifest
Generation

do_image_complete

The image generation process consists of several stages and depends on several tasks and variables. The do_rootfs task

creates the root filesystem (file and directory structure) for an image. This task uses several key variables to help create

70 Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

the list of packages to actually install:
e IMAGE_INSTALL: Lists out the base set of packages from which to install from the Package Feeds area.
e PACKAGE_EXCLUDE: Specifies packages that should not be installed into the image.

* IMAGE_FEATURES: Specifies features to include in the image. Most of these features map to additional packages

for installation.

* PACKAGE_CLASSES: Specifies the package backend (e.g. RPM, DEB, or IPK) to use and consequently helps

determine where to locate packages within the Package Feeds area.
e IMAGE_LINGUAS: Determines the language(s) for which additional language support packages are installed.
* PACKAGE_INSTALL: The final list of packages passed to the package manager for installation into the image.

With IMAGE_ROOTFS pointing to the location of the filesystem under construction and the PACKAGE_INSTALL variable

providing the final list of packages to install, the root file system is created.

Package installation is under control of the package manager (e.g. dnf/rpm, opkg, or apt/dpkg) regardless of whether or
not package management is enabled for the target. At the end of the process, if package management is not enabled for
the target, the package manager’ s data files are deleted from the root filesystem. As part of the final stage of package
installation, post installation scripts that are part of the packages are run. Any scripts that fail to run on the build host are
run on the target when the target system is first booted. If you are using a read-only root filesystem, all the post installation
scripts must succeed on the build host during the package installation phase since the root filesystem on the target is

read-only.

The final stages of the do_rootfs task handle post processing. Post processing includes creation of a manifest file and

optimizations.

The manifest file (.manifest) resides in the same directory as the root filesystem image. This file lists out, line-by-line,
the installed packages. The manifest file is useful for the restimage class, for example, to determine whether or not to run
specific tests. See the IMAGE_MANIFEST variable for additional information.

Optimizing processes that are run across the image include mk1ibs and any other post-processing commands as defined
by the ROOTFS_POSTPROCESS_COMMAND variable. The mk1ibs process optimizes the size of the libraries.

After the root filesystem is built, processing begins on the image through the do_image task. The build system runs any
pre-processing commands as defined by the IMAGE _PREPROCESS_COMMAND variable. This variable specifies a list of

functions to call before the build system creates the final image output files.

The build system dynamically creates do_image_* tasks as needed, based on the image types specified in the /M-
AGE_FSTYPES variable. The process turns everything into an image file or a set of image files and can compress the
root filesystem image to reduce the overall size of the image. The formats used for the root filesystem depend on the

IMAGE_FSTYPES variable. Compression depends on whether the formats support compression.

As an example, a dynamically created task when creating a particular image type would take the following form:

do_image_type

So, if the type as specified by the IMAGE_FSTYPES were ext 4, the dynamically generated task would be as follows:

4.4. Yocto Project Concepts 71




The Yocto Project ®, Release 5.1.3

do_image_ext4

The final task involved in image creation is the do_image_complete task. This task completes the image by applying any
image post processing as defined through the IMAGE_POSTPROCESS_COMMAND variable. The variable specifies a list

of functions to call once the build system has created the final image output files.

Note

The entire image generation process is run under Pseudo. Running under Pseudo ensures that the files in the root

filesystem have correct ownership.

SDK Generation

The OpenEmbedded build system uses BitBake to generate the Software Development Kit (SDK) installer scripts for both
the standard SDK and the extensible SDK (eSDK):

Sl Local SCMs
Projects (optional)

Project
Releases

Extensible SDK Generation || Standard SDK Generation
do_populate sdk_ext do_populate_sdk

DEFLOY_DIR
SDKIMAGE_FEATURES
== Toocan.

TOOLCHAIN_ HOST TASK
[build/tmp/deploy/sdk/*.sh [build/tmp/deploy/sdk/*.sh

DEPLOY_DIR
SDK_EXT_TYPE

SDK_INCLUDE_PKGDATA
SDK_LOCAL_CONF_WHITELIST
SDK_LOCAL CONF BLACKLIST
SDK_INHERIT_BLACKLIST

TOOLCHAIN TARGET_TASK

72 Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

Note

For more information on the cross-development toolchain generation, see the “Cross-Development Toolchain Gen-
eration” section. For information on advantages gained when building a cross-development toolchain using the
do_populate_sdk task, see the “Building an SDK Installer” section in the Yocto Project Application Development
and the Extensible Software Development Kit (eSDK) manual.

Like image generation, the SDK script process consists of several stages and depends on many variables. The
do_populate_sdk and do_populate_sdk_ext tasks use these key variables to help create the list of packages to actually

install. For information on the variables listed in the figure, see the “Application Development SDK” section.

The do_populate_sdk task helps create the standard SDK and handles two parts: a target part and a host part. The target
part is the part built for the target hardware and includes libraries and headers. The host part is the part of the SDK that
runs on the SDKMACHINE.

The do_populate_sdk_ext task helps create the extensible SDK and handles host and target parts differently than its counter
part does for the standard SDK. For the extensible SDK, the task encapsulates the build system, which includes everything
needed (host and target) for the SDK.

Regardless of the type of SDK being constructed, the tasks perform some cleanup after which a cross-development envi-
ronment setup script and any needed configuration files are created. The final output is the Cross-development toolchain

installation script (. sh file), which includes the environment setup script.

Stamp Files and the Rerunning of Tasks

For each task that completes successfully, BitBake writes a stamp file into the STAMPS_DIR directory. The beginning of
the stamp file’ s filename is determined by the STAMP variable, and the end of the name consists of the task’ s name

and current input checksum.

Note

This naming scheme assumes that BB_SIGNATURE_HANDLER is “OEBasicHash” , which is almost always the case
in current OpenEmbedded.

To determine if a task needs to be rerun, BitBake checks if a stamp file with a matching input checksum exists for the

task. In this case, the task’ s output is assumed to exist and still be valid. Otherwise, the task is rerun.

Note

The stamp mechanism is more general than the shared state (sstate) cache mechanism described in the “Setscene
Tasks and Shared State” section. BitBake avoids rerunning any task that has a valid stamp file, not just tasks that can

be accelerated through the sstate cache.

However, you should realize that stamp files only serve as a marker that some work has been done and that these files

4.4. Yocto Project Concepts 73



The Yocto Project ®, Release 5.1.3

do not record task output. The actual task output would usually be somewhere in TMPDIR (e.g. in some recipe’ s
WORKDIR.) What the sstate cache mechanism adds is a way to cache task output that can then be shared between

build machines.

Since STAMPS_DIR is usually a subdirectory of TMPDIR, removing TMPDIR will also remove STAMPS_DIR, which
means tasks will properly be rerun to repopulate 7TMPDIR.

If you want some task to always be considered ‘“out of date” , you can mark it with the nostamp varflag. If some other

task depends on such a task, then that task will also always be considered out of date, which might not be what you want.

For details on how to view information about a task’ s signature, see the “Viewing Task Variable Dependencies” section

in the Yocto Project Development Tasks Manual.

Setscene Tasks and Shared State

The description of tasks so far assumes that BitBake needs to build everything and no available prebuilt objects exist.
BitBake does support skipping tasks if prebuilt objects are available. These objects are usually made available in the form

of a shared state (sstate) cache.

Note

For information on variables affecting sstate, see the SSTATE_DIR and SSTATE_MIRRORS variables.

The idea of a setscene task (i.e do_taskname_setscene) is a version of the task where instead of building something,
BitBake can skip to the end result and simply place a set of files into specific locations as needed. In some cases, it makes
sense to have a setscene task variant (e.g. generating package files in the do_package_write_* task). In other cases, it
does not make sense (e.g. a do_patch task or a do_unpack task) since the work involved would be equal to or greater than

the underlying task.

In the build system, the common tasks that have setscene variants are do_package, do_package_write_*, do_deploy,
do_packagedata, and do_populate_sysroot. Notice that these tasks represent most of the tasks whose output is an end

result.

The build system has knowledge of the relationship between these tasks and other preceding tasks. For example, if
BitBake runs do_populate_sysroot_setscene for something, it does not make sense to run any of the do_ferch,
do_unpack, do_patch, do_configure, do_compile, and do_install tasks. However, if do_package needs to be run, BitBake

needs to run those other tasks.

It becomes more complicated if everything can come from an sstate cache because some objects are simply not required
at all. For example, you do not need a compiler or native tools, such as quilt, if there isn’ t anything to compile or patch.

If the do_package_write_* packages are available from sstate, BitBake does not need the do_package task data.

To handle all these complexities, BitBake runs in two phases. The first is the “setscene” stage. During this stage, BitBake

first checks the sstate cache for any targets it is planning to build. BitBake does a fast check to see if the object exists

74 Chapter 4. Yocto Project Overview and Concepts Manual


https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#variable-flags

The Yocto Project ®, Release 5.1.3

rather than doing a complete download. If nothing exists, the second phase, which is the setscene stage, completes and

the main build proceeds.

If objects are found in the sstate cache, the build system works backwards from the end targets specified by the user. For
example, if an image is being built, the build system first looks for the packages needed for that image and the tools needed
to construct an image. If those are available, the compiler is not needed. Thus, the compiler is not even downloaded.
If something was found to be unavailable, or the download or setscene task fails, the build system then tries to install

dependencies, such as the compiler, from the cache.

The availability of objects in the sstate cache is handled by the function specified by the BB_ HASHCHECK _FUNCTION
variable and returns a list of available objects. The function specified by the BB_SETSCENE_DEPVALID variable is the
function that determines whether a given dependency needs to be followed, and whether for any given relationship the

function needs to be passed. The function returns a True or False value.

Images

The images produced by the build system are compressed forms of the root filesystem and are ready to boot on a target
device. You can see from the general workflow figure that BitBake output, in part, consists of images. This section takes

a closer look at this output:

BitBake

bitbake <image>

build
tmp
deploy < DEPLOY DIR
images

<machine> < DEPLOY_DIR_IMAGE
<kernel-image> KERNEL_IMAGETYPE
<root-filesystem-image> IMAGE_FSTYPES
<kernel-modules= MODULE_TARBALL DEPLOY
<bootloaders>

<symlinks=

4.4. Yocto Project Concepts 75



The Yocto Project ®, Release 5.1.3

Note

For a list of example images that the Yocto Project provides, see the “/mages” chapter in the Yocto Project Reference

Manual.

The build process writes images out to the Build Directory inside the tmp/deploy/images/machine/ folder as shown

in the figure. This folder contains any files expected to be loaded on the target device. The DEPLOY_DIR variable points

to the deploy directory, while the DEPLOY_DIR_IMAGE variable points to the appropriate directory containing images

for the current configuration.

kernel-image: A kernel binary file. The KERNEL IMAGETYPE variable determines the naming scheme for the
kernel image file. Depending on this variable, the file could begin with a variety of naming strings. The deploy/

images/machine directory can contain multiple image files for the machine.

root-filesystem-image: Root filesystems for the target device (e.g. *.ext3 or *.bz?2 files). The IMAGE_FSTYPES
variable determines the root filesystem image type. The deploy/images/machine directory can contain multiple

root filesystems for the machine.

kernel-modules: Tarballs that contain all the modules built for the kernel. Kernel module tarballs exist for legacy
purposes and can be suppressed by setting the MODULE_TARBALL_DEPLOY variable to “0” . The deploy/

images/machine directory can contain multiple kernel module tarballs for the machine.

bootloaders: If applicable to the target machine, bootloaders supporting the image. The deploy/images/

machine directory can contain multiple bootloaders for the machine.

symlinks: The deploy/images/machine folder contains a symbolic link that points to the most recently built file

for each machine. These links might be useful for external scripts that need to obtain the latest version of each file.

Application Development SDK

In the general workflow figure, the output labeled “Application Development SDK” represents an SDK. The SDK

generation process differs depending on whether you build an extensible SDK (e.g. bitbake -c populate_sdk_ext

imagename) or a standard SDK (e.g. bitbake -c populate_sdk imagename). This section takes a closer look at

this output:

76

Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

BitBake

SDK

Generation

bitbake -c populate_sdk <=imagename=>
bitbake -c populate sdk_ext <imagename=>

Application

Development SDK

build
Extensible SDK tmp Standard SDK

DEPLOY_DIR deploy -} DEPLOY_DIR

SDK_EXT_TYPE :3: e SDKIMAGE_FEATURES
SDE_INCLUDE_PKGDATA SDEMACHINE
SDK_LOCAL CONF WHITELST installer_files TOOLCHAIN_HOST TASK
SDE LOCAL COMF BLACKUST !mst_maniﬁest_ﬁ.l'es TOOLCHAIN_TARGET TASK

SDK_INHERIT BLACKLIST target_manifest_files SDKPATH
- - . SDK_HOST MANIFEST
sdk_test_files SDK_TARGET MANIFEST

The specific form of this output is a set of files that includes a self-extracting SDK installer (*.sh), host and target
manifest files, and files used for SDK testing. When the SDK installer file is run, it installs the SDK. The SDK consists of
a cross-development toolchain, a set of libraries and headers, and an SDK environment setup script. Running this installer
essentially sets up your cross-development environment. You can think of the cross-toolchain as the “host” part because
it runs on the SDK machine. You can think of the libraries and headers as the “target” part because they are built for the

target hardware. The environment setup script is added so that you can initialize the environment before using the tools.

Note

* The Yocto Project supports several methods by which you can set up this cross-development environment.

These methods include downloading pre-built SDK installers or building and installing your own SDK installer.

* For background information on cross-development toolchains in the Yocto Project development environment,

see the “Cross-Development Toolchain Generation” section.

* For information on setting up a cross-development environment, see the Yocto Project Application Development
and the Extensible Software Development Kit (eSDK) manual.

All the output files for an SDK are written to the deploy/sdk folder inside the Build Directory as shown in the previous

4.4. Yocto Project Concepts 77



The Yocto Project ®, Release 5.1.3

figure. Depending on the type of SDK, there are several variables to configure these files. The variables associated with

an extensible SDK are:

DEPLOY_DIR: Points to the deploy directory.

SDK_EXT _TYPE: Controls whether or not shared state artifacts are copied into the extensible SDK. By default, all

required shared state artifacts are copied into the SDK.

SDK_INCLUDE_PKGDATA: Specifies whether or not packagedata is included in the extensible SDK for all recipes

inthe “world” target.

SDK_INCLUDE_TOOLCHAIN: Specifies whether or not the toolchain is included when building the extensible
SDK.

ESDK_LOCALCONF_ALLOW: A list of variables allowed through from the build system configuration into the

extensible SDK configuration.

ESDK_LOCALCONF_REMOVE: A list of variables not allowed through from the build system configuration into

the extensible SDK configuration.

ESDK_CLASS_INHERIT _DISABLE: A list of classes to remove from the INHERIT value globally within the exten-
sible SDK configuration.

This next list, shows the variables associated with a standard SDK:

DEPLOY_DIR: Points to the deploy directory.

SDKMACHINE: Specifies the architecture of the machine on which the cross-development tools are run to create

packages for the target hardware.
SDKIMAGE_FEATURES: Lists the features to include in the “target” part of the SDK.

TOOLCHAIN_HOST _TASK: Lists packages that make up the host part of the SDK (i.e. the part that runs on the
SDKMACHINE). When you use bitbake —c populate_sdk imagename to create the SDK, a set of default
packages apply. This variable allows you to add more packages.

TOOLCHAIN_TARGET _TASK: Lists packages that make up the target part of the SDK (i.e. the part built for the

target hardware).
SDKPATHINSTALL: Defines the default SDK installation path offered by the installation script.

SDK_HOST_MANIFEST: Lists all the installed packages that make up the host part of the SDK. This variable also

plays a minor role for extensible SDK development as well. However, it is mainly used for the standard SDK.

SDK_TARGET_MANIFEST: Lists all the installed packages that make up the target part of the SDK. This variable

also plays a minor role for extensible SDK development as well. However, it is mainly used for the standard SDK.

78

Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

4.4.4 Cross-Development Toolchain Generation

The Yocto Project does most of the work for you when it comes to creating 7he Cross-Development Toolchain. This section
provides some technical background on how cross-development toolchains are created and used. For more information
on toolchains, you can also see the Yocto Project Application Development and the Extensible Software Development Kit
(eSDK) manual.

In the Yocto Project development environment, cross-development toolchains are used to build images and applications
that run on the target hardware. With just a few commands, the OpenEmbedded build system creates these necessary

toolchains for you.

The following figure shows a high-level build environment regarding toolchain construction and use.

®

Build Host

vocto - gcec-cross —} Target Image
bitbake <target=

Relocatable SDK

gcc-cross-canadian
gcc-crosssdk == binutils-cross-canadian

meta-toolchain Other nativesdk-* Tools
bitbake <imagename= -c populate_sdk_ext

®

SDKMACHINE

Installed SDK

gece-cross-canadian Target Device

binutils-cross-canadian
Other nativesdk-* Tools Target Image
Target Target
Applications Applications

The Build Host produces three toolchains: 1) goc-cross, which builds the target image. 2) goc-
crosssdk, which is a transitory toolchain and produces relocatable code that executes on the
SDEMACHINE. 3) gcc-cross-canadian, which executes on the SDKMACHINE and produces target
applications.

®

The SDEKMACHINE, which may or may not be the same as the Build Host, runs goccross-canadian to
create target applications.

The Target Device runs the Target Image and Target Applications.

® @

4.4. Yocto Project Concepts 79



The Yocto Project ®, Release 5.1.3

Most of the work occurs on the Build Host. This is the machine used to build images and generally work within the
Yocto Project environment. When you run BitBake to create an image, the OpenEmbedded build system uses the host
gcc compiler to bootstrap a cross-compiler named gcc-cross. The gcc-cross compiler is what BitBake uses to
compile source files when creating the target image. You can think of gcc-cross simply as an automatically generated

cross-compiler that is used internally within BitBake only.

Note

The extensible SDK does not use gcc-cross-canadian since this SDK ships a copy of the OpenEmbedded build

system and the sysroot within it contains gcc—-cross.

The chain of events that occurs when the standard toolchain is bootstrapped:

binutils-cross —-> linux-libc-headers -> gcc-cross —> libgcc-initial -> glibc —>_

—~libgcc —> gcc-runtime

e gcc: The compiler, GNU Compiler Collection (GCC).

* binutils—cross: The binary utilities needed in order to run the gcc-cross phase of the bootstrap operation
and build the headers for the C library.

e linux-libc-headers: Headers needed for the cross-compiler and C library build.

e libgcc-initial: An initial version of the gcc support library needed to bootstrap glibc.

¢ libgcc: The final version of the gcc support library which can only be built once there is a C library to link against.
* glibc: The GNU C Library.

¢ gcc-cross: The final stage of the bootstrap process for the cross-compiler. This stage results in the actual cross-

compiler that BitBake uses when it builds an image for a targeted device.
This tool is a “native” tool (i.e. it is designed to run on the build host).

* gcc-runtime: Runtime libraries resulting from the toolchain bootstrapping process. This tool produces a binary

that consists of the runtime libraries need for the targeted device.

You can use the OpenEmbedded build system to build an installer for the relocatable SDK used to develop applications.
When you run the installer, it installs the toolchain, which contains the development tools (e.g., gcc-cross—-canadian,
binutils—-cross-canadian, and other nativesdk-* tools), which are tools native to the SDK (i.e. native to
SDK_ARCH), you need to cross-compile and test your software. The figure shows the commands you use to easily build
out this toolchain. This cross-development toolchain is built to execute on the SDKMACHINE, which might or might not

be the same machine as the Build Host.

Note

80 Chapter 4. Yocto Project Overview and Concepts Manual




The Yocto Project ®, Release 5.1.3

If your target architecture is supported by the Yocto Project, you can take advantage of pre-built images that ship with

the Yocto Project and already contain cross-development toolchain installers.

Here is the bootstrap process for the relocatable toolchain:

gcc —> binutils-crosssdk —-> gcc-crosssdk—initial -> linux-libc-headers -> glibc-—

—~initial —-> nativesdk-glibc —-> gcc-crosssdk -> gcc-cross—canadian

¢ gcc: The build host” s GNU Compiler Collection (GCC).

* binutils-crosssdk: The bare minimum binary utilities needed in order to run the gcc-crosssdk-initial

phase of the bootstrap operation.

* gcc—crosssdk-initial: An early stage of the bootstrap process for creating the cross-compiler. This stage
builds enough of the gcc-crosssdk and supporting pieces so that the final stage of the bootstrap process can

produce the finished cross-compiler. This tool is a “native” binary that runs on the build host.
e linux-libc-headers: Headers needed for the cross-compiler.
* glibc-initial: An initial version of the Embedded GLIBC needed to bootstrap nativesdk—-glibc.
* nativesdk-glibc: The Embedded GLIBC needed to bootstrap the gcc-crosssdk.

* gcc-crosssdk: The final stage of the bootstrap process for the relocatable cross-compiler. The gcc—crosssdk
is a transitory compiler and never leaves the build host. Its purpose is to help in the bootstrap process to create the
eventual gcc-cross-canadian compiler, which is relocatable. This tool is also a “native” package (i.e. it is

designed to run on the build host).

* gcc-cross—canadian: The final relocatable cross-compiler. When run on the SDKMACHINE, this tool produces
executable code that runs on the target device. Only one cross-canadian compiler is produced per architecture since
they can be targeted at different processor optimizations using configurations passed to the compiler through the

compile commands. This circumvents the need for multiple compilers and thus reduces the size of the toolchains.

Note

For information on advantages gained when building a cross-development toolchain installer, see the “Building an
SDK Installer” appendix in the Yocto Project Application Development and the Extensible Software Development
Kit (eSDK) manual.

4.4.5 Shared State Cache

By design, the OpenEmbedded build system builds everything from scratch unless BitBake can determine that parts do
not need to be rebuilt. Fundamentally, building from scratch is attractive as it means all parts are built fresh and there is
no possibility of stale data that can cause problems. When developers hit problems, they typically default back to building

from scratch so they have a known state from the start.

4.4. Yocto Project Concepts 81




The Yocto Project ®, Release 5.1.3

Building an image from scratch is both an advantage and a disadvantage to the process. As mentioned in the previous
paragraph, building from scratch ensures that everything is current and starts from a known state. However, building from

scratch also takes much longer as it generally means rebuilding things that do not necessarily need to be rebuilt.

The Yocto Project implements shared state code that supports incremental builds. The implementation of the shared state
code answers the following questions that were fundamental roadblocks within the OpenEmbedded incremental build

support system:
¢ What pieces of the system have changed and what pieces have not changed?
* How are changed pieces of software removed and replaced?
* How are pre-built components that do not need to be rebuilt from scratch used when they are available?

For the first question, the build system detects changes in the “inputs” to a given task by creating a checksum (or signature)
of the task’ s inputs. If the checksum changes, the system assumes the inputs have changed and the task needs to be
rerun. For the second question, the shared state (sstate) code tracks which tasks add which output to the build process.
This means the output from a given task can be removed, upgraded or otherwise manipulated. The third question is partly
addressed by the solution for the second question assuming the build system can fetch the sstate objects from remote

locations and install them if they are deemed to be valid.

Note

 The build system does not maintain PR information as part of the shared state packages. Consequently, there
are considerations that affect maintaining shared state feeds. For information on how the build system works
with packages and can track incrementing PR information, see the ‘““Automatically Incrementing a Package

Version Number” section in the Yocto Project Development Tasks Manual.

* The code in the build system that supports incremental builds is complex. For techniques that help you work
around issues related to shared state code, see the “ Viewing Metadata Used to Create the Input Signature of a
Shared State Task” and “Invalidating Shared State to Force a Task to Run” sections both in the Yocto Project

Development Tasks Manual.

The rest of this section goes into detail about the overall incremental build architecture, the checksums (signatures), and

shared state.

Overall Architecture

When determining what parts of the system need to be built, BitBake works on a per-task basis rather than a per-recipe
basis. You might wonder why using a per-task basis is preferred over a per-recipe basis. To help explain, consider having
the IPK packaging backend enabled and then switching to DEB. In this case, the do_install and do_package task outputs
are still valid. However, with a per-recipe approach, the build would not include the . deb files. Consequently, you would
have to invalidate the whole build and rerun it. Rerunning everything is not the best solution. Also, in this case, the core
must be “taught” much about specific tasks. This methodology does not scale well and does not allow users to easily

add new tasks in layers or as external recipes without touching the packaged-staging core.

82 Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

Checksums (Signatures)

The shared state code uses a checksum, which is a unique signature of a task’ s inputs, to determine if a task needs to
be run again. Because it is a change in a task’ s inputs that triggers a rerun, the process needs to detect all the inputs to
a given task. For shell tasks, this turns out to be fairly easy because the build process generates a “run” shell script for

each task and it is possible to create a checksum that gives you a good idea of when the task’ s data changes.

To complicate the problem, there are things that should not be included in the checksum. First, there is the actual specific
build path of a given task —the WORKDIR. It does not matter if the work directory changes because it should not affect

the output for target packages. Also, the build process has the objective of making native or cross packages relocatable.

Note

Both native and cross packages run on the build host. However, cross packages generate output for the target archi-

tecture.

The checksum therefore needs to exclude WORKDIR. The simplistic approach for excluding the work directory is to set

WORKDIR to some fixed value and create the checksum for the “run” script.

Another problem results from the “run” scripts containing functions that might or might not get called. The incremental

13 k2

build solution contains code that figures out dependencies between shell functions. This code is used to prune the “run
scripts down to the minimum set, thereby alleviating this problem and making the “run” scripts much more readable as

a bonus.

So far, there are solutions for shell scripts. What about Python tasks? The same approach applies even though these tasks
are more difficult. The process needs to figure out what variables a Python function accesses and what functions it calls.
Again, the incremental build solution contains code that first figures out the variable and function dependencies, and then

creates a checksum for the data used as the input to the task.

Like the WORKDIR case, there can be situations where dependencies should be ignored. For these situations, you can

instruct the build process to ignore a dependency by using a line like the following:

PACKAGE_ARCHS [vardepsexclude] = "MACHINE"

This example ensures that the PACKAGE_ARCHS variable does not depend on the value of MACHINE, even if it does

reference it.

Equally, there are cases where you need to add dependencies BitBake is not able to find. You can accomplish this by

using a line like the following:

PACKAGE_ARCHS [vardeps] = "MACHINE"

This example explicitly adds the MACHINE variable as a dependency for PACKAGE_ARCHS.

As an example, consider a case with in-line Python where BitBake is not able to figure out dependencies. When running

in debug mode (i.e. using -DDD), BitBake produces output when it discovers something for which it cannot figure out

4.4. Yocto Project Concepts 83




The Yocto Project ®, Release 5.1.3

dependencies. The Yocto Project team has currently not managed to cover those dependencies in detail and is aware of

the need to fix this situation.

Thus far, this section has limited discussion to the direct inputs into a task. Information based on direct inputs is referred
to as the “basehash” in the code. However, the question of a task’ s indirect inputs still exits —items already built and
present in the Build Directory. The checksum (or signature) for a particular task needs to add the hashes of all the tasks
on which the particular task depends. Choosing which dependencies to add is a policy decision. However, the effect is to

generate a checksum that combines the basehash and the hashes of the task’ s dependencies.

At the code level, there are multiple ways by which both the basehash and the dependent task hashes can be influenced.
Within the BitBake configuration file, you can give BitBake some extra information to help it construct the basehash. The
following statement effectively results in a list of global variable dependency excludes (i.e. variables never included in any

checksum):

BB_BASEHASH_IGNORE_VARS ?= "TMPDIR FILE PATH PWD BB_TASKHASH BBPATH DL_DIR \\
SSTATE_DIR THISDIR FILESEXTRAPATHS FILE_DIRNAME HOME LOGNAME SHELL TERM \\
USER FILESPATH STAGING_DIR_HOST STAGING_DIR_TARGET COREBASE PRSERV_HOST \\
PRSERV_DUMPDIR PRSERV_DUMPFILE PRSERV_LOCKDOWN PARALLEL_MAKE \\

CCACHE_DIR EXTERNAL_TOOLCHAIN CCACHE CCACHE_DISABLE LICENSE_PATH SDKPKGSUFFIX"

The previous example does not include WORKDIR since that variable is actually constructed as a path within TMPDIR,

which is included above.

The rules for deciding which hashes of dependent tasks to include through dependency chains are more complex and are
generally accomplished with a Python function. The code in meta/lib/oe/sstatesig.py shows two examples of
this and also illustrates how you can insert your own policy into the system if so desired. This file defines the two basic
signature generators OpenEmbedded-Core (OE-Core) uses: “OEBasic” and “OEBasicHash” . By default, a dummy
“noop” signature handler is enabled in BitBake. This means that behavior is unchanged from previous versions. OE-Core

uses the “OEBasicHash” signature handler by default through this setting in the bitbake . conf file:

BB_SIGNATURE_HANDLER ?= "OEBasicHash"

The “OEBasicHash” BB_SIGNATURE_HANDLER is the same as the “OEBasic” version but adds the task hash to the
stamp files. This results in any metadata change that changes the task hash, automatically causing the task to be run again.

This removes the need to bump PR values, and changes to metadata automatically ripple across the build.

It is also worth noting that the end result of these signature generators is to make some dependency and hash information

available to the build. This information includes:
* BB_BASEHASH:task-taskname: The base hashes for each task in the recipe.
* BB_BASEHASH_filename : taskname: The base hashes for each dependent task.

* BB_TASKHASH: The hash of the currently running task.

84 Chapter 4. Yocto Project Overview and Concepts Manual




The Yocto Project ®, Release 5.1.3

Shared State

Checksums and dependencies, as discussed in the previous section, solve half the problem of supporting a shared state.
The other half of the problem is being able to use checksum information during the build and being able to reuse or

rebuild specific components.

The sstate class is a relatively generic implementation of how to “capture” a snapshot of a given task. The idea is that the
build process does not care about the source of a task’ s output. Output could be freshly built or it could be downloaded

and unpacked from somewhere. In other words, the build process does not need to worry about its origin.

Two types of output exist. One type is just about creating a directory in WORKDIR. A good example is the output of
either do_install or do_package. The other type of output occurs when a set of data is merged into a shared directory tree

such as the sysroot.

The Yocto Project team has tried to keep the details of the implementation hidden in the sstafe class. From a user’ s

perspective, adding shared state wrapping to a task is as simple as this do_deploy example taken from the deploy class:

DEPLOYDIR = "$ /deploy—$ "

SSTATETASKS += "do_deploy"
do_deploy[sstate-inputdirs] = "$ "
do_deploy[sstate-outputdirs] = "$ w

python do_deploy_setscene () {
sstate_setscene (d)

}

addtask do_deploy_setscene

do_deploy[dirs] = "S S "

do_deploy[stamp-extra-info] = "$ "

The following list explains the previous example:

¢ Adding do_deploy to SSTATETASKS adds some required sstate-related processing, which is implemented in the

sstate class, to before and after the do_deploy task.

e Thedo_deploy[sstate—inputdirs] = "${DEPLOYDIR}" declares thatdo_deploy places its outputin ${DE—
PLOYDIR} when run normally (i.e. when not using the sstate cache). This output becomes the input to the shared

state cache.

e The do_deploy[sstate-outputdirs] = "${DEPLOY_DIR_IMAGE}" line causes the contents of the shared
state cache to be copied to ${DEPLOY_DIR_IMAGE}.

Note

If do_deploy is not already in the shared state cache or if its input checksum (signature) has changed from when
the output was cached, the task runs to populate the shared state cache, after which the contents of the shared
state cache is copied to ${ DEPLOY_DIR_IMAGE}. If do_deploy is in the shared state cache and its signature

4.4. Yocto Project Concepts 85




The Yocto Project ®, Release 5.1.3

indicates that the cached output is still valid (i.e. if no relevant task inputs have changed), then the contents
of the shared state cache copies directly to ${ DEPLOY_DIR_IMAGE} by the do_deploy_setscene task
instead, skipping the do_deploy task.

* The following task definition is glue logic needed to make the previous settings effective:

python do_deploy_setscene () {
sstate_setscene (d)

}

addtask do_deploy_setscene

sstate_setscene () takes the flags above as input and accelerates the do_deploy task through the shared state
cache if possible. If the task was accelerated, sstate_setscene () returns True. Otherwise, it returns False, and

the normal do_deploy task runs. For more information, see the “Setscene” section in the BitBake User Manual.

e Thedo_deploy[dirs] = "${DEPLOYDIR} ${B}" linecreates $ {DEPLOYDIR} and ${B} before the do_deploy
task runs, and also sets the current working directory of do_deploy to $ {B}. For more information, see the “Variable

Flags” section in the BitBake User Manual.

Note

In cases where sstate-inputdirs and sstate-outputdirs would be the same, you can use
sstate-plaindirs. For example, to preserve the ${ PKGD} and ${ PKGDEST} output from the do_package

task, use the following:

do_package[sstate-plaindirs] = "$ $ "

e The do_deploy[stamp-extra-info] = "${MACHINE_ARCH}" line appends extra metadata to the stamp file.

In this case, the metadata makes the task specific to a machine’ s architecture. See the “The Task List” section

in the BitBake User Manual for more information on the stamp-extra—info flag.

* sstate-inputdirs and sstate—-outputdirs can also be used with multiple directories. For example, the

following declares PKGDESTWORK and SHLIBWORK as shared state input directories, which populates the shared
state cache, and PKGDATA_DIR and SHLIBSDIR as the corresponding shared state output directories:

do_package[sstate-inputdirs] = "$ $ "

do_package[sstate-outputdirs] = "$ S "

» These methods also include the ability to take a lockfile when manipulating shared state directory structures, for

cases where file additions or removals are sensitive:

do_package[sstate—-lockfile] = "$ "

86

Chapter 4. Yocto Project Overview and Concepts Manual


https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-execution.html#setscene
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#variable-flags
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#variable-flags
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-execution.html#the-task-list

The Yocto Project ®, Release 5.1.3

Behind the scenes, the shared state code works by looking in SSTATE_DIR and SSTATE_MIRRORS for shared state files.

Here is an example:

SSTATE_MIRRORS ?= "\
file://.* https://someserver.tld/share/sstate/PATH;downloadfilename=PATH \

file://.* file:///some/local/dir/sstate/PATH"

Note

The shared state directory (SSTATE_DIR) is organized into two-character subdirectories, where the subdirectory
names are based on the first two characters of the hash. If the shared state directory structure for a mirror has
the same structure as SSTATE_DIR, you must specify “PATH” as part of the URI to enable the build system to map
to the appropriate subdirectory.

The shared state package validity can be detected just by looking at the filename since the filename contains the task
checksum (or signature) as described earlier in this section. If a valid shared state package is found, the build process

downloads it and uses it to accelerate the task.

The build processes use the *_setscene tasks for the task acceleration phase. BitBake goes through this phase before
the main execution code and tries to accelerate any tasks for which it can find shared state packages. If a shared state
package for a task is available, the shared state package is used. This means the task and any tasks on which it is dependent

are not executed.

As a real world example, the aim is when building an IPK-based image, only the do_package_write_ipk tasks would have
their shared state packages fetched and extracted. Since the sysroot is not used, it would never get extracted. This is
another reason why a task-based approach is preferred over a recipe-based approach, which would have to install the

output from every task.

Hash Equivalence

The above section explained how BitBake skips the execution of tasks whose output can already be found in the Shared

State cache.

During a build, it may often be the case that the output / result of a task might be unchanged despite changes in the task’
s input values. An example might be whitespace changes in some input C code. In project terms, this is what we define

as “equivalence” .
To keep track of such equivalence, BitBake has to manage three hashes for each task:

 The task hash explained earlier: computed from the recipe metadata, the task code and the task hash values from
its dependencies. When changes are made, these task hashes are therefore modified, causing the task to re-execute.
The task hashes of tasks depending on this task are therefore modified too, causing the whole dependency chain to

re-execute.

* The output hash, a new hash computed from the output of Shared State tasks, tasks that save their resulting output to

a Shared State tarball. The mapping between the task hash and its output hash is reported to a new Hash Equivalence

4.4. Yocto Project Concepts 87




The Yocto Project ®, Release 5.1.3

server. This mapping is stored in a database by the server for future reference.

» The unihash, a new hash, initially set to the task hash for the task. This is used to track the unicity of task output,

and we will explain how its value is maintained.

When Hash Equivalence is enabled, BitBake computes the task hash for each task by using the unihash of its dependencies,
instead of their task hash.

Now, imagine that a Shared State task is modified because of a change in its code or metadata, or because of a change
in its dependencies. Since this modifies its task hash, this task will need re-executing. Its output hash will therefore be

computed again.

Then, the new mapping between the new task hash and its output hash will be reported to the Hash Equivalence server.
The server will let BitBake know whether this output hash is the same as a previously reported output hash, for a different
task hash.

If the output hash is already known, BitBake will update the task’ s unihash to match the original task hash that gen-
erated that output. Thanks to this, the depending tasks will keep a previously recorded task hash, and BitBake will be
able to retrieve their output from the Shared State cache, instead of re-executing them. Similarly, the output of further

downstream tasks can also be retrieved from Shared State.

If the output hash is unknown, a new entry will be created on the Hash Equivalence server, matching the task hash to that
output. The depending tasks, still having a new task hash because of the change, will need to re-execute as expected. The

change propagates to the depending tasks.

To summarize, when Hash Equivalence is enabled, a change in one of the tasks in BitBake’ s run queue doesn’ t have to
propagate to all the downstream tasks that depend on the output of this task, causing a full rebuild of such tasks, and so
on with the next depending tasks. Instead, when the output of this task remains identical to previously recorded output,

BitBake can safely retrieve all the downstream task output from the Shared State cache.

Note

Having Reproducible Builds is a key ingredient for the stability of the task’ s output hash. Therefore, the effectiveness
of Hash Equivalence strongly depends on it.

Recipes that are not reproducible may have undesired behavior if hash equivalence is enabled, since the non-
reproducible diverging output maybe be remapped to an older sstate object in the cache by the server. If a recipe is
non-reproducible in trivial ways, such as different timestamps, this is likely not a problem. However recipes that have
more dramatic changes (such as completely different file names) will likely outright fail since the downstream sstate

objects are not actually equivalent to what was just built.

This applies to multiple scenarios:

e A “trivial” change to a recipe that doesn’ t impact its generated output, such as whitespace changes, modifications

to unused code paths or in the ordering of variables.

 Shared library updates, for example to fix a security vulnerability. For sure, the programs using such a library

should be rebuilt, but their new binaries should remain identical. The corresponding tasks should have a different

88 Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

output hash because of the change in the hash of their library dependency, but thanks to their output being identical,

Hash Equivalence will stop the propagation down the dependency chain.

 Native tool updates. Though the depending tasks should be rebuilt, it’ s likely that they will generate the same

output and be marked as equivalent.
This mechanism is enabled by default in Poky, and is controlled by three variables:
* BB_HASHSERVE, specifying a local or remote Hash Equivalence server to use.

e BB_HASHSERVE_UPSTREAM, when BB_HASHSERVE = "auto", allowing to connect the local server to an

upstream one.
* BB_SIGNATURE_HANDLER, which must be set to OEEquivHash.

Therefore, the default configuration in Poky corresponds to the below settings:

BB_HASHSERVE = "auto"
BB_SIGNATURE_HANDLER = "OEEquivHash"

Rather than starting a local server, another possibility is to rely on a Hash Equivalence server on a network, by setting:

BB_HASHSERVE = "<HOSTNAME>:<PORT>"

Note

The shared Hash Equivalence server needs to be maintained together with the Shared State cache. Otherwise, the

server could report Shared State hashes that only exist on specific clients.

We therefore recommend that one Hash Equivalence server be set up to correspond with a given Shared State cache,
and to start this server in read-only mode, so that it doesn’ t store equivalences for Shared State caches that are local

to clients.

See the BB_ HASHSERVE reference for details about starting a Hash Equivalence server.

See the video of Joshua Watt’ s Hash Equivalence and Reproducible Builds presentation at ELC 2020 for a very synthetic

introduction to the Hash Equivalence implementation in the Yocto Project.

4.4.6 Automatically Added Runtime Dependencies

The OpenEmbedded build system automatically adds common types of runtime dependencies between packages, which
means that you do not need to explicitly declare the packages using RDEPENDS. There are three automatic mechanisms
(shlibdeps, pcdeps, and depchains) that handle shared libraries, package configuration (pkg-config) modules, and
—-dev and -dbg packages, respectively. For other types of runtime dependencies, you must manually declare the depen-

dencies.

* shlibdeps: During the do_package task of each recipe, all shared libraries installed by the recipe are located.
For each shared library, the package that contains the shared library is registered as providing the shared library.

4.4. Yocto Project Concepts 89



https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-ref-variables.html#term-BB_HASHSERVE
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-ref-variables.html#term-BB_SIGNATURE_HANDLER
https://www.youtube.com/watch?v=zXEdqGS62Wc
https://elinux.org/images/3/37/Hash_Equivalence_and_Reproducible_Builds.pdf

The Yocto Project ®, Release 5.1.3

More specifically, the package is registered as providing the soname of the library. The resulting shared-library-

to-package mapping is saved globally in PKGDATA_DIR by the do_packagedata task.

Simultaneously, all executables and shared libraries installed by the recipe are inspected to see what shared libraries
they link against. For each shared library dependency that is found, PKGDATA_DIR is queried to see if some
package (likely from a different recipe) contains the shared library. If such a package is found, a runtime dependency

is added from the package that depends on the shared library to the package that contains the library.

The automatically added runtime dependency also includes a version restriction. This version restriction specifies
that at least the current version of the package that provides the shared library must be used, as if “package (>=
version)” had been added to RDEPENDS. This forces an upgrade of the package containing the shared library when
installing the package that depends on the library, if needed.

If you want to avoid a package being registered as providing a particular shared library (e.g. because the library is

for internal use only), then add the library to PRIVATE_LIBS inside the package’ s recipe.

* pcdeps: During the do_package task of each recipe, all pkg-config modules (* . pc files) installed by the recipe
are located. For each module, the package that contains the module is registered as providing the module. The

resulting module-to-package mapping is saved globally in PKGDATA_DIR by the do_packagedata task.

Simultaneously, all pkg-config modules installed by the recipe are inspected to see what other pkg-config modules
they depend on. A module is seen as depending on another module if it contains a “Requires:” line that specifies
the other module. For each module dependency, PKGDATA_DIR is queried to see if some package contains the
module. If such a package is found, a runtime dependency is added from the package that depends on the module

to the package that contains the module.

Note

The pcdeps mechanism most often infers dependencies between -dev packages.

e depchains: If a package foo depends on a package bar, then foo-dev and foo-dbg are also made to depend
on bar-dev and bar-dbg, respectively. Taking the —~dev packages as an example, the bar-dev package might
provide headers and shared library symlinks needed by foo-dev, which shows the need for a dependency between

the packages.

The dependencies added by depchains are in the form of RRECOMMENDS.

Note

By default, foo-dev also has an RDEPENDS-style dependency on foo, because the default value of RDE-

PENDS:${PN}-dev (set in bitbake.conf) includes “${PN}” .

To ensure that the dependency chain is never broken, —dev and —dbg packages are always generated by default,

even if the packages turn out to be empty. See the ALLOW_EMPTY variable for more information.

920 Chapter 4. Yocto Project Overview and Concepts Manual


https://en.wikipedia.org/wiki/Soname

The Yocto Project ®, Release 5.1.3

The do_package task depends on the do_packagedata task of each recipe in DEPENDS through use of a [deptask]
declaration, which guarantees that the required shared-library / module-to-package mapping information will be available

when needed as long as DEPENDS has been correctly set.

4.4.7 Fakeroot and Pseudo

Some tasks are easier to implement when allowed to perform certain operations that are normally reserved for the root
user (e.g. do_install, do_package_write*, do_rootfs, and do_image_*). For example, the do_install task benefits from

being able to set the UID and GID of installed files to arbitrary values.

One approach to allowing tasks to perform root-only operations would be to require BitBake to run as root. However, this
method is cumbersome and has security issues. The approach that is actually used is to run tasks that benefit from root
privileges ina “fake” root environment. Within this environment, the task and its child processes believe that they are
running as the root user, and see an internally consistent view of the filesystem. As long as generating the final output (e.g.
a package or an image) does not require root privileges, the fact that some earlier steps ran in a fake root environment

does not cause problems.

The capability to run tasks in a fake root environment is known as “fakeroot” , which is derived from the BitBake

keyword/variable flag that requests a fake root environment for a task.

In the OpenEmbedded Build System, the program that implements fakeroot is known as Pseudo. Pseudo overrides system
calls by using the environment variable LD_PRELOAD, which results in the illusion of running as root. To keep track of
“fake” file ownership and permissions resulting from operations that require root permissions, Pseudo uses an SQLite 3
database. This database is stored in ${ WORKDIR} /pseudo/files.db for individual recipes. Storing the database in

a file as opposed to in memory gives persistence between tasks and builds, which is not accomplished using fakeroot.

Note

If you add your own task that manipulates the same files or directories as a fakeroot task, then that task
also needs to run under fakeroot. Otherwise, the task cannot run root-only operations, and cannot see the
fake file ownership and permissions set by the other task. You need to also add a dependency on virtual/

fakeroot-native:do_populate_sysroot, giving the following:

fakeroot do_mytask () {

}

do_mytask [depends] += "virtual/fakeroot-native:do_populate_sysroot"

For more information, see the FAKEROOT?* variables in the BitBake User Manual. You can also reference the “Why

Not Fakeroot?” article for background information on Fakeroot and Pseudo.

4.4. Yocto Project Concepts 91


https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#variable-flags
http://man.he.net/man1/fakeroot
https://www.yoctoproject.org/software-item/pseudo/
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-ref-variables.html#term-FAKEROOT
https://github.com/wrpseudo/pseudo/wiki/WhyNotFakeroot
https://github.com/wrpseudo/pseudo/wiki/WhyNotFakeroot

The Yocto Project ®, Release 5.1.3

4.4.8 BitBake Tasks Map

To understand how BitBake operates in the build directory and environment we can consider the following recipes and

diagram, to have full picture about the tasks that BitBake runs to generate the final package file for the recipe.
We will have two recipes as an example:
e libhello: A recipe that provides a shared library

e sayhello: A recipe that uses 1ibhello library to do its job

Note

sayhello depends on 1ibhello at compile time as it needs the shared library to do the dynamic linking process. It
also depends on it at runtime as the shared library loader needs to find the library. For more details about dependencies

check Dependencies.

libhello sources are as follows:
e LICENSE: This is the license associated with this library
¢ Makefile: The file used by make to build the library
* hellolib.c: The implementation of the library
* hellolib.h: The C header of the library
sayhello sources are as follows:
e LICENSE: This is the license associated with this project
* Makefile: The file used by make to build the project
e sayhello.c: The source file of the project

Before presenting the contents of each file, here are the steps that we need to follow to accomplish what we want in the

first place, which is integrating sayhello in our root file system:
1. Create a Git repository for each project with the corresponding files
2. Create a recipe for each project
3. Make sure that sayhello recipe DEPENDS on 1ibhello
4. Make sure that sayhello recipe RDEPENDS on 1ibhello
5. Add sayhello to IMAGE_INSTALL to integrate it into the root file system

The contents of 1ibhello/Makefile are:

LIB=libhello.so

all: $(LIB)
(continues on next page)

92 Chapter 4. Yocto Project Overview and Concepts Manual



The Yocto Project ®, Release 5.1.3

(continued from previous page)

$S(LIB): hellolib.o
S(CC) $< -Wl,-soname,$(LIB).1 —-fPIC $(LDFLAGS) -shared -o $(LIB).1.0

clean:

rm -rf *.o *.so*

Note

When creating shared libraries, it is strongly recommended to follow the Linux conventions and guidelines (see this

article for some background).

Note

When creating Make £1 1e files, it is strongly recommended to use CC, LDFLAGS and CFLAGS as BitBake will set them

as environment variables according to your build configuration.

The contents of 1ibhello/hellolib.h are:

#ifndef HELLOLIB_H

#define HELLOLIB_H

void Hello () ;

#endif

The contents of 1ibhello/hellolib.c are:

#include <stdio.h>

void Hello () {

puts ("Hello from a Yocto demo \n");

The contents of sayhello/Makefile are:

4.4. Yocto Project Concepts 93



https://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
https://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html

The Yocto Project ®, Release 5.1.3

EXEC=sayhello
LDFLAGS += —-lhello

all: $(EXEC)

$ (EXEC) : sayhello.c
$(CC) $< S$(LDFLAGS) S (CFLAGS) -o $(EXEC)

clean:

rm —-rf $(EXEC) *.o

The contents of sayhello/sayhello.c are:

#include <hellolib.h>

int main () {
Hello () ;

return 0O;

The contents of 1ibhello_0.1.bb are:

SUMMARY = "Hello demo library"

DESCRIPTION = "Hello shared library used in Yocto demo"

# NOTE: Set the License according to the LICENSE file of your project
# and then add LIC_FILES_CHKSUM accordingly
LICENSE = "CLOSED"

# Assuming the branch is main
# Change <username> accordingly

SRC_URI = "git://github.com/<username>/libhello;branch=main;protocol=https"

S = "${WORKDIR}/git"

do_install () {
install -d ${D}S${includedir}
install -d ${D}${libdir}

install hellolib.h ${D}S${includedir}
oe_soinstall ${PN}.so.${PV} ${D}S$S{libdir}

(continues on next page)

94 Chapter 4. Yocto Project Overview and Concepts Manual




The Yocto Project ®, Release 5.1.3

(continued from previous page)

The contents of sayhello_0.1.bb are:

SUMMARY = "SayHello demo"

DESCRIPTION = "SayHello project used in Yocto demo"

# NOTE: Set the License according to the LICENSE file of your project
# and then add LIC_FILES_CHKSUM accordingly
LICENSE = "CLOSED"

# Assuming the branch is main
# Change <username> accordingly

SRC_URI = "git://github.com/<username>/sayhello;branch=main;protocol=https"

DEPENDS += "libhello"
RDEPENDS:${PN} += "libhello"

S = "S{WORKDIR}/git™"

do_install () {

install -d ${D}/usr/bin
install -m 0700 sayhello ${D}/usr/bin

After placing the recipes in a custom layer we can run bitbake sayhello to build the recipe.

The following diagram shows the sequences of tasks that BitBake executes to accomplish that.

The Yocto Project ®

4.4. Yocto Project Concepts 95




The Yocto Project ®, Release 5.1.3

<docs@lists.yoctoproject.org>

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Share Alike 2.0 UK: England & Wales as published by Creative Commons.

To report any inaccuracies or problems with this (or any other Yocto Project) manual, or to send additions or changes,
please send email/patches to the Yocto Project documentation mailing list at docs@lists.yoctoproject.org or log

into the Libera Chat #yocto channel.

96 Chapter 4. Yocto Project Overview and Concepts Manual


mailto:docs@lists.yoctoproject.org
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://libera.chat/

CHAPTER

FIVE

YOCTO PROJECT AND OPENEMBEDDED CONTRIBUTOR GUIDE

The Yocto Project and OpenEmbedded are open-source, community-based projects so contributions are very welcome, it
is how the code evolves and everyone can effect change. Contributions take different forms, if you have a fix for an issue
you’ ve run into, a patch is the most appropriate way to contribute it. If you run into an issue but don’ t have a solution,
opening a defect in Bugzilla or asking questions on the mailing lists might be more appropriate. This guide intends to

point you in the right direction to this.

5.1 Identify the component

The Yocto Project and OpenEmbedded ecosystem is built of /ayers so the first step is to identify the component where the
issue likely lies. For example, if you have a hardware issue, it is likely related to the BSP you are using and the best place
to seek advice would be from the BSP provider or layer. If the issue is a build/configuration one and a distro is in use,
they would likely be the first place to ask questions. If the issue is a generic one and/or in the core classes or metadata,

the core layer or BitBake might be the appropriate component.

Each metadata layer being used should contain a README file and that should explain where to report issues, where to

send changes and how to contact the maintainers.

If the issue is in the core metadata layer (OpenEmbedded-Core) or in BitBake, issues can be reported in the Yocto Project
Bugzilla. The yocto mailing list is a general “catch-all” location where questions can be sent if you can’ t work out

where something should go.

Poky is a commonly used ‘“combination” repository where multiple components have been combined (bitbake,
openembedded-core, meta-yocto and yocto-docs). Patches should be submitted against the appropriate individual com-

ponent rather than Poky itself as detailed in the appropriate README file.

5.2 Reporting a Defect Against the Yocto Project and OpenEmbed-
ded

You can use the Yocto Project instance of Bugzilla to submit a defect (bug) against BitBake, OpenEmbedded-Core, against
any other Yocto Project component or for tool issues. For additional information on this implementation of Bugzilla see
the “Yocto Project Bugzilla” section in the Yocto Project Reference Manual. For more detail on any of the following

steps, see the Yocto Project Bugzilla wiki page.

97


https://bugzilla.yoctoproject.org
https://bugzilla.yoctoproject.org
https://bugzilla.yoctoproject.org
https://lists.yoctoproject.org/g/yocto
https://git.openembedded.org/bitbake
https://git.openembedded.org/openembedded-core
https://git.yoctoproject.org/meta-yocto
https://git.yoctoproject.org/yocto-docs
https://www.bugzilla.org/about/
https://wiki.yoctoproject.org/wiki/Bugzilla_Configuration_and_Bug_Tracking

The Yocto Project ®, Release 5.1.3

Use the following general steps to submit a bug:
1. Open the Yocto Project implementation of Bugzilla.
2. Click “File a Bug” to enter a new bug.

3. Choose the appropriate “Classification” , “Product” ,and “Component” for which the bug was found. Bugs
for the Yocto Project fall into one of several classifications, which in turn break down into several products and
components. For example, for a bug against the meta-intel layer, you would choose “Build System, Metadata

& Runtime” , “BSPs” ,and “bsps-meta-intel” , respectively.
4. Choose the “Version” of the Yocto Project for which you found the bug (e.g. 5.1.3).
5. Determine and select the “Severity” of the bug. The severity indicates how the bug impacted your work.
6. Choose the “Hardware” that the bug impacts.
7. Choose the “Architecture” that the bug impacts.

8. Choose a “Documentation change” item for the bug. Fixing a bug might or might not affect the Yocto Project

documentation. If you are unsure of the impact to the documentation, select “Don’ t Know” .

9. Provide a brief “Summary” of the bug. Try to limit your summary to just a line or two and be sure to capture the

essence of the bug.

10. Provide a detailed “Description” of the bug. You should provide as much detail as you can about the context,
behavior, output, and so forth that surrounds the bug. You can even attach supporting files for output from logs by

using the “Add an attachment” button.

11. Click the “Submit Bug” button submit the bug. A new Bugzilla number is assigned to the bug and the defect is
logged in the bug tracking system.

Once you file a bug, the bug is processed by the Yocto Project Bug Triage Team and further details concerning the bug
are assigned (e.g. priority and owner). You are the “Submitter” of the bug and any further categorization, progress, or
comments on the bug result in Bugzilla sending you an automated email concerning the particular change or progress to

the bug.

There are no guarantees about if or when a bug might be worked on since an open-source project has no dedicated
engineering resources. However, the project does have a good track record of resolving common issues over the medium
and long term. We do encourage people to file bugs so issues are at least known about. It helps other users when they find

somebody having the same issue as they do, and an issue that is unknown is much less likely to ever be fixed!

5.3 Recipe Style Guide

5.3.1 Recipe Naming Conventions

In general, most recipes should follow the naming convention recipes-category/recipename/
recipename_version.bb. Recipes for related projects may share the same recipe directory. recipename

and category may contain hyphens, but hyphens are not allowed in version.

98 Chapter 5. Yocto Project and OpenEmbedded Contributor Guide


https://bugzilla.yoctoproject.org

The Yocto Project ®, Release 5.1.3

If the recipe is tracking a Git revision that does not correspond to a released version of the software, version may be

git (e.g. recipename_git.bb) and the recipe would set PV.

5.3.2 Version Policy

Our versions follow the form <epoch>:<version>-<revision> or in BitBake variable terms ${ PE}:${PV }-${ PR}.

We generally follow the Debian version policy which defines these terms.

In most cases the version PV will be set automatically from the recipe file name. It is recommended to use released

versions of software as these are revisions that upstream are expecting people to use.

Recipe versions should always compare and sort correctly so that upgrades work as expected. With conventional versions
such as 1.4 upgrading to 1.5 this happens naturally, but some versions don’ t sort. For example, 1.5 Release

Candidate 2 could be written as 1.5rc2 but this sorts after 1 . 5, so upgrades from feeds won’ t happen correctly.

Instead the tilde (~) operator can be used, which sorts before the empty string so 1. 5~rc2 comes before 1. 5. There is a
historical syntax which may be found where PV is set as a combination of the prior version + the pre-release version, for

example Pv=1.4+1.5rc2. This is a valid syntax but the tilde form is preferred.

For version comparisons, the opkg-compare-versions program from opkg-utils can be useful when attempting
to determine how two version numbers compare to each other. Our definitive version comparison algorithm is the one

within bitbake which aims to match those of the package managers and Debian policy closely.

When a recipe references a git revision that does not correspond to a released version of software (e.g. is not a tagged
version), the PV variable should include the sign +, so bitbake automatically includes package version information during

the packaging phase:

PV = "<version>tgit"

In this case, <version> should be the most recently released version of the software from the current source revision
(git describe can be useful for determining this). Whilst not recommended for published layers, this format is also
useful when using AUTOREV to set the recipe to increment source control revisions automatically, which can be useful

during local development.

5.3.3 Version Number Changes

The PR variable is used to indicate different revisions of a recipe that reference the same upstream source version. It can
be used to force a new version of a recipe to be installed onto a device from a package feed. These once had to be set
manually but in most cases these can now be set and incremented automatically by a PR Server connected with a package
feed.

When PV increases, any existing PR value can and should be removed.

If PV changes in such a way that it does not increase with respect to the previous value, you need to increase PE to ensure
package managers will upgrade it correctly. If unset you should set PE to “1” since the default of empty is easily confused

with “0” depending on the package manager. PE can only have an integer value.

5.3. Recipe Style Guide 99



https://www.debian.org/doc/debian-policy/ch-controlfields.html#version

The Yocto Project ®, Release 5.1.3

5.3.4 Recipe formatting

Variable Formatting

Pyt

* Variable assignment should a space around each side of the operator, e.g. FOO = "bar", not FOO="bar".

* Double quotes should be used on the right-hand side of the assignment, e.g. FOO = "bar" not FOO = 'bar'
* Spaces should be used for indenting variables, with 4 spaces per tab

¢ Long variables should be split over multiple lines when possible by using the continuation character (\)

e When splitting a long variable over multiple lines, all continuation lines should be indented (with spaces) to align

with the start of the quote on the first line:

FOO = "this line is \

long \

"

Instead of:

FOO = "this line is \

long \

hon Function formatting

¢ Spaces must be used for indenting Python code, with 4 spaces per tab

Shell Function formatting

5.3

» The formatting of shell functions should be consistent within layers. Some use tabs, some use spaces.

.5 Recipe metadata

Required Variables

The

following variables should be included in all recipes:
¢ SUMMARY: a one line description of the upstream project

e DESCRIPTION: an extended description of the upstream project, possibly with multiple lines. If no reasonable
description can be written, this may be omitted as it defaults to SUMMARY .

* HOMEPAGE: the URL to the upstream projects homepage.

e BUGTRACKER: the URL upstream projects bug tracking website, if applicable.

100

Chapter 5. Yocto Project and OpenEmbedded Contributor Guide



The Yocto Project ®, Release 5.1.3

Recipe Ordering
When a variable is defined in recipes and classes, variables should follow the general order when possible:
o SUMMARY
¢ DESCRIPTION
¢ HOMEPAGE
e BUGTRACKER
e SECTION
e LICENSE
e LIC_FILES_CHKSUM
e DEPENDS
¢ PROVIDES
« PV
e SRC_URI
* SRCREV
e S
e inherit ...
¢ PACKAGECONFIG
* Build class specific variables such as EXTRA_QMAKEVARS_POST and EXTRA_OECONF
e Tasks such as do_configure
¢ PACKAGE_ARCH
* PACKAGES
e FILES
* RDEPENDS
* RRECOMMENDS
* RSUGGESTS
* RPROVIDES
e RCONFLICTS
¢ BBCLASSEXTEND
There are some cases where ordering is important and these cases would override this default order. Examples include:

¢ PACKAGE_ARCH needing to be set before inherit packagegroup

5.3. Recipe Style Guide 101



The Yocto Project ®, Release 5.1.3

Tasks should be ordered based on the order they generally execute. For commonly used tasks this would be:

do_fetch

do_unpack

do_patch
do_prepare_recipe_sysroot
do_configure

do_compile

do_install
do_populate_sysroot

do_package

Custom tasks should be sorted similarly.

Package specific variables are typically grouped together, e.g.:

RDEPENDS:${PN} = “foo”
RDEPENDS:${PN}-1libs = “bar”
RRECOMMENDS: ${PN} = “one”
RRECOMMENDS: ${PN}-1ibs = “two”

Recipe License Fields

Recipes need to define both the LICENSE and LIC_FILES_CHKSUM variables:

LICENSE: This variable specifies the license for the software. If you do not know the license under which the
software you are building is distributed, you should go to the source code and look for that information. Typical
files containing this information include copYING, LICENSE, and README files. You could also find the information
near the top of a source file. For example, given a piece of software licensed under the GNU General Public License

version 2, you would set LICENSE as follows:

LICENSE = "GPL-2.0-only"

The licenses you specify within LICENSE can have any name as long as you do not use spaces, since spaces are
used as separators between license names. For standard licenses, use the names of the files in meta/files/

common-1licenses/ or the SPDXLICENSEMAP flag names defined in meta/conf/licenses.conf.

LIC FILES CHKSUM: The OpenEmbedded build system uses this variable to make sure the license text has not

changed. If it has, the build produces an error and it affords you the chance to figure it out and correct the problem.

You need to specify all applicable licensing files for the software. At the end of the configuration step, the build

process will compare the checksums of the files to be sure the text has not changed. Any differences result in an

102

Chapter 5. Yocto Project and OpenEmbedded Contributor Guide




The Yocto Project ®, Release 5.1.3

error with the message containing the current checksum. For more explanation and examples of how to set the
LIC_FILES_CHKSUM variable, see the “Tracking License Changes” section.

To determine the correct checksum string, you can list the appropriate files in the LIC_FILES_CHKSUM variable
with incorrect md5 strings, attempt to build the software, and then note the resulting error messages that will report

the correct md5 strings. See the “Fetching Code” section for additional information.

Here is an example that assumes the software has a COPYING file:

LIC_FILES_CHKSUM = "file://COPYING;md5=xxx"

When you try to build the software, the build system will produce an error and give you the correct string that you

can substitute into the recipe file for a subsequent build.

License Updates

When you change the LICENSE or LIC_FILES_CHKSUM in the recipe you need to briefly explain the reason for the

change via a License-Update: tag. Oftenit’ s quite trivial, such as:

License-Update: copyright years refreshed

Less often, the actual licensing terms themselves will have changed. If so, do try to link to upstream making/justifying

that decision.

Tips and Guidelines for Writing Recipes

e Use BBCLASSEXTEND instead of creating separate recipes such as —native and -nativesdk ones, whenever

possible. This avoids having to maintain multiple recipe files at the same time.

¢ Recipes should have tasks which are idempotent, i.e. that executing a given task multiple times shouldn’ t change

the end result. The build environment is built upon this assumption and breaking it can cause obscure build failures.
 For idempotence when modifying files in tasks, it is usually best to:
— copy afile x to X.orig (only if it doesn’ t exist already)
— then, copy X.orig back to X,
— and, finally, modify x.

This ensures if rerun the task always has the same end result and the original file can be preserved to reuse. It also

guards against an interrupted build corrupting the file.

5.3.6 Patch Upstream Status

In order to keep track of patches applied by recipes and ultimately reduce the number of patches that need maintaining,

the OpenEmbedded build system requires information about the upstream status of each patch.

In its description, each patch should provide detailed information about the bug that it addresses, such as the URL in a

bug tracking system and links to relevant mailing list archives.

5.3. Recipe Style Guide 103




The Yocto Project ®, Release 5.1.3

Then, you should also add an Upstream-Status: tag containing one of the following status strings:

Pending

No determination has been made yet, or patch has not yet been submitted to upstream.

Keep in mind that every patch submitted upstream reduces the maintainance burden in OpenEmbedded and Yocto
Project in the long run, so this patch status should only be used in exceptional cases if there are genuine obstacles

to submitting a patch upstream; the reason for that should be included in the patch.

Submitted [where]
Submitted to upstream, waiting for approval. Optionally include where it was submitted, such as the author, mailing

list, etc.

Backport [version]
Accepted upstream and included in the next release, or backported from newer upstream version, because we are

at a fixed version. Include upstream version info (e.g. commit ID or next expected version).

Denied

Not accepted by upstream, include reason in patch.

Inactive-Upstream [lastcommit: when (and/or) lastrelease: when]
The upstream is no longer available. This typically means a defunct project where no activity has happened for a
long time —measured in years. To make that judgement, it is recommended to look at not only when the last release
happened, but also when the last commit happened, and whether newly made bug reports and merge requests since
that time receive no reaction. It is also recommended to add to the patch description any relevant links where the

inactivity can be clearly seen.

Inappropriate [reason]
The patch is not appropriate for upstream, include a brief reason on the same line enclosed with [ 1. In the past, there
were several different reasons not to submit patches upstream, but we have to consider that every non-upstreamed
patch means a maintainance burden for recipe maintainers. Currently, the only reasons to mark patches as inap-

propriate for upstream submission are:

* oe specific: the issue is specific to how OpenEmbedded performs builds or sets things up at runtime, and

can be resolved only with a patch that is not however relevant or appropriate for general upstream submission.

e upstream ticket <link>: the issue is not specific to Open-Embedded and should be fixed upstream, but
the patch in its current form is not suitable for merging upstream, and the author lacks sufficient expertise to

develop a proper patch. Instead the issue is handled via a bug report (include link).

Of course, if another person later takes care of submitting this patch upstream, the status should be changed to Submitted
[where], and an additional Signed-off-by: line should be added to the patch by the person claiming responsibility

for upstreaming.

104 Chapter 5. Yocto Project and OpenEmbedded Contributor Guide



The Yocto Project ®, Release 5.1.3

Examples

Here’ s an example of a patch that has been submitted upstream:

rpm: Adjusted the foo setting in bar

[RPM Ticket #65] -- http://rpm5.org/cvs/tktview?tn=65,5

The foo setting in bar was decreased from X to X-50% in order to

ensure we don't exhaust all system memory with foobar threads.

Upstream-Status: Submitted [rpm5-devel@rpm5.org]

Signed-off-by: Joe Developer <joe.developer@example.com>

A future update can change the value to Backport or Denied as appropriate.

Another example of a patch that is specific to OpenEmbedded:

Do not treat warnings as errors
There are additional warnings found with musl which are
treated as errors and fails the build, we have more combinations

than upstream supports to handle.

Upstream-Status: Inappropriate [oe specific]

Here’ s a patch that has been backported from an upstream commit:

include missing sys/file.h for LOCK_EX

Upstream-Status: Backport [https://github.com/systemd/systemd/commit/
—ac8db36cbc26694ee94beecc8dca208ecd4b5£d45]

5.3.7 CVE patches

In order to have a better control of vulnerabilities, patches that fix CVEs must contain a CVE : tag. This tag list all CVEs

fixed by the patch. If more than one CVE is fixed, separate them using spaces.

5.3. Recipe Style Guide 105




The Yocto Project ®, Release 5.1.3

CVE Examples

This should be the header of patch that fixes CVE-2015-8370 in GRUB2:

grub2: Fix CVE-2015-8370

[No upstream tracking] —-- https://bugzilla.redhat.com/show_bug.cgi?id=1286966

Back to 28; Grub2 Authentication

Two functions suffer from integer underflow fault; the grub_username_get () and grub_
—password_get () located in
grub-core/normal/auth.c and lib/crypto.c respectively. This can be exploited to.

—obtain a Grub rescue shell.

Upstream-Status: Backport [http://git.savannah.gnu.org/cgit/grub.git/commit/?
—1d=451d80e52d851432e109771bb8febafca7a5f1£f2]
CVE: CVE-2015-8370

Signed-off-by: Joe Developer <joe.developer@example.com>

5.3.8 Patch format

By default, patches created with git format-patch have a Git version signature at the end. To avoid having a Git

signature at the end of generated or updated patches, you can use Git configuration settings:

git config --global format.signature ""

Note

Patches generated or updated by devtool are created with no signature.

5.4 Contributing Changes to a Component

Contributions to the Yocto Project and OpenEmbedded are very welcome. Because the system is extremely configurable

and flexible, we recognize that developers will want to extend, configure or optimize it for their specific uses.

5.4.1 Contributing through mailing lists —Why not using web-based workflows?

Both Yocto Project and OpenEmbedded have many key components that are maintained by patches being submitted on
mailing lists. We appreciate this approach does look a little old fashioned when other workflows are available through
web technology such as GitHub, GitLab and others. Since we are often asked this question, we’ ve decided to document

the reasons for using mailing lists.

106 Chapter 5. Yocto Project and OpenEmbedded Contributor Guide



https://nvd.nist.gov/vuln/detail/CVE-2015-8370

The Yocto Project ®, Release 5.1.3

One significant factor is that we value peer review. When a change is proposed to many of the core pieces of the project,
it helps to have many eyes of review go over them. Whilst there is ultimately one maintainer who needs to make the
final call on accepting or rejecting a patch, the review is made by many eyes and the exact people reviewing it are likely

unknown to the maintainer. It is often the surprise reviewer that catches the most interesting issues!

This is in contrast to the “GitHub” style workflow where either just a maintainer makes that review, or review is specifically
requested from nominated people. We believe there is significant value added to the codebase by this peer review and

that moving away from mailing lists would be to the detriment of our code.

We also need to acknowledge that many of our developers are used to this mailing list workflow and have worked with it
for years, with tools and processes built around it. Changing away from this would result in a loss of key people from the

project, which would again be to its detriment.

The projects are acutely aware that potential new contributors find the mailing list approach off-putting and would prefer
a web-based GUI. Since we don’ t believe that can work for us, the project is aiming to ensure patchwork is available
to help track patch status and also looking at how tooling can provide more feedback to users about patch status. We
are looking at improving tools such as patchtest to test user contributions before they hit the mailing lists and also at
better documenting how to use such workflows since we recognise that whilst this was common knowledge a decade ago,

it might not be as familiar now.

5.4.2 Preparing Changes for Submission
Set up Git

The first thing to do is to install Git packages. Here is an example on Debian and Ubuntu:

sudo apt install git-core git-email

Then, you need to set a name and e-mail address that Git will use to identify your commits:

git config --global user.name "Ada Lovelace"

git config --global user.email "ada.lovelace@gmail.com"

By default, Git adds a signature line at the end of patches containing the Git version. We suggest to remove it as it doesn’

t add useful information.

Remove it with the following command:

git config --global format.signature ""

Clone the Git repository for the component to modify

After identifying the component to modify as described in the “Identify the component” section, clone the corresponding

Git repository. Here is an example for OpenEmbedded-Core:

5.4. Contributing Changes to a Component 107



https://patchwork.yoctoproject.org/

The Yocto Project ®, Release 5.1.3

git clone https://git.openembedded.org/openembedded-core

cd openembedded-core

Create a new branch

Then, create a new branch in your local Git repository for your changes, starting from the reference branch in the upstream

repository (often called master):

$ git checkout <ref-branch>

$ git checkout -b my-changes

If you have completely unrelated sets of changes to submit, you should even create one branch for each set.

Implement and commit changes

In each branch, you should group your changes into small, controlled and isolated ones. Keeping changes small and
isolated aids review, makes merging/rebasing easier and keeps the change history clean should anyone need to refer to it

in future.

To this purpose, you should create one Git commit per change, corresponding to each of the patches you will eventually

submit. See further guidance in the Linux kernel documentation if needed.

For example, when you intend to add multiple new recipes, each recipe should be added in a separate commit. For
upgrades to existing recipes, the previous version should usually be deleted as part of the same commit to add the upgraded

version.

1. Stage Your Changes: Stage your changes by using the git add command on each file you modified. If you want

to stage all the files you modified, you can even use the git add -A command.

2. Commit Your Changes: This is when you can create separate commits. For each commit to create, use the git

commit -s command with the files or directories you want to include in the commit:

$ git commit -s filel file2 dirl dir2

To include all staged files:

$ git commit -sa

e The -s option of git commit addsa “Signed-off-by:” line to your commit message. There is the same
requirement for contributing to the Linux kernel. Adding such a line signifies that you, the submitter, have

agreed to the Developer’ s Certificate of Origin 1.1 as follows:

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(continues on next page)

108 Chapter 5. Yocto Project and OpenEmbedded Contributor Guide


https://www.kernel.org/doc/html/latest/process/submitting-patches.html#separate-your-changes
https://www.kernel.org/doc/html/latest/process/submitting-patches.html#sign-your-work-the-developer-s-certificate-of-origin

The Yocto Project ®, Release 5.1.3

(continued from previous page)

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license

indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated

in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified

it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with

this project or the open source license(s) involved.

* Provide a single-line summary of the change and, if more explanation is needed, provide more detail in the
body of the commit. This summary is typically viewable in the “shortlist” of changes. Thus, providing
something short and descriptive that gives the reader a summary of the change is useful when viewing a list
of many commits. You should prefix this short description with the recipe name (if changing a recipe), or

else with the short form path to the file being changed.

Note

To find a suitable prefix for the commit summary, a good idea is to look for prefixes used in previous

commits touching the same files or directories:

git log ——-oneline <paths>

¢ For the body of the commit message, provide detailed information that describes what you changed, why you
made the change, and the approach you used. It might also be helpful if you mention how you tested the

change. Provide as much detail as you can in the body of the commit message.

5.4. Contributing Changes to a Component 109



The Yocto Project ®, Release 5.1.3

Note

If the single line summary is enough to describe a simple change, the body of the commit message can

be left empty.

« If the change addresses a specific bug or issue that is associated with a bug-tracking ID, include a reference to
that ID in your detailed description. For example, the Yocto Project uses a specific convention for bug refer-
ences —any commit that addresses a specific bug should use the following form for the detailed description.

Be sure to use the actual bug-tracking ID from Bugzilla for bug-id:

Fixes [YOCTO #bug-id]

detailed description of change

3. Crediting contributors: By using the git commit --amend command, you can add some tags to the commit

description to credit other contributors to the change:

* Reported-by: name and email of a person reporting a bug that your commit is trying to fix. This is a
good practice to encourage people to go on reporting bugs and let them know that their reports are taken into

account.
* Suggested-by: name and email of a person to credit for the idea of making the change.

* Tested-by, Reviewed-by: name and email for people having tested your changes or reviewed their code.
These fields are usually added by the maintainer accepting a patch, or by yourself if you submitted your
patches to early reviewers, or are submitting an unmodified patch again as part of a new iteration of your

patch series.

e cC: Name and email of people you want to send a copy of your changes to. This field will be used by git

send-email.

See more guidance about using such tags in the Linux kernel documentation.

Test your changes

For each contributions you make, you should test your changes as well. For this the Yocto Project offers several types of

tests. Those tests cover different areas and it depends on your changes which are feasible. For example run:
* For changes that affect the build environment:
— bitbake-selftest: for changes within BitBake
— oe-selftest: to test combinations of BitBake runs
— oe-build-perf-test: to test the performance of common build scenarios
* For changes in a recipe:

— ptest: run package specific tests, if they exist

110 Chapter 5. Yocto Project and OpenEmbedded Contributor Guide


https://www.kernel.org/doc/html/latest/process/submitting-patches.html#using-reported-by-tested-by-reviewed-by-suggested-by-and-fixes

The Yocto Project ®, Release 5.1.3

— testimage: build an image, boot it and run testcases on it

— If applicable, ensure also the native and nativesdk variants builds
* For changes relating to the SDK:

— testsdk: to build, install and run tests against a SDK

— testsdk_ext: to build, install and run tests against an extended SDK

Note that this list just gives suggestions and is not exhaustive. More details can be found here: Yocto Project Tests — Types

of Testing Overview.

5.4.3 Creating Patches

Here is the general procedure on how to create patches to be sent through email:

1. Describe the Changes in your Branch: If you have more than one commit in your branch, it” s recommended to

provide a cover letter describing the series of patches you are about to send.

For this purpose, a good solution is to store the cover letter contents in the branch itself:

git branch --edit-description

This will open a text editor to fill in the description for your changes. This description can be updated when

necessary and will be used by Git to create the cover letter together with the patches.
It is recommended to start this description with a title line which will serve a the subject line for the cover letter.

2. Generate Patches for your Branch: The git format-patch command will generate patch files for each of the

commits in your branch. You need to pass the reference branch your branch starts from.

If you branch didn’ t need a description in the previous step:

$ git format-patch <ref-branch>

If you filled a description for your branch, you will want to generate a cover letter too:

$ git format-patch --cover-letter --cover-—-from-description=auto <ref-branch>

After the command is run, the current directory contains numbered .patch files for the commits in your branch.

If you have a cover letter, it will be in the 0000-cover-letter.patch.

Note

The ——cover-from-description=auto option makes git format-patch use the first paragraph of the
branch description as the cover letter title. Another possibility, which is easier to remember, is to pass only
the ——cover-letter option, but you will have to edit the subject line manually every time you generate the

patches.

5.4. Contributing Changes to a Component 111




The Yocto Project ®, Release 5.1.3

See the git format-patch manual page for details.

3. Review each of the Patch Files: This final review of the patches before sending them often allows to view your
changes from a different perspective and discover defects such as typos, spacing issues or lines or even files that

you didn’ t intend to modify. This review should include the cover letter patch too.

If necessary, rework your commits as described in  “7Taking Patch Review into Account” .

5.4.4 Validating Patches with Patchtest

patchtest is available in openembedded-core as a tool for making sure that your patches are well-formatted and
contain important info for maintenance purposes, such as Signed-off-by and Upstream-Status tags. Note that
no functional testing of the changes will be performed by patchtest. Currently, it only supports testing patches for

openembedded-core branches. To setup, perform the following:

pip install -r meta/lib/patchtest/requirements.txt
source oe—init-build-env

bitbake-layers add-layer ../meta-selftest

Once these steps are complete and you have generated your patch files, you can run patchtest like so:

patchtest ——patch <patch_name>

Alternatively, if you want patchtest to iterate over and test multiple patches stored in a directory, you can use:

patchtest —--directory <directory_name>

By default, patchtest uses its own modules’ file paths to determine what repository and test suite to check patches
against. If you wish to test patches against a repository other than openembedded-core and/or use a different set of

tests, you can use the ——repodir and --testdir flags:

patchtest —--patch <patch_name> --repodir <path/to/repo> --testdir <path/to/testdir>

Finally, note that patchtest is designed to test patches in a standalone way, so if your patches are meant to apply on
top of changes made by previous patches in a series, it is possible that pat chtest will report false failures regarding the

“merge on head” test.

Using patchtest in this manner provides a final check for the overall quality of your changes before they are submitted

for review by the maintainers.

112 Chapter 5. Yocto Project and OpenEmbedded Contributor Guide



https://git-scm.com/docs/git-format-patch

The Yocto Project ®, Release 5.1.3

5.4.5 Sending the Patches via Email

Using Git to Send Patches

To submit patches through email, it is very important that you send them without any whitespace or HTML formatting
that either you or your mailer introduces. The maintainer that receives your patches needs to be able to save and apply

them directly from your emails, using the git am command.

Using the git send-email command is the only error-proof way of sending your patches using email since there is
no risk of compromising whitespace in the body of the message, which can occur when you use your own mail client. It
will also properly include your patches as inline attachments, which is not easy to do with standard e-mail clients without
)

breaking lines. If you used your regular e-mail client and shared your patches as regular attachments, reviewers wouldn

t be able to quote specific sections of your changes and make comments about them.

Setting up Git to Send Email

The git send-email command can send email by using a local or remote Mail Transport Agent (MTA) such as msmtp,

sendmail, or through a direct SMTP configuration in your Git ~/ .gitconfig file.

Here are the settings for letting git send-email send e-mail through your regular STMP server, using a Google Mail

account as an example:

git config —--global sendemail.smtpserver smtp.gmail.com

git config —--global sendemail.smtpserverport 587

git config --global sendemail.smtpencryption tls

git config --global sendemail.smtpuser ada.lovelace@gmail.com

git config —--global sendemail.smtppass = XXXXXXXX

These settings will appear in the . gitconfig file in your home directory.

If you neither can use a local MTA nor SMTP, make sure you use an email client that does not touch the message (turning
spaces in tabs, wrapping lines, etc.). A good mail client to do so is Pine (or Alpine) or Mutt. For more information about

suitable clients, see Email clients info for Linux in the Linux kernel sources.

If you use such clients, just include the patch in the body of your email.

Finding a Suitable Mailing List

You should send patches to the appropriate mailing list so that they can be reviewed by the right contributors and merged
by the appropriate maintainer. The specific mailing list you need to use depends on the location of the code you are

changing.

If people have concerns with any of the patches, they will usually voice their concern over the mailing list. If patches do
not receive any negative reviews, the maintainer of the affected layer typically takes them, tests them, and then based on

successful testing, merges them.

In general, each component (e.g. layer) should have a README file that indicates where to send the changes and which

process to follow.

5.4. Contributing Changes to a Component 113



https://www.kernel.org/doc/html/latest/process/email-clients.html

The Yocto Project ®, Release 5.1.3

The “poky” repository, which is the Yocto Project’ s reference build environment, is a hybrid repository that contains
several individual pieces (e.g. BitBake, Metadata, documentation, and so forth) built using the combo-layer tool. The

upstream location used for submitting changes varies by component:

¢ Core Metadata: Send your patches to the openembedded-core mailing list. For example, a change to anything under

the meta or scripts directories should be sent to this mailing list.

* BitBake: For changes to BitBake (i.e. anything under the bitbake directory), send your patches to the bitbake-

devel mailing list.
* meta-poky and meta-yocto-bsp trees: These trees contain Metadata. Use the poky mailing list.
* Documentation: For changes to the Yocto Project documentation, use the docs mailing list.

For changes to other layers and tools hosted in the Yocto Project source repositories (i.e. git.yoctoproject.org), use the

yocto-patches general mailing list.

For changes to other layers hosted in the OpenEmbedded source repositories (i.e. git.openembedded.org), use the

openembedded-devel mailing list, unless specified otherwise in the layer’ s README file.

If you intend to submit a new recipe that neither fits into the core Metadata, nor into meta-openembedded, you should look
for a suitable layer in https://layers.openembedded.org. If similar recipes can be expected, you may consider Creating

Your Own Layer.

If in doubt, please ask on the yocto general mailing list or on the openembedded-devel mailing list.

Subscribing to the Mailing List
After identifying the right mailing list to use, you will have to subscribe to it if you haven’ t done it yet.
If you attempt to send patches to a list you haven’ t subscribed to, your email will be returned as undelivered.

“

However, if you don’ t want to be receive all the messages sent to a mailing list, you can set your subscription to “no

email” . You will still be a subscriber able to send messages, but you won’ t receive any e-mail. If people reply to your

message, their e-mail clients will default to including your email address in the conversation anyway.

Anyway, you’ 1l also be able to access the new messages on mailing list archives, either through a web browser, or for
the lists archived on https://lore.kernel.org, through an individual newsgroup feed or a git repository.

Sending Patches via Email

At this stage, you are ready to send your patches via email. Here’ s the typical usage of git send-email:

git send-email —-to <mailing-list-address> *.patch

Then, review each subject line and list of recipients carefully, and then allow the command to send each message.

Youwill see that git send-email will automatically copy the people listed in any commit tags such as Signed-off-by

or Reported-by.

114 Chapter 5. Yocto Project and OpenEmbedded Contributor Guide



https://lists.openembedded.org/g/openembedded-core
https://lists.openembedded.org/g/bitbake-devel
https://lists.openembedded.org/g/bitbake-devel
https://lists.yoctoproject.org/g/poky
https://lists.yoctoproject.org/g/docs
https://git.yoctoproject.org
https://lists.yoctoproject.org/g/yocto-patches/
https://git.openembedded.org
https://lists.openembedded.org/g/openembedded-devel
https://git.openembedded.org/meta-openembedded/
https://layers.openembedded.org
https://lists.yoctoproject.org/g/yocto/
https://lists.openembedded.org/g/openembedded-devel
https://lore.kernel.org

The Yocto Project ®, Release 5.1.3

In case you are sending patches for meta-openembedded or any layer other than openembedded-core, please add the

appropriate prefix so that it is clear which layer the patch is intended to be applied to:

git format-patch --subject-prefix="meta-oe] [PATCH"

Note

It is actually possible to send patches without generating them first. However, make sure you have reviewed your

changes carefully because git send-email will just show you the title lines of each patch.

Here’ s acommand you can use if you just have one patch in your branch:

git send-email --to <mailing-list-address> -1

If you have multiple patches and a cover letter, you can send patches for all the commits between the reference branch

and the tip of your branch:

git send-email --cover-letter —--cover-from-description=auto —--to <mailing-list-

—address> -M <ref-branch>

See the git send-email manual page for details.

Troubleshooting Email Issues

Fixing your From identity

We have a frequent issue with contributors whose patches are received through a From field which doesn’ t match
the Signed-off-by information. Here is a typical example for people sending from a domain name with https://en.
wikipedia.org/wiki/DMARC:

From: "Linus Torvalds via lists.openembedded.org <linus.torvalds=kernel.org@lists.

—openembedded.org>"

This From field is used by git am to recreate commits with the right author name. The following will ensure that your
e-mails have an additional From field at the beginning of the Email body, and therefore that maintainers accepting your

patches don’ t have to fix commit author information manually:

git config --global sendemail.from "linus.torvalds@kernel.org"

The sendemail. from should match your user.email setting, which appears in the Signed-off-by line of your

commits.

5.4. Contributing Changes to a Component 115



https://git.openembedded.org/meta-openembedded/
https://git.openembedded.org/openembedded-core/
https://git-scm.com/docs/git-send-email
https://en.wikipedia.org/wiki/DMARC
https://en.wikipedia.org/wiki/DMARC

The Yocto Project ®, Release 5.1.3

Streamlining git send-email usage

If you want to save time and not be forced to remember the right options to use with git send-email, you can use Git

configuration settings.

¢ To set the right mailing list address for a given repository:

git config ——-local sendemail.to openembedded-devel@lists.openembedded.org

* If the mailing list requires a subject prefix for the layer (this only works when the repository only contains one

layer):

git config —-local format.subjectprefix "meta-something] [PATCH"

5.4.6 Using Scripts to Push a Change Upstream and Request a Pull

For larger patch series it is preferable to send a pull request which not only includes the patch but also a pointer to a
branch that can be pulled from. This involves making a local branch for your changes, pushing this branch to an accessible
repository and then using the create-pull-request and send-pull-request scripts from openembedded-core to

create and send a patch series with a link to the branch for review.

Follow this procedure to push a change to an upstream “contrib” Git repository once the steps in ““Preparing Changes

for Submission” have been followed:

Note

You can find general Git information on how to push a change upstream in the Git Community Book.

1. Request Push Access to an “Upstream” Contrib Repository: Send an email to helpdesk@yoctoproject.org:

¢ Attach your SSH public key which usually named id_rsa.pub.. If you don’ t have one generate it by

running ssh-keygen -t rsa -b 4096 -C "your_emaillexample.com".
* List the repositories you’ re planning to contribute to.
¢ Include your preferred branch prefix for —cont rib repositories.

2. Push Your Commits to the “Contrib” Upstream: Push your changes to that repository:

$ git push upstream_remote_repo local_branch_name

For example, suppose you have permissions to push into the upstream meta-intel-contrib repository and you
are working in a local branch named your_name/README. The following command pushes your local commits to

the meta-intel-contrib upstream repository and puts the commit in a branch named your_name/README:

$ git push meta-intel-contrib your_name/README

116 Chapter 5. Yocto Project and OpenEmbedded Contributor Guide


https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

The Yocto Project ®, Release 5.1.3

3. Determine Who to Notify: Determine the maintainer or the mailing list that you need to notify for the change.

Before submitting any change, you need to be sure who the maintainer is or what mailing list that you need to

notify. Use either these methods to find out:

* Maintenance File: Examine the maintainers. inc file, which is located in the Source Directory at meta/

conf/distro/include, to see who is responsible for code.

* Search by File: Using Git, you can enter the following command to bring up a short list of all commits against

a specific file:

git shortlog —-- filename

Just provide the name of the file for which you are interested. The information returned is not ordered by
history but does include a list of everyone who has committed grouped by name. From the list, you can see

who is responsible for the bulk of the changes against the file.
e Find the Mailing List to Use: See the ‘“Finding a Suitable Mailing List” section above.

4. Make a Pull Request: Notify the maintainer or the mailing list that you have pushed a change by making a pull

request.

The Yocto Project provides two scripts that conveniently let you generate and send pull requests to the Yocto
Project. These scripts are create-pull-request and send-pull-request. You can find these scripts in the

scripts directory within the Source Directory (e.g. poky/scripts).

Using these scripts correctly formats the requests without introducing any whitespace or HTML formatting. The
maintainer that receives your patches either directly or through the mailing list needs to be able to save and apply

them directly from your emails. Using these scripts is the preferred method for sending patches.

First, create the pull request. For example, the following command runs the script, specifies the upstream repository

in the contrib directory into which you pushed the change, and provides a subject line in the created patch files:

$ poky/scripts/create-pull-request -u meta-intel-contrib -s "Updated Manual.

—Section Reference in README"

Running this script forms * . patch files in a folder named pul1-PID in the current directory. One of the patch

files is a cover letter.

Before running the send-pull-request script, you must edit the cover letter patch to insert information about
your change. After editing the cover letter, send the pull request. For example, the following command runs the

script and specifies the patch directory and email address. In this example, the email address is a mailing list:

$ poky/scripts/send-pull-request -p ~/meta-intel/pull-10565 -t meta-intel@lists.

—yoctoproject.org

You need to follow the prompts as the script is interactive.

5.4. Contributing Changes to a Component 117



The Yocto Project ®, Release 5.1.3

Note

For help on using these scripts, simply provide the —h argument as follows:

$ poky/scripts/create-pull-request -h
$ poky/scripts/send-pull-request -h

5.4.7 Submitting Changes to Stable Release Branches

The process for proposing changes to a Yocto Project stable branch differs from the steps described above. Changes to a
stable branch must address identified bugs or CVEs and should be made carefully in order to avoid the risk of introducing
new bugs or breaking backwards compatibility. Typically bug fixes must already be accepted into the master branch
before they can be backported to a stable branch unless the bug in question does not affect the master branch or the fix

on the master branch is unsuitable for backporting.

The list of stable branches along with the status and maintainer for each branch can be obtained from the Releases wiki

page.

Note

Changes will not typically be accepted for branches which are marked as End-Of-Life (EOL).

With this in mind, the steps to submit a change for a stable branch are as follows:
1. Identify the bug or CVEto be fixed: This information should be collected so that it can be included in your submission.
See Checking for Vulnerabilities for details about CVE tracking.

2. Check if the fix is already present in the master branch: This will result in the most straightforward path into the
stable branch for the fix.

1. If the fix is present in the master branch —submit a backport request by email: You should send an email to the
relevant stable branch maintainer and the mailing list with details of the bug or CVE to be fixed, the commit
hash on the master branch that fixes the issue and the stable branches which you would like this fix to be

backported to.

2. If the fix is not present in the master branch —submit the fix to the master branch first: This will ensure that
the fix passes through the project’ s usual patch review and test processes before being accepted. It will also
ensure that bugs are not left unresolved in the master branch itself. Once the fix is accepted in the master

branch a backport request can be submitted as above.

3. If the fix is unsuitable for the master branch —submit a patch directly for the stable branch: This method should
be considered as a last resort. It is typically necessary when the master branch is using a newer version of the
software which includes an upstream fix for the issue or when the issue has been fixed on the master branch in
a way that introduces backwards incompatible changes. In this case follow the steps in ““Preparing Changes

Jfor Submission” and in the following sections but modify the subject header of your patch email to include

118 Chapter 5. Yocto Project and OpenEmbedded Contributor Guide


https://wiki.yoctoproject.org/wiki/Releases
https://wiki.yoctoproject.org/wiki/Releases

The Yocto Project ®, Release 5.1.3

the name of the stable branch which you are targetting. This can be done using the ——subject-prefix

argument to git format-patch, for example to submit a patch to the “scarthgap” branch use:

git format-patch --subject-prefix='scarthgap] [PATCH'

5.4.8 Taking Patch Review into Account

You may get feedback on your submitted patches from other community members or from the automated patchtest service.
If issues are identified in your patches then it is usually necessary to address these before the patches are accepted into the
project. In this case you should your commits according to the feedback and submit an updated version to the relevant

mailing list.

In any case, never fix reported issues by fixing them in new commits on the tip of your branch. Always come up with a

new series of commits without the reported issues.

Note

It is a good idea to send a copy to the reviewers who provided feedback to the previous version of the patch. You can

make sure this happens by adding a cC tag to the commit description:

CC: William Shakespeare <bill@yoctoproject.org>

A single patch can be amended using git commit --amend, and multiple patches can be easily reworked and reordered

through an interactive Git rebase:

git rebase -i <ref-branch>

See this tutorial for practical guidance about using Git interactive rebasing.

You should also modify the [PATCH] tag in the email subject line when sending the revised patch to mark the new iteration
as [PATCH v2], [PATCH v3], etc as appropriate. This can be done by passing the —v argument to git format-patch

with a version number:

git format-patch -v2 <ref-branch>

Lastly please ensure that you also test your revised changes. In particular please don’ t just edit the patch file written out

by git format-patch and resend it.

5.4.9 Tracking the Status of Patches

The Yocto Project uses a Patchwork instance to track the status of patches submitted to the various mailing lists and
to support automated patch testing. Each submitted patch is checked for common mistakes and deviations from the
expected patch format and submitters are notified by patchtest if such mistakes are found. This process helps to

reduce the burden of patch review on maintainers.

5.4. Contributing Changes to a Component 119



https://hackernoon.com/beginners-guide-to-interactive-rebasing-346a3f9c3a6d
https://patchwork.yoctoproject.org/

The Yocto Project ®, Release 5.1.3

Note

This system is imperfect and changes can sometimes get lost in the flow. Asking about the status of a patch or change

is reasonable if the change has been idle for a while with no feedback.

If your patches have not had any feedback in a few days, they may have already been merged. You can run git pull
branch to check this. Note that many if not most layer maintainers do not send out acknowledgement emails when they
accept patches. Alternatively, if there is no response or merge after a few days the patch may have been missed or the
appropriate reviewers may not currently be around. It is then perfectly fine to reply to it yourself with a reminder asking
for feedback.

Note

Patch reviews for feature and recipe upgrade patches are likely be delayed during a feature freeze because these types

of patches aren’ t merged during at that time —you may have to wait until after the freeze is lifted.

Maintainers also commonly use —next branches to test submissions prior to merging patches. Thus, you can get an idea
of the status of a patch based on whether the patch has been merged into one of these branches. The commonly used

testing branches for OpenEmbedded-Core are as follows:

* openembedded-core “master-next” branch: This branch is part of the openembedded-core repository and contains

proposed changes to the core metadata.

e poky “master-next” branch: This branch is part of the poky repository and combines proposed changes to BitBake,

the core metadata and the poky distro.

Similarly, stable branches maintained by the project may have corresponding —next branches which collect proposed
changes. For example, styhead-next and scarthgap-next branches in both the “openembdedded-core” and “poky”

repositories.

Other layers may have similar testing branches but there is no formal requirement or standard for these so please check

the documentation for the layers you are contributing to.

5.4.10 Acceptance of Al Generated Code

The Yocto Project and OpenEmbedded follow the guidance of the Linux Foundation in regards to the use of generative

Al tools. See: https://www.linuxfoundation.org/legal/generative-ai.

All of the existing guidelines in this document are expected to be followed, including in the Recipe Style Guide, and

contributing the changes with additional requirements to the items in section Implement and commit changes.

All AT Generated Code must be labeled as such in the commit message, prior to your Signed-off-by line. It is also
strongly recommended, that any patches or code within the commit also have a comment or other indication that this code

was Al generated.

For example, here is a properly formatted commit message:

120 Chapter 5. Yocto Project and OpenEmbedded Contributor Guide


https://git.openembedded.org/openembedded-core/
https://git.yoctoproject.org/poky/
https://www.linuxfoundation.org/legal/generative-ai

The Yocto Project ®, Release 5.1.3

component: Add the ability to

AI-Generated: Uses GitHub Copilot

Signed-off-by: Your Name <your.name@domain>

The signed-off-by line must be written by you, and not the Al helper. As a reminder, when contributing a change,

your Signed-off-by line is required and the stipulations in the Developer’ s Statement of Origin 1.1 still apply.
Additionally, you must stipulate Al contributions conform to the Linux Foundation policy, specifically:

1. Contributors should ensure that the terms and conditions of the generative Al tool do not place any contractual
restrictions on how the tool’ s output can be used that are inconsistent with the project’ s open source software

license, the project’ s intellectual property policies, or the Open Source Definition.

2. If any pre-existing copyrighted materials (including pre-existing open source code) authored or owned by third
parties are included in the Al tool’ s output, prior to contributing such output to the project, the Contributor should
confirm that they have permission from the third party owners —such as the form of an open source license or
public domain declaration that complies with the project’ s licensing policies —to use and modify such pre-existing
materials and contribute them to the project. Additionally, the contributor should provide notice and attribution of

such third party rights, along with information about the applicable license terms, with their contribution.

The Yocto Project ®

<docs@lists.yoctoproject.org>

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Share Alike 2.0 UK: England & Wales as published by Creative Commons.

To report any inaccuracies or problems with this (or any other Yocto Project) manual, or to send additions or changes,
please send email/patches to the Yocto Project documentation mailing list at docs@lists.yoctoproject.org or log

into the Libera Chat #yocto channel.

5.4. Contributing Changes to a Component 121



https://developercertificate.org/
mailto:docs@lists.yoctoproject.org
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://creativecommons.org/licenses/by-sa/2.0/uk/
https://libera.chat/

The Yocto Project ®, Release 5.1.3

122 Chapter 5. Yocto Project and OpenEmbedded Contributor Guide



CHAPTER

SIX

YOCTO PROJECT REFERENCE MANUAL

6.1 System Requirements

Welcome to the Yocto Project Reference Manual. This manual provides reference information for the current release of
the Yocto Project, and is most effectively used after you have an understanding of the basics of the Yocto Project. The
manual is neither meant to be read as a starting point to the Yocto Project, nor read from start to finish. Rather, use this

manual to find variable definitions, class descriptions, and so forth as needed during the course of using the Yocto Project.

For introductory information on the Yocto Project, see the Yocto Project Website and the “The Yocto Project Development

Environment” chapter in the Yocto Project Overview and Concepts Manual.

If you want to use the Yocto Project to quickly build an image without having to understand concepts, work through the
Yocto Project Quick Build document. You can find “how-to” information in the Yocto Project Development Tasks Manual.

You can find Yocto Project overview and conceptual information in the Yocto Project Overview and Concepts Manual.

Note

For more information about the Yocto Project Documentation set, see the Links and Related Documentation section.

6.1.1 Minimum Free Disk Space

To build an image such as core-image-sato for the gemux86-64 machine, you need a system with at least 90 Gbytes
of free disk space. However, much more disk space will be necessary to build more complex images, to run multiple

builds and to cache build artifacts, improving build efficiency.

If you have a shortage of disk space, see the “Conserving Disk Space” section of the Development Tasks Manual.

123


https://www.yoctoproject.org

The Yocto Project ®, Release 5.1.3

6.1.2 Minimum System RAM

You will manage to build an image such as core-image-sato for the gemux86-64 machine with as little as 8 Gbytes
of RAM on an old system with 4 CPU cores, but your builds will be much faster on a system with as much RAM and as

many CPU cores as possible.

6.1.3 Supported Linux Distributions
Currently, the 5.1.3 release ( “Styhead” ) of the Yocto Project is supported on the following distributions:

e Ubuntu 20.04 (LTS)

* Ubuntu 22.04 (LTS)

e Ubuntu 24.04 (LTS)

» Fedora 38

* Fedora 39

* Fedora 40

e CentOS Stream 8

¢ Debian GNU/Linux 11 (Bullseye)

¢ Debian GNU/Linux 12 (Bookworm)

* OpenSUSE Leap 15.4

* OpenSUSE Leap 15.5

e OpenSUSE Leap 15.6

¢ AlmaLinux 8

e AlmaLinux 9

* Rocky 9

The following distribution versions are still tested, even though the organizations publishing them no longer make updates

publicly available:
e Ubuntu 18.04 (LTS)
e Ubuntu 23.04

Note that the Yocto Project doesn’ t have access to private updates that some of these versions may have. Therefore, our

testing has limited value if you have access to such updates.

Finally, here are the distribution versions which were previously tested on former revisions of “Styhead” , but no longer

are:

This list is currently empty

124 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

Note

* While the Yocto Project Team attempts to ensure all Yocto Project releases are one hundred percent compatible
with each officially supported Linux distribution, you may still encounter problems that happen only with a

specific distribution.

* Yocto Project releases are tested against the stable Linux distributions in the above list. The Yocto Project

should work on other distributions but validation is not performed against them.

¢ In particular, the Yocto Project does not support and currently has no plans to support rolling-releases or devel-
opment distributions due to their constantly changing nature. We welcome patches and bug reports, but keep

in mind that our priority is on the supported platforms listed above.

e If your Linux distribution is not in the above list, we recommend to get the buildtools or buildtools-extended
tarballs containing the host tools required by your Yocto Project release, typically by running scripts/

install-buildtools as explained in the ‘“Required Git, tar, Python, make and gcc Versions” section.

* You may use Windows Subsystem For Linux v2 to set up a build host using Windows 10 or later, or Windows

Server 2019 or later, but validation is not performed against build hosts using WSL 2.

See the Setting Up to Use Windows Subsystem For Linux (WSL 2) section in the Yocto Project Development

Tasks Manual for more information.

* If you encounter problems, please go to Yocto Project Bugzilla and submit a bug. We are interested in hearing
about your experience. For information on how to submit a bug, see the Yocto Project Bugzilla wiki page
and the “Reporting a Defect Against the Yocto Project and OpenEmbedded” section in the Yocto Project and
OpenEmbedded Contributor Guide.

6.1.4 Required Packages for the Build Host

The list of packages you need on the host development system can be large when covering all build scenarios using the

Yocto Project. This section describes required packages according to Linux distribution and function.

Ubuntu and Debian

Here are the packages needed to build an image on a headless system with a supported Ubuntu or Debian Linux distri-

bution:

$ sudo apt install build-essential chrpath cpio debianutils diffstat file gawk gcc.
—git iputils-ping libacll liblz4-tool locales python3 python3-git python3-jinja2.
—python3-pexpect python3-pip python3-subunit socat texinfo unzip wget xz-utils zstd

You also need to ensure you have the en_US.UTF-8 locale enabled:

$ locale —--all-locales | grep en_US.utf8

If this is not the case, you can reconfigure the 1ocales package to add it (requires an interactive shell):

6.1. System Requirements 125



https://bugzilla.yoctoproject.org
https://wiki.yoctoproject.org/wiki/Bugzilla_Configuration_and_Bug_Tracking

The Yocto Project ®, Release 5.1.3

$ sudo dpkg-reconfigure locales

Note

e If you are not in an interactive shell, dpkg-reconfigure will not work as expected. To add the locale you
will need to edit /etc/locale.gen file to add/uncomment the en_US.UTF-8 locale. A naive way to do this

as root is:

$ echo "en_US.UTF-8 UTF-8" >> /etc/locale.gen

$ locale-gen

* If your build system has the oss4-dev package installed, you might experience QEMU build failures due to
the package installing its own custom /usr/include/linux/soundcard.h on the Debian system. If you

run into this situation, try either of these solutions:

$ sudo apt build-dep gemu

$ sudo apt remove osséd-dev

Here are the packages needed to build Project documentation manuals:

$ sudo apt install git librsvg2-bin locales make python3-saneyaml python3-sphinx-rtd-

—theme sphinx

In addition to the previous packages, here are the packages needed to build the documentation in PDF format:

$ sudo apt install fonts-freefont-otf latexmk tex—-gyre texlive-fonts-extra texlive-
—fonts-recommended texlive-lang-all texlive-latex—-extra texlive-latex-recommended..

—texlive-xetex

Fedora Packages

Here are the packages needed to build an image on a headless system with a supported Fedora Linux distribution:

$ sudo dnf install bzip2 ccache chrpath cpio cpp diffstat diffutils file findutils..
—gawk gcc gcc-c++ git glibc-devel glibc-langpack-en gzip hostname libacl 1z4 make.
—patch perl perl-Data-Dumper perl-File-Compare perl-File-Copy perl-FindBin perl-Text-
—ParseWords perl-Thread-Queue perl-bignum perl-locale python python3 python3-
—GitPython python3-jinja2 python3-pexpect python3-pip rpcgen socat tar texinfo unzip.

—wget which xz zstd

Here are the packages needed to build Project documentation manuals:

126 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

$ sudo dnf install git glibc-locale-source librsvg2-tools make python3-pip which
$ sudo pip3 install sphinx sphinx_rtd_theme pyyaml

In addition to the previous packages, here are the packages needed to build the documentation in PDF format:

$ sudo dnf install 'texlive-collection-lang*' latexmk texlive-collection-fontsextra.
—texlive-collection-fontsrecommended texlive-collection-latex texlive-collection-
—latexextra texlive-collection-latexrecommended texlive-collection-xetex texlive-

—fncychap texlive—-gnu-freefont texlive-tex—-gyre texlive-xetex

openSUSE Packages

Here are the packages needed to build an image on a headless system with a supported openSUSE distribution:

$ sudo zypper install bzip2 chrpath diffstat gcc gcc-c++ git gzip hostname libaclil.
—1z4 make makeinfo patch python python-curses python-xml python3 python3-Jinja2.
—python3-curses python3-pexpect python3-pip rpcgen socat tar wget which xz zstd

$ sudo pip3 install GitPython

Here are the packages needed to build Project documentation manuals:

$ sudo zypper install git glibc-il8ndata make python3-pip rsvg-convert which
$ sudo pip3 install sphinx sphinx_rtd_theme pyyaml

In addition to the previous packages, here are the packages needed to build the documentation in PDF format:

$ sudo zypper install 'texlive-collection-lang*' texlive-collection-fontsextra.
—texlive-collection-fontsrecommended texlive-collection-latex texlive-collection-
—latexextra texlive-collection-latexrecommended texlive-collection—-xetex texlive-

—fncychap texlive-gnu-freefont texlive-latexmk texlive-tex—gyre texlive-xetex

AlmaLinux Packages

Here are the packages needed to build an image on a headless system with a supported AlmaLinux distribution:

sudo dnf install -y epel-release
sudo yum install dnf-plugins-core
sudo dnf config-manager —--set-enabled crb

sudo dnf makecache

v W W W »n

sudo dnf install bzip2 ccache chrpath cpio cpp diffstat diffutils gawk gcc gcc-c++.
—gilt glibc-devel glibc-langpack-en gzip libacl 1z4 make patch perl perl-Data-Dumper.
—perl-Text-ParseWords perl-Thread-Queue python3 python3-GitPython python3-jinja2.

—python3-pexpect python3-pip rpcgen socat tar texinfo unzip wget which xz zstd

6.1. System Requirements 127




The Yocto Project ®, Release 5.1.3

Note

» Extra Packages for Enterprise Linux (i.e. epel-release) is a collection of packages from Fedora built on
RHEL/CentOS for easy installation of packages not included in enterprise Linux by default. You need to install

these packages separately.
e The PowerTools/CRB repo provides additional packages such as rpcgen and texinfo.

¢ The makecache command consumes additional Metadata from epel-release.

Here are the packages needed to build Project documentation manuals:

$ sudo dnf install git glibc-locale-source librsvg2-tools make python3-pip which
$ sudo pip3 install sphinx sphinx_rtd_theme pyyaml

In addition to the previous packages, here are the packages needed to build the documentation in PDF format:

$ sudo dnf install latexmk texlive-collection-fontsrecommended texlive-collection-
—latex texlive-collection-latexrecommended texlive-collection-xetex texlive-fncychap.

—texlive—-gnu-freefont texlive-tex-gyre texlive-xetex

Warning

Unlike Fedora or OpenSUSE, AlmaLinux does not provide the packages texlive-collection-fontsextra,
texlive-collection-lang* and texlive-collection-latexextra, SO you may run into issues. These

may be installed using timgr.

6.1.5 Required Git, tar, Python, make and gcc Versions

In order to use the build system, your host development system must meet the following version requirements for Git, tar,
and Python:

* Git 1.8.3.1 or greater

e tar 1.28 or greater

¢ Python 3.8.0 or greater

* GNU make 4.0 or greater

If your host development system does not meet all these requirements, you can resolve this by installing a buildtools tarball

that contains these tools. You can either download a pre-built tarball or use BitBake to build one.
In addition, your host development system must meet the following version requirement for gcc:

 gce 8.0 or greater

128 Chapter 6. Yocto Project Reference Manual



https://tug.org/texlive/tlmgr.html

The Yocto Project ®, Release 5.1.3

If your host development system does not meet this requirement, you can resolve this by installing a buildtools-extended

tarball that contains additional tools, the equivalent of the Debian/Ubuntu build-essential package.

For systems with a broken make version (e.g. make 4.2.1 without patches) but where the rest of the host tools are usable,

you can use the buildtools-make tarball instead.

In the sections that follow, three different methods will be described for installing the buildtools, buildtools-extended or

buildtools-make toolset.

Installing a Pre-Built buildtools Tarball with install-buildtools script

The install-buildtools script is the easiest of the three methods by which you can get these tools. It downloads a

pre-built buildtools installer and automatically installs the tools for you:

1. Execute the install-buildtools script. Here is an example:

$ cd poky

$ scripts/install-buildtools \
——without-extended-buildtools \
—-base-url https://downloads.yoctoproject.org/releases/yocto \
—-release yocto-5.1.3 \

——installer-version 5.1.3

During execution, the buildtools tarball will be downloaded, the checksum of the download will be verified, the

installer will be run for you, and some basic checks will be run to make sure the installation is functional.

To avoid the need of sudo privileges, the install-buildtools script will by default tell the installer to install

in:

/path/to/poky/buildtools

If your host development system needs the additional tools provided in the buildtools-extended tarball, you can

instead execute the install-buildtools script with the default parameters:

$ cd poky
$ scripts/install-buildtools

Alternatively if your host development system has a broken make version such that you only need a known good

version of make, you can use the ——make-only option:

$ cd poky

$ scripts/install-buildtools —--make-only

2. Source the tools environment setup script by using a command like the following:

6.1. System Requirements 129



The Yocto Project ®, Release 5.1.3

$ source /path/to/poky/buildtools/environment-setup-x86_64-pokysdk—-1linux

After you have sourced the setup script, the tools are added to PATH and any other environment variables required
to run the tools are initialized. The results are working versions versions of Git, tar, Python and chrpath. And in
the case of the buildtools-extended tarball, additional working versions of tools including gcc, make and the other

tools included in packagegroup-core-buildessential.

Downloading a Pre-Built buildtools Tarball

If you would prefer not to use the install-buildtools script, you can instead download and run a pre-built buildtools

installer yourself with the following steps:

1. Go to https://downloads.yoctoproject.org/releases/yocto/yocto-5.1.3/buildtools/, locate and download the . sh file

corresponding to your host architecture and to buildtools, buildtools-extended or buildtools-make.

2. Execute the installation script. Here is an example for the traditional installer:

S sh ~/Downloads/x86_64-buildtools—nativesdk-standalone-5.1.3.sh

Here is an example for the extended installer:

S sh ~/Downloads/x86_64-buildtools—extended-nativesdk-standalone-5.1.3.sh

An example for the make-only installer:

$ sh ~/Downloads/x86_64-buildtools—-make-nativesdk-standalone—-5.1.3.sh

During execution, a prompt appears that allows you to choose the installation directory. For example, you could

choose the following: /home/your—-username/buildtools

3. Asinstructed by the installer script, you will have to source the tools environment setup script:

$ source /home/your_username/buildtools/environment-setup-x86_64-pokysdk-1linux

After you have sourced the setup script, the tools are added to PATH and any other environment variables required
to run the tools are initialized. The results are working versions versions of Git, tar, Python and chrpath. And in
the case of the buildtools-extended tarball, additional working versions of tools including gcc, make and the other

tools included in packagegroup-core-buildessential.

Building Your Own buildtools Tarball

Building and running your own buildtools installer applies only when you have a build host that can already run BitBake.
In this case, you use that machine to build the . sh file and then take steps to transfer and run it on a machine that does

not meet the minimal Git, tar, and Python (or gcc) requirements.

Here are the steps to take to build and run your own buildtools installer:

130 Chapter 6. Yocto Project Reference Manual


https://downloads.yoctoproject.org/releases/yocto/yocto-5.1.3/buildtools/

The Yocto Project ®, Release 5.1.3

1. On the machine that is able to run BitBake, be sure you have set up your build environment with the setup script

(oe-init-build-env).

2. Run the BitBake command to build the tarball:

$ bitbake buildtools-tarball

or to build the extended tarball:

$ bitbake buildtools—extended-tarball

or to build the make-only tarball:

$ bitbake buildtools-make-tarball

Note

The SDKMACHINE variable in your 1ocal . conf file determines whether you build tools for a 32-bit or 64-bit

system.

Once the build completes, you can find the . sh file that installs the tools in the tmp/deploy/sdk subdirectory of

the Build Directory. The installer file has the string “buildtools” or “buildtools-extended” in the name.

3. Transfer the . sh file from the build host to the machine that does not meet the Git, tar, or Python (or gcc) require-

ments.

4. On this machine, run the . sh file to install the tools. Here is an example for the traditional installer:

S sh ~/Downloads/x86_64-buildtools—nativesdk-standalone-5.1.3.sh

For the extended installer:

S sh ~/Downloads/x86_64-buildtools—extended-nativesdk-standalone-5.1.3.sh

And for the make-only installer:

$ sh ~/Downloads/x86_64-buildtools—-make—-nativesdk—-standalone-5.1.3.sh

During execution, a prompt appears that allows you to choose the installation directory. For example, you could

choose the following: /home/your_username/buildtools

5. Source the tools environment setup script by using a command like the following:

$ source /home/your_username/buildtools/environment-setup-x86_64-poky-linux

6.1. System Requirements 131



The Yocto Project ®, Release 5.1.3

After you have sourced the setup script, the tools are added to PATH and any other environment variables required
to run the tools are initialized. The results are working versions versions of Git, tar, Python and chrpath. And in
the case of the buildtools-extended tarball, additional working versions of tools including gcc, make and the other

tools included in packagegroup-core-buildessential.

6.2 Yocto Project Terms

Here is a list of terms and definitions users new to the Yocto Project development environment might find helpful. While

some of these terms are universal, the list includes them just in case:

Append Files

Files that append build information to a recipe file. Append files are known as BitBake append files and . bbappend
files. The OpenEmbedded build system expects every append file to have a corresponding recipe (.bb) file. Fur-
thermore, the append file and corresponding recipe file must use the same root filename. The filenames can differ

only in the file type suffix used (e.g. formfactor_0.0.bb and formfactor_0.0.bbappend).

Information in append files extends or overrides the information in the similarly-named recipe file. For an example
of an append file in use, see the “Appending Other Layers Metadata With Your Layer” section in the Yocto Project

Development Tasks Manual.

When you name an append file, you can use the “%” wildcard character to allow for matching recipe names. For

example, suppose you have an append file named as follows:

busybox_1.21.%.bbappend

That append file would match any busybox_1.21.x.bb version of the recipe. So, the append file would match

any of the following recipe names:

busybox_1.21.1.bb
busybox_1.21.2.bb
busybox_1.21.3.bb
busybox_1.21.10.bb
busybox_1.21.25.bb

Note

The use of the “%” character is limited in that it only works directly in front of the .bbappend portion of the

append file’ s name. You cannot use the wildcard character in any other location of the name.

BitBake

The task executor and scheduler used by the OpenEmbedded build system to build images. For more information

on BitBake, see the BitBake User Manual.

Board Support Package (BSP)

132

Chapter 6. Yocto Project Reference Manual



https://docs.yoctoproject.org/bitbake/2.10/index.html

The Yocto Project ®, Release 5.1.3

A group of drivers, definitions, and other components that provide support for a specific hardware configuration.

For more information on BSPs, see the Yocto Project Board Support Package Developer’ s Guide.

Build Directory
This term refers to the area used by the OpenEmbedded build system for builds. The area is created when you
source the setup environment script that is found in the Source Directory (i.e. oe-init-build-env). The TOPDIR

variable points to the Build Directory.

You have a lot of flexibility when creating the Build Directory. Here are some examples that show how to create

the directory. The examples assume your Source Directory is named poky:

¢ Create the Build Directory inside your Source Directory and let the name of the Build Directory default to

build:

$ cd poky

$ source oe-—-init-build-env

Create the Build Directory inside your home directory and specifically name it test-builds:

$ source poky/oce-init-build-env test-builds

* Provide a directory path and specifically name the Build Directory. Any intermediate folders in the pathname
must exist. This next example creates a Build Directory named YP-5.1.3 within the existing directory

mybuilds:

$ source poky/oe-init-build-env mybuilds/YP-5.1.3

Note

By default, the Build Directory contains TMPDIR, which is a temporary directory the build system uses for its
work. TMPDIR cannot be under NFS. Thus, by default, the Build Directory cannot be under NFS. However,
if you need the Build Directory to be under NFS, you can set this up by setting 7MPDIR in your local.conf
file to use a local drive. Doing so effectively separates TMPDIR from TOPDIR, which is the Build Directory.

Build Host
The system used to build images in a Yocto Project Development environment. The build system is sometimes

referred to as the development host.

buildtools
Build tools in binary form, providing required versions of development tools (such as Git, GCC, Python and make),

to run the OpenEmbedded build system on a development host without such minimum versions.

See the “Required Git, tar, Python, make and gcc Versions” paragraph in the Reference Manual for details about

downloading or building an archive of such tools.

6.2. Yocto Project Terms 133



The Yocto Project ®, Release 5.1.3

buildtools-extended
A set of buildtools binaries extended with additional development tools, such as a required version of the GCC

compiler to run the OpenEmbedded build system.

See the “Required Git, tar, Python, make and gcc Versions” paragraph in the Reference Manual for details about

downloading or building an archive of such tools.

buildtools-make

A variant of buildtools, just providing the required version of make to run the OpenEmbedded build system.

Classes
Files that provide for logic encapsulation and inheritance so that commonly used patterns can be defined once and
then easily used in multiple recipes. For reference information on the Yocto Project classes, see the “Classes”

chapter. Class files end with the .bbclass filename extension.

Configuration File
Files that hold global definitions of variables, user-defined variables, and hardware configuration information. These
files tell the OpenEmbedded build system what to build and what to put into the image to support a particular

platform.

Configuration files end with a . conf filename extension. The conf/local.conf configuration file in the Build
Directory contains user-defined variables that affect every build. The meta-poky/conf/distro/poky.conf
configuration file defines Yocto “distro” configuration variables used only when building with this policy. Machine
configuration files, which are located throughout the Source Directory, define variables for specific hardware and are
only used when building for that target (e.g. the machine/beaglebone.conf configuration file defines variables

for the Texas Instruments ARM Cortex-A8 development board).

Container Layer
A flexible definition that typically refers to a single Git checkout which contains multiple (and typically related)

sub-layers which can be included independently in your project’ s bblayers.conf file.

In some cases, such as with OpenEmbedded’ s meta-openembedded layer, the top level met a—openembedded/
directory is not itself an actual layer, so you would never explicitly include it in a bblayers. conf file; rather, you

would include any number of its layer subdirectories, such as meta-oe, meta-python and so on.

On the other hand, some container layers (such as meta-security) have a top-level directory that is itself an actual

layer, as well as a variety of sub-layers, both of which could be included in your bblayers.conf file.

In either case, the phrase “container layer” is simply used to describe a directory structure which contains multiple

valid OpenEmbedded layers.

Cross-Development Toolchain
In general, a cross-development toolchain is a collection of software development tools and utilities that run on one
architecture and allow you to develop software for a different, or targeted, architecture. These toolchains contain

cross-compilers, linkers, and debuggers that are specific to the target architecture.
The Yocto Project supports two different cross-development toolchains:

¢ A toolchain only used by and within BitBake when building an image for a target architecture.

134 Chapter 6. Yocto Project Reference Manual


https://git.openembedded.org/meta-openembedded
https://git.openembedded.org/meta-openembedded/tree/meta-oe
https://git.openembedded.org/meta-openembedded/tree/meta-python
https://git.yoctoproject.org/meta-security

The Yocto Project ®, Release 5.1.3

* A relocatable toolchain used outside of BitBake by developers when developing applications that will run on

a targeted device.

Creation of these toolchains is simple and automated. For information on toolchain concepts as they apply to
the Yocto Project, see the “Cross-Development Toolchain Generation” section in the Yocto Project Overview
and Concepts Manual. You can also find more information on using the relocatable toolchain in the Yocto Project

Application Development and the Extensible Software Development Kit (eSDK) manual.

Extensible Software Development Kit (eSDK)
A custom SDK for application developers. This eSDK allows developers to incorporate their library and program-

ming changes back into the image to make their code available to other application developers.

For information on the eSDK, see the Yocto Project Application Development and the Extensible Software Develop-
ment Kit (eSDK) manual.

Image
An image is an artifact of the BitBake build process given a collection of recipes and related Metadata. Images
are the binary output that run on specific hardware or QEMU and are used for specific use-cases. For a list of the

supported image types that the Yocto Project provides, see the “/mages” chapter.

Initramfs
An Initial RAM Filesystem (/nitramfs) is an optionally compressed cpio archive which is extracted by the Linux

kernel into RAM in a special tmpfs instance, used as the initial root filesystem.

This is a replacement for the legacy init RAM disk ( “initrd” ) technique, booting on an emulated block device
in RAM, but being less efficient because of the overhead of going through a filesystem and having to duplicate

accessed file contents in the file cache in RAM, as for any block device.

Note

As far as bootloaders are concerned, /nitramfs and “initrd” images are still copied to RAM in the same way.

That’ s why most most bootloaders refer to Initramfs images as “initrd” or “init RAM disk” .

This kind of mechanism is typically used for two reasons:

» For booting the same kernel binary on multiple systems requiring different device drivers. The Initramfs
image is then customized for each type of system, to include the specific kernel modules necessary to access

the final root filesystem. This technique is used on all GNU / Linux distributions for desktops and servers.

 For booting faster. As the root filesystem is extracted into RAM, accessing the first user-space applications is
very fast, compared to having to initialize a block device, to access multiple blocks from it, and to go through
a filesystem having its own overhead. For example, this allows to display a splashscreen very early, and to

later take care of mounting the final root filesystem and loading less time-critical kernel drivers.
This cpio archive can either be loaded to RAM by the bootloader, or be included in the kernel binary.

For information on creating and using an Initramfs, see the “Building an Initial RAM Filesystem (Initramfs) Image”

section in the Yocto Project Development Tasks Manual.

6.2. Yocto Project Terms 135


https://en.wikipedia.org/wiki/Cpio
https://en.wikipedia.org/wiki/Tmpfs

The Yocto Project ®, Release 5.1.3

Layer

LTS

A collection of related recipes. Layers allow you to consolidate related metadata to customize your build. Layers
also isolate information used when building for multiple architectures. Layers are hierarchical in their ability to
override previous specifications. You can include any number of available layers from the Yocto Project and cus-
tomize the build by adding your layers after them. You can search the Layer Index for layers used within Yocto

Project.

For introductory information on layers, see the “The Yocto Project Layer Model” section in the Yocto Project
Overview and Concepts Manual. For more detailed information on layers, see the “Understanding and Creating
Layers” section in the Yocto Project Development Tasks Manual. For a discussion specifically on BSP Layers, see

the “BSP Layers” section in the Yocto Project Board Support Packages (BSP) Developer’ s Guide.

This term means “Long Term Support” , and in the context of the Yocto Project, it corresponds to selected stable
releases for which bug and security fixes are provided for at least four years. See the Long Term Support Releases

section for details.

Metadata

Mixin

A key element of the Yocto Project is the Metadata that is used to construct a Linux distribution and is contained
in the files that the OpenEmbedded Build System parses when building an image. In general, Metadata includes
recipes, configuration files, and other information that refers to the build instructions themselves, as well as the data
used to control what things get built and the effects of the build. Metadata also includes commands and data used to
indicate what versions of software are used, from where they are obtained, and changes or additions to the software
itself (patches or auxiliary files) that are used to fix bugs or customize the software for use in a particular situation.

OpenEmbedded-Core is an important set of validated metadata.

In the context of the kernel ( “kernel Metadata” ), the term refers to the kernel config fragments and features

contained in the yocto-kernel-cache Git repository.

A Mixin layer is a layer which can be created by the community to add a specific feature or support a new version

of some package for an L7 release. See the Long Term Support Releases section for details.

OpenEmbedded-Core (OE-Core)

OE-Core is metadata comprised of foundational recipes, classes, and associated files that are meant to be common
among many different OpenEmbedded-derived systems, including the Yocto Project. OE-Core is a curated subset
of an original repository developed by the OpenEmbedded community that has been pared down into a smaller, core

set of continuously validated recipes. The result is a tightly controlled and an quality-assured core set of recipes.

You can see the Metadata in the meta directory of the Yocto Project Source Repositories.

OpenEmbedded Build System

The build system specific to the Yocto Project. The OpenEmbedded build system is based on another project
known as “Poky” , which uses BirBake as the task executor. Throughout the Yocto Project documentation set,
the OpenEmbedded build system is sometimes referred to simply as “the build system” . If other build systems,

such as a host or target build system are referenced, the documentation clearly states the difference.

136

Chapter 6. Yocto Project Reference Manual


https://git.yoctoproject.org/yocto-kernel-cache
https://git.yoctoproject.org/poky

The Yocto Project ®, Release 5.1.3

Note

For some historical information about Poky, see the Poky term.

Package

In the context of the Yocto Project, this term refers to a recipe’ s packaged output produced by BitBake (i.e. a
“baked recipe” ). A package is generally the compiled binaries produced from the recipe’ s sources. You ‘“bake”

something by running it through BitBake.

It is worth noting that the term “package” can, in general, have subtle meanings. For example, the packages
referred to in the “Required Packages for the Build Host” section are compiled binaries that, when installed, add

functionality to your Linux distribution.

Another point worth noting is that historically within the Yocto Project, recipes were referred to as packages —

thus, the existence of several BitBake variables that are seemingly mis-named, (e.g. PR, PV, and PE).

Package Groups

Poky

Arbitrary groups of software Recipes. You use package groups to hold recipes that, when built, usually accomplish
a single task. For example, a package group could contain the recipes for a company’ s proprietary or value-add
software. Or, the package group could contain the recipes that enable graphics. A package group is really just

another recipe. Because package group files are recipes, they end with the .bb filename extension.

Poky, which is pronounced Pock-ee, is a reference embedded distribution and a reference test configuration. Poky

provides the following:
A base-level functional distro used to illustrate how to customize a distribution.
* A means by which to test the Yocto Project components (i.e. Poky is used to validate the Yocto Project).
A vehicle through which you can download the Yocto Project.

Poky is not a product level distro. Rather, it is a good starting point for customization.

Note

Poky began as an open-source project initially developed by OpenedHand. OpenedHand developed Poky from
the existing OpenEmbedded build system to create a commercially supportable build system for embedded
Linux. After Intel Corporation acquired OpenedHand, the poky project became the basis for the Yocto Project’

s build system.

Recipe

A set of instructions for building packages. A recipe describes where you get source code, which patches to apply,
how to configure the source, how to compile it and so on. Recipes also describe dependencies for libraries or for
other recipes. Recipes represent the logical unit of execution, the software to build, the images to build, and use

the . bb file extension.

6.2. Yocto Project Terms 137



The Yocto Project ®, Release 5.1.3

Reference Kit

A working example of a system, which includes a BSP as well as a build host and other components, that can work

on specific hardware.

SBOM

This term means Software Bill of Materials. When you distribute software, it offers a description of all the com-
ponents you used, their corresponding licenses, their dependencies, the changes that were applied and the known

vulnerabilities that were fixed.

This can be used by the recipients of the software to assess their exposure to license compliance and security

vulnerability issues.
See the Software Supply Chain article on Wikipedia for more details.

The OpenEmbedded Build System can generate such documentation for your project, in SPDX format, based on
all the metadata it used to build the software images. See the “Creating a Software Bill of Materials” section of

the Development Tasks manual.

Source Directory

This term refers to the directory structure created as a result of creating a local copy of the poky Git repository

git://git.yoctoproject.org/poky or expanding a released poky tarball.

Note

Creating a local copy of the poky Git repository is the recommended method for setting up your Source Di-

rectory.

Sometimes you might hear the term “poky directory” used to refer to this directory structure.

Note

The OpenEmbedded build system does not support file or directory names that contain spaces. Be sure that the

Source Directory you use does not contain these types of names.

The Source Directory contains BitBake, Documentation, Metadata and other files that all support the Yocto Project.
Consequently, you must have the Source Directory in place on your development system in order to do any devel-

opment using the Yocto Project.

When you create a local copy of the Git repository, you can name the repository anything you like. Throughout
much of the documentation, “poky” is used as the name of the top-level folder of the local copy of the poky Git
repository. So, for example, cloning the poky Git repository results in a local Git repository whose top-level folder

is also named “poky” .

While it is not recommended that you use tarball extraction to set up the Source Directory, if you do, the top-level

directory name of the Source Directory is derived from the Yocto Project release tarball. For example, download-

138

Chapter 6. Yocto Project Reference Manual


https://en.wikipedia.org/wiki/Software_supply_chain

The Yocto Project ®, Release 5.1.3

SPDX

ing and unpacking poky tarballs from https://downloads.yoctoproject.org/releases/yocto/yocto-5.1.3/ results in a

Source Directory whose root folder is named poky.

It is important to understand the differences between the Source Directory created by unpacking a released tarball
as compared to cloning git://git.yoctoproject.org/poky. When you unpack a tarball, you have an exact
copy of the files based on the time of release —a fixed release point. Any changes you make to your local files in
the Source Directory are on top of the release and will remain local only. On the other hand, when you clone the
poky Git repository, you have an active development repository with access to the upstream repository’ s branches
and tags. In this case, any local changes you make to the local Source Directory can be later applied to active

development branches of the upstream poky Git repository.

For more information on concepts related to Git repositories, branches, and tags, see the “Repositories, Tags, and

Branches” section in the Yocto Project Overview and Concepts Manual.

This term means Software Package Data Exchange, and is used as an open standard for providing a Software Bill
of Materials (SBOM). This standard is developed through a Linux Foundation project and is used by the OpenEm-
bedded Build System to provide an SBOM associated to each software image.

For details, see Wikipedia’ s SPDX page and the “Creating a Software Bill of Materials” section of the Development

Tasks manual.

Sysroot

Task

When cross-compiling, the target file system may be differently laid out and contain different things compared to
the host system. The concept of a sysroot is directory which looks like the target filesystem and can be used to

cross-compile against.

In the context of cross-compiling toolchains, a sysroot typically contains C library and kernel headers, plus the
compiled binaries for the C library. A multilib toolchain can contain multiple variants of the C library binaries,
each compiled for a target instruction set (such as armv5, armv7 and armv8), and possibly optimized for a specific
CPU core.

In the more specific context of the OpenEmbedded build System and of the Yocto Project, each recipe has two

Sysroots:
* A target sysroot contains all the target libraries and headers needed to build the recipe.
A native sysroot contains all the host files and executables needed to build the recipe.

See the SYSROOT _* variables controlling how sysroots are created and stored.

A per-recipe unit of execution for BitBake (e.g. do_compile, do_fetch, do_patch, and so forth). One of the major
benefits of the build system is that, since each recipe will typically spawn the execution of numerous tasks, it is
entirely possible that many tasks can execute in parallel, either tasks from separate recipes or independent tasks

within the same recipe, potentially up to the parallelism of your build system.

Toaster

A web interface to the Yocto Project’ s OpenEmbedded Build System. The interface enables you to configure and

6.2. Yocto Project Terms 139


https://downloads.yoctoproject.org/releases/yocto/yocto-5.1.3/
https://spdx.dev/
https://en.wikipedia.org/wiki/Software_Package_Data_Exchange

The Yocto Project ®, Release 5.1.3

run your builds. Information about builds is collected and stored in a database. For information on Toaster, see the

Toaster User Manual.

Upstream
A reference to source code or repositories that are not local to the development system but located in a remote
area that is controlled by the maintainer of the source code. For example, in order for a developer to work on a

particular piece of code, they need to first get a copy of it from an “upstream” source.

6.3 Yocto Project Releases and the Stable Release Process

The Yocto Project release process is predictable and consists of both major and minor (point) releases. This brief chapter

provides information on how releases are named, their life cycle, and their stability.

6.3.1 Major and Minor Release Cadence

The Yocto Project delivers major releases (e.g. 5.1.3) using a six month cadence roughly timed each April and October
of the year. Here are examples of some major YP releases with their codenames also shown. See the “Major Release

Codenames” section for information on codenames used with major releases.
* 4.1 ( “Langdale” )
e 4.0 ( “Kirkstone” )
e 3.4 ( “Honister” )

While the cadence is never perfect, this timescale facilitates regular releases that have strong QA cycles while not over-
whelming users with too many new releases. The cadence is predictable and avoids many major holidays in various

geographies.

The Yocto project delivers minor (point) releases on an unscheduled basis and are usually driven by the accumulation of

enough significant fixes or enhancements to the associated major release. Some example past point releases are:
* 413
* 4.0.8
* 344

The point release indicates a point in the major release branch where a full QA cycle and release process validates the

content of the new branch.

Note

Realize that there can be patches merged onto the stable release branches as and when they become available.

140 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

6.3.2 Major Release Codenames

Each major release receives a codename that identifies the release in the Yocto Project Source Repositories. The concept

is that branches of Metadata with the same codename are likely to be compatible and thus work together.

Note

Codenames are associated with major releases because a Yocto Project release number (e.g. 5.1.3) could conflict with

a given layer or company versioning scheme. Codenames are unique, interesting, and easily identifiable.

Releases are given a nominal release version as well but the codename is used in repositories for this reason. You can find

information on Yocto Project releases and codenames at https://wiki.yoctoproject.org/wiki/Releases.

Our Release Information detail how to migrate from one release of the Yocto Project to the next.

6.3.3 Stable Release Process

Once released, the release enters the stable release process at which time a person is assigned as the maintainer for that
stable release. This maintainer monitors activity for the release by investigating and handling nominated patches and
backport activity. Only fixes and enhancements that have first been applied on the “master” branch (i.e. the current,

in-development branch) are considered for backporting to a stable release.

Note

The current Yocto Project policy regarding backporting is to consider bug fixes and security fixes only. Policy dictates
that features are not backported to a stable release. This policy means generic recipe version upgrades are unlikely to
be accepted for backporting. The exception to this policy occurs when there is a strong reason such as the fix happens

to also be the preferred upstream approach.

6.3.4 Long Term Support Releases

While stable releases are supported for a duration of seven months, some specific ones are now supported for a longer

period by the Yocto Project, and are called Long Term Support (L7S) releases.

When significant issues are found, L7 releases allow to publish fixes not only for the current stable release, but also to the
LTS releases that are still supported. Older stable releases which have reached their End of Life (EOL) won’ t receive

such updates.

This started with version 3.1 ( “Dunfell” ), released in April 2020, which the project initially committed to supporting

for two years, but this duration was later extended to four years.

A new LTS release is made every two years and is supported for four years. This offers more stability to project users and

leaves more time to upgrade to the following L7 release.

The currently supported LTS releases are:

6.3. Yocto Project Releases and the Stable Release Process 141


https://wiki.yoctoproject.org/wiki/Releases

The Yocto Project ®, Release 5.1.3

* Version 5.0 ( “Scarthgap” ), released in April 2024 and supported until April 2028.
* Version 4.0 ( “Kirkstone” ), released in May 2022 and supported until May 2026.

See https://wiki.yoctoproject.org/wiki/Stable_Release_and_LTS for details about the management of stable and LTS

releases.

This documentation was built for the Styhead release.

Walnascar
5.2

Styhead
5.1
—
Scarthgap (LTS)
5.0

Legend

B Fuwre

[ current (Oct. 24)

Kirkstone (LTS)
4.0

End-of-life

Apr Oct. Apr. Oct. Apr. Oct. Apr. Oct. Apr. Oct. Apr. Oct. Apr.
2022 2022 2023 2023 2024 2024 2025 2025 2026 2026 2027 2027 2028

Note

In some circumstances, a layer can be created by the community in order to add a specific feature or support a new
version of some package for an LTS release. This is called a Mixin layer. These are thin and specific purpose layers
which can be stacked with an L7 release to “mix” a specific feature into that build. These are created on an as-needed

basis and maintained by the people who need them.

Policies on testing these layers depend on how widespread their usage is and determined on a case-by-case basis.
You can find some Mixin layers in the meta-Its-mixins repository. While the Yocto Project provides hosting for

those repositories, it does not provides testing on them. Other Mixin layers may be released elsewhere by the wider

community.

6.3.5 Testing and Quality Assurance

Part of the Yocto Project development and release process is quality assurance through the execution of test strategies. Test
strategies provide the Yocto Project team a way to ensure a release is validated. Additionally, because the test strategies
are visible to you as a developer, you can validate your projects. This section overviews the available test infrastructure
used in the Yocto Project. For information on how to run available tests on your projects, see the “Performing Automated

Runtime Testing” section in the Yocto Project Test Environment Manual.

The QA/testing infrastructure is woven into the project to the point where core developers take some of it for granted.

The infrastructure consists of the following pieces:
* bitbake-selftest: A standalone command that runs unit tests on key pieces of BitBake and its fetchers.

e sanity: This automatically included class checks the build environment for missing tools (e.g. gcc) or common

142 Chapter 6. Yocto Project Reference Manual


https://wiki.yoctoproject.org/wiki/Stable_Release_and_LTS
https://git.yoctoproject.org/meta-lts-mixins

The Yocto Project ®, Release 5.1.3

misconfigurations such as MACHINE set incorrectly.

* insane: This class checks the generated output from builds for sanity. For example, if building for an ARM target,

did the build produce ARM binaries. If, for example, the build produced PPC binaries then there is a problem.

* testimage: This class performs runtime testing of images after they are built. The tests are usually used with QEMU
to boot the images and check the combined runtime result boot operation and functions. However, the test can also

use the IP address of a machine to test.

e ptest: Runs tests against packages produced during the build for a given piece of software. The test allows the

packages to be run within a target image.

* oe-selftest: Tests combinations of BitBake invocations. These tests operate outside the OpenEmbedded build

system itself. The oe-selftest can run all tests by default or can run selected tests or test suites.

Originally, much of this testing was done manually. However, significant effort has been made to automate the tests so

that more people can use them and the Yocto Project development team can run them faster and more efficiently.

The Yocto Project’ s main Autobuilder publicly tests each Yocto Project release’ s code in the openembedded-core, poky
and bitbake repositories. The testing occurs for both the current state of the “master” branch and also for submitted

patches. Testing for submitted patches usually occurs in the in the “master-next” branch in the poky repository.

Note

You can find all these branches in the Yocto Project Source Repositories.

Testing within these public branches ensures in a publicly visible way that all of the main supposed architectures and

recipes in OE-Core successfully build and behave properly.

Various features such as multilib, sub architectures (e.g. x32, poky-tiny, musl, no-x11 and and so forth), bit—
bake-selftest, and oe-selftest are tested as part of the QA process of a release. Complete testing and validation

for a release takes the Autobuilder workers several hours.

Note

The Autobuilder workers are non-homogeneous, which means regular testing across a variety of Linux distributions

occurs. The Autobuilder is limited to only testing QEMU-based setups and not real hardware.

Finally, in addition to the Autobuilder’ s tests, the Yocto Project QA team also performs testing on a variety of platforms,

which includes actual hardware, to ensure expected results.

6.3. Yocto Project Releases and the Stable Release Process 143


https://autobuilder.yoctoproject.org
https://git.openembedded.org/openembedded-core
https://git.yoctoproject.org/poky
https://git.openembedded.org/bitbake
https://git.yoctoproject.org/poky

The Yocto Project ®, Release 5.1.3

6.4 Source Directory Structure

The Source Directory consists of numerous files, directories and subdirectories; understanding their locations and contents
is key to using the Yocto Project effectively. This chapter describes the Source Directory and gives information about

those files and directories.

For information on how to establish a local Source Directory on your development system, see the ““Locating Yocto Project

Source Files” section in the Yocto Project Development Tasks Manual.

Note

The OpenEmbedded build system does not support file or directory names that contain spaces. Be sure that the Source

Directory you use does not contain these types of names.

6.4.1 Top-Level Core Components

This section describes the top-level components of the Source Directory.

bitbake/

This directory includes a copy of BitBake for ease of use. The copy usually matches the current stable BitBake release
from the BitBake project. BitBake, a Metadata interpreter, reads the Yocto Project Metadata and runs the tasks defined

by that data. Failures are usually caused by errors in your Metadata and not from BitBake itself.

When you run the bitbake command, the main BitBake executable (which resides in the bitbake/bin/ directory)
starts. Sourcing the environment setup script (i.e. oe-init-build-env) places the scripts/ andbitbake/bin/ directories

(in that order) into the shell’ s PATH environment variable.

For more information on BitBake, see the BitBake User Manual.

build/

This directory contains user configuration files and the output generated by the OpenEmbedded build system in its standard
configuration where the source tree is combined with the output. The Build Directory is created initially when you source

the OpenEmbedded build environment setup script (i.e. oe-init-build-env).

It is also possible to place output and configuration files in a directory separate from the Source Directory by providing a
directory name when you source the setup script. For information on separating output from your local Source Directory

files (commonly described as an “out of tree” build), see the “oe-init-build-env” section.

See the “The Build Directory —build/” section for details about the contents of the Build Directory.

144 Chapter 6. Yocto Project Reference Manual


https://docs.yoctoproject.org/bitbake/2.10/index.html

The Yocto Project ®, Release 5.1.3

documentation/

This directory holds the source for the Yocto Project documentation as well as templates and tools that allow you to
generate PDF and HTML versions of the manuals. Each manual is contained in its own sub-folder; for example, the files

for this reference manual reside in the ref-manual/ directory.

meta/

This directory contains the minimal, underlying OpenEmbedded-Core metadata. The directory holds recipes, common

classes, and machine configuration for strictly emulated targets (gemux86, gemuarm, and so forth.)

meta-poky/

Designed above the meta/ content, this directory adds just enough metadata to define the Poky reference distribution.

meta-yocto-bsp/

This directory contains the Yocto Project reference hardware Board Support Packages (BSPs). For more information on

BSPs, see the Yocto Project Board Support Package Developer’ s Guide.

meta-selftest/

This directory adds additional recipes and append files used by the OpenEmbedded selftests to verify the behavior of the

build system. You do not have to add this layer to your bblayers.conf file unless you want to run the selftests.

meta-skeleton/

This directory contains template recipes for BSP and kernel development.

scripts/

This directory contains various integration scripts that implement extra functionality in the Yocto Project environment

(e.g. QEMU scripts). The oe-init-build-env script prepends this directory to the shell’ s PATH environment variable.

The scripts directory has useful scripts that assist in contributing back to the Yocto Project, such as cre-

ate-pull-request and send-pull-request.

oe-init-build-env

This script sets up the OpenEmbedded build environment. Running this script with the source command in a shell
makes changes to PATH and sets other core BitBake variables based on the current working directory. You need to run an
environment setup script before running BitBake commands. The script uses other scripts within the scripts directory
to do the bulk of the work.

When you run this script, your Yocto Project environment is set up, a Build Directory is created, your working directory
becomes the Build Directory, and you are presented with some simple suggestions as to what to do next, including a list

of some possible targets to build. Here is an example:

6.4. Source Directory Structure 145



The Yocto Project ®, Release 5.1.3

$ source oe-init-build-env
#4## Shell environment set up for builds. ###
You can now run 'bitbake <target>'
Common targets are:
core-image-minimal
core-image-sato
meta-toolchain

meta-ide-support

You can also run generated QEMU images with a command like 'rungemu gemux86-64"'

The default output of the ce-init-build-env script is from the conf-summary.txt and conf-notes.txt files,
which are found in the meta—-poky directory within the Source Directory. If you design a custom distribution, you can
include your own versions of these configuration files where you can provide a brief summary and detailed usage notes,
such as a list of the targets defined by your distribution. See the “Creating a Custom Template Configuration Directory”

section in the Yocto Project Development Tasks Manual for more information.

By default, running this script without a Build Directory argument creates the build/ directory in your current working
directory. If you provide a Build Directory argament when you source the script, you direct the OpenEmbedded build
system to create a Build Directory of your choice. For example, the following command creates a Build Directory named

mybuilds/ thatis outside of the Source Directory:

$ source oe—-init-build-env ~/mybuilds

The OpenEmbedded build system uses the template configuration files, which are found by default in the meta-poky/
conf/templates/default directory in the Source Directory. See the “Creating a Custom Template Configuration

Directory” section in the Yocto Project Development Tasks Manual for more information.

Note

The OpenEmbedded build system does not support file or directory names that contain spaces. If you attempt to run
the oe-init-build-env script from a Source Directory that contains spaces in either the filenames or directory
names, the script returns an error indicating no such file or directory. Be sure to use a Source Directory free of names

containing spaces.

146 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

LICENSE, README, and README.hardware

These files are standard top-level files.

6.4.2 The Build Directory —build/

The OpenEmbedded build system creates the Build Directory when you run the build environment setup script oe-init-
build-env. If you do not give the Build Directory a specific name when you run the setup script, the name defaults to

build/.

For subsequent parsing and processing, the name of the Build directory is available via the TOPDIR variable.

build/buildhistory/

The OpenEmbedded build system creates this directory when you enable build history via the buildhistory class file. The
directory organizes build information into image, packages, and SDK subdirectories. For information on the build history

feature, see the “Muaintaining Build Output Quality” section in the Yocto Project Development Tasks Manual.

build/cache/
This directory contains several internal files used by the OpenEmbedded build system.

It also contains sanity_info, a text file keeping track of important build information such as the values of TMPDIR,

SSTATE DIR, as well as the name and version of the host distribution.

build/conf/local.conf

This configuration file contains all the local user configurations for your build environment. The 1ocal. conf file contains
documentation on the various configuration options. Any variable set here overrides any variable set elsewhere within the
‘ 9

environment unless that variable is hard-coded within a file (e.g. by using ‘=’ instead of ‘?=’ ). Some variables are

hard-coded for various reasons but such variables are relatively rare.

At a minimum, you would normally edit this file to select the target MACHINE, which package types you wish to use
(PACKAGE_CLASSES), and the location from which you want to access downloaded files (DL_DIR).

If 1ocal.conf is not present when you start the build, the OpenEmbedded build system creates it from local.conf.

sample when you source the top-level build environment setup script oe-init-build-env.

The source local.conf.sample file used depends on the TEMPLATECONF script variable, which defaults to
meta-poky/conf/templates/default when you are building from the Yocto Project development environment,
and to meta/conf/templates/default when you are building from the OpenEmbedded-Core environment. Be-
cause the script variable points to the source of the 1ocal.conf.sample file, this implies that you can configure your

build environment from any layer by setting the variable in the top-level build environment setup script as follows:

TEMPLATECONF=your_layer/conf/templates/your_template_name

Once the build process gets the sample file, it uses sed to substitute final $ { OEROOT } values for all ##0EROOT ## values.

6.4. Source Directory Structure 147




The Yocto Project ®, Release 5.1.3

Note

You can see how the TEMPLATECONF variable is used by looking at the scripts/oe-setup-builddir scriptin
the Source Directory. You can find the Yocto Project version of the 1ocal.conf.sample file in the meta-poky/

conf/templates/default directory.

build/conf/bblayers.conf

This configuration file defines layers, which are directory trees, traversed (or walked) by BitBake. The bblayers.conf
file uses the BBLAYERS variable to list the layers BitBake tries to find.

If bblayers.conf is not present when you start the build, the OpenEmbedded build system creates it from bblayers.

conf.sample when you source the top-level build environment setup script (i.e. oe-init-build-env).

As with the 1ocal. conf file, the source bblayers.conf.sample file used depends on the TEMPLATECONF script
variable, which defaults to meta-poky/conf/templates/default when you are building from the Yocto Project
development environment, and to meta/conf/templates/default when you are building from the OpenEmbedded-
Core environment. Because the script variable points to the source of the bblayers.conf . sample file, this implies that

you can base your build from any layer by setting the variable in the top-level build environment setup script as follows:

TEMPLATECONF=your_layer/conf/templates/your_template_name

Once the build process gets the sample file, it uses sed to substitute final $ { OEROOT } values for all ##0EROOT ## values.

Note

You can see how the TEMPLATECONF variable is defined by the scripts/oe-setup-builddir script in the
Source Directory. You can find the Yocto Project version of the bblayers.conf.sample file in the meta-poky/

conf/templates/default directory.

build/conf/bblock.conf

This configuration file is generated by bblock and contains the signatures locked by bblock. By default, it does not exist
and will be created upon the first invocation of bblock.

build/downloads/

This directory contains downloaded upstream source tarballs. You can reuse the directory for multiple builds or move the

directory to another location. You can control the location of this directory through the DL_DIR variable.

148 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

build/sstate—cache/

This directory contains the shared state cache. You can reuse the directory for multiple builds or move the directory to

another location. You can control the location of this directory through the SSTATE_DIR variable.

build/tmp/

The OpenEmbedded build system creates and uses this directory for all the build system’ s output. The TMPDIR variable
points to this directory.

BitBake creates this directory if it does not exist. As a last resort, to clean up a build and start it from scratch (other than
the downloads), you can remove everything in the tmp directory or get rid of the directory completely. If you do, you

should also completely remove the build/sstate-cache directory.

build/tmp/buildstats/

This directory stores the build statistics as generated by the buildstats class.

build/tmp/cache/

When BitBake parses the metadata (recipes and configuration files), it caches the results in build/tmp/cache/ to speed

up future builds. The results are stored on a per-machine basis.

During subsequent builds, BitBake checks each recipe (together with, for example, any files included or appended to it)
to see if they have been modified. Changes can be detected, for example, through file modification time (mtime) changes
and hashing of file contents. If no changes to the file are detected, then the parsed result stored in the cache is reused. If

the file has changed, it is reparsed.

build/tmp/deploy/

This directory contains any “end result” output from the OpenEmbedded build process. The DEPLOY_DIR variable
points to this directory. For more detail on the contents of the deploy directory, see the “Images” and “Application

Development SDK” sections in the Yocto Project Overview and Concepts Manual.

build/tmp/deploy/deb/

This directory receives any . deb packages produced by the build process. The packages are sorted into feeds for different

architecture types.

build/tmp/deploy/rpm/

This directory receives any . rpm packages produced by the build process. The packages are sorted into feeds for different

architecture types.

6.4. Source Directory Structure 149



The Yocto Project ®, Release 5.1.3

build/tmp/deploy/ipk/

This directory receives . ipk packages produced by the build process.

build/tmp/deploy/licenses/

This directory receives package licensing information. For example, the directory contains sub-directories for bash,
busybox, and glibc (among others) that in turn contain appropriate COPYING license files with other licensing infor-
mation. For information on licensing, see the “Muaintaining Open Source License Compliance During Your Product’ s

Lifecycle” section in the Yocto Project Development Tasks Manual.

build/tmp/deploy/images/

This directory is populated with the basic output objects of the build (think of them as the “generated artifacts” of the
build process), including things like the boot loader image, kernel, root filesystem and more. If you want to flash the

resulting image from a build onto a device, look here for the necessary components.

Be careful when deleting files in this directory. You can safely delete old images from this directory (e.g. core-image-*).
However, the kernel (*zImage*, *uImage*, etc.), bootloader and other supplementary files might be deployed here prior
to building an image. Because these files are not directly produced from the image, if you delete them they will not be

automatically re-created when you build the image again.

If you do accidentally delete files here, you will need to force them to be re-created. In order to do that, you will need to

know the target that produced them. For example, these commands rebuild and re-create the kernel files:

$ bitbake -c clean virtual/kernel

$ bitbake virtual/kernel

build/tmp/deploy/sdk/

The OpenEmbedded build system creates this directory to hold toolchain installer scripts which, when executed, install
the sysroot that matches your target hardware. You can find out more about these installers in the “Building an SDK
Installer” section in the Yocto Project Application Development and the Extensible Software Development Kit (eSDK)

manual.

build/tmp/hosttools/

The OpenEmbedded build system uses this directory to create symbolic links to some of the host components that are
allowed to be called within tasks. These are basic components listed in the Required Packages for the Build Host section.

These components are also listed in the HOSTTOOLS variable and are limited to this list to prevent host contamination.

150 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

build/tmp/pkgdata/

The OpenEmbedded build system uses this directory to store package metadata generated during the do_packagedata task.
The files stored in this directory contain information about each output package produced by the OpenEmbedded build

system, and are used in different ways by the build system such as “Viewing Package Information with oe-pkgdata-util” .

build/tmp/sstate-control/

The OpenEmbedded build system uses this directory for the shared state manifest files. The shared state code uses these
files to record the files installed by each sstate task so that the files can be removed when cleaning the recipe or when a
newer version is about to be installed. The build system also uses the manifests to detect and produce a warning when

files from one task are overwriting those from another.

build/tmp/sysroots—components/

This directory is the location of the sysroot contents that the task do_prepare_recipe_sysroot links or copies into the
recipe-specific sysroot for each recipe listed in DEPENDS. Population of this directory is handled through shared state,
while the path is specified by the COMPONENTS_DIR variable. Apart from a few unusual circumstances, handling of
the sysroots—components directory should be automatic, and recipes should not directly reference build/tmp/

sysroots—components.

build/tmp/sysroots/

Previous versions of the OpenEmbedded build system used to create a global shared sysroot per machine along with a
native sysroot. Since the 2.3 version of the Yocto Project, there are sysroots in recipe-specific WORKDIR directories.

Thus, the build/tmp/sysroots/ directory is unused.

Note

The build/tmp/sysroots/ directory can still be populated using the bitbake build-sysroots command and
can be used for compatibility in some cases. However, in general it is not recommended to populate this directory.

Individual recipe-specific sysroots should be used.

build/tmp/stamps/

This directory holds information that BitBake uses for accounting purposes to track what tasks have run and when they

have run. The directory is sub-divided by architecture, package name, and version. Here is an example:

stamps/all-poky-linux/distcc-config/1.0-r0.do_build-2fdd....2do

Although the files in the directory are empty of data, BitBake uses the filenames and timestamps for tracking purposes.

For information on how BitBake uses stamp files to determine if a task should be rerun, see the “Stamp Files and the

Rerunning of Tasks” section in the Yocto Project Overview and Concepts Manual.

6.4. Source Directory Structure 151




The Yocto Project ®, Release 5.1.3

build/tmp/log/

This directory contains general logs that are not otherwise placed using the package’ s WORKDIR. Examples of logs
are the output from the do_check_pkg or do_distro_check tasks. Running a build does not necessarily mean this

directory is created.

build/tmp/work/

This directory contains architecture-specific work sub-directories for packages built by BitBake. All tasks execute from
the appropriate work directory. For example, the source for a particular package is unpacked, patched, configured and
compiled all within its own work directory. Within the work directory, organization is based on the package group and

version for which the source is being compiled as defined by the WORKDIR.

It is worth considering the structure of a typical work directory. As an example, consider 1inux-yocto-kernel-3.
0 on the machine gemux86 built within the Yocto Project. For this package, a work directory of tmp/work/
gemux86-poky-linux/linux-yocto/3.0+gitl+<..... >, referred to as the WORKDIR, is created. Within this
directory, the source is unpacked to 1inux-gemux86-standard-build and then patched by Quilt. (See the “Using
Quilt in Your Workflow” section in the Yocto Project Development Tasks Manual for more information.) Within the
linux-gemux86-standard-build directory, standard Quilt directories 1inux-3.0/patches and linux-3.0/.

pc are created, and standard Quilt commands can be used.

There are other directories generated within WORKDIR. The most important directory is WORKDIR/temp/, which has
log files for each task (1og.do_*.pid) and contains the scripts BitBake runs for each task (run.do_*.pid). The
WORKDIR/image/ directory is where “make install”places its output that is then split into sub-packages within WORKDIR/

packages-split/.

build/tmp/work/tunearch/recipename/version/

The recipe work directory —$ {WORKDIR}.

As described earlier in the “build/tmp/sysroots/” section, beginning with the 2.3 release of the Yocto Project, the Open-
Embedded build system builds each recipe in its own work directory (i.e. WORKDIR). The path to the work directory
is constructed using the architecture of the given build (e.g. TUNE_PKGARCH, MACHINE_ARCH, or “allarch” ), the

recipe name, and the version of the recipe (i.e. PE: PV-PR).
Here are key subdirectories within each recipe work directory:

¢ ${WORKDIR}/temp: Contains the log files of each task executed for this recipe, the “run” files for each executed

task, which contain the code run, and a 1og.task_order file, which lists the order in which tasks were executed.

* ${WORKDIR}/image: Contains the output of the do_install task, which corresponds to the ${D} variable in that
task.

* ${WORKDIR}/pseudo: Contains the pseudo database and log for any tasks executed under pseudo for the recipe.

* ${WORKDIR}/sysroot—-destdir: Contains the output of the do_populate_sysroot task.

152 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

* ${WORKDIR}/package: Contains the output of the do_package task before the output is split into individual
packages.

* ${WORKDIR}/packages-split: Contains the output of the do_package task after the output has been split into

individual packages. There are subdirectories for each individual package created by the recipe.

* ${WORKDIR}/recipe-sysroot: A directory populated with the target dependencies of the recipe. This direc-
tory looks like the target filesystem and contains libraries that the recipe might need to link against (e.g. the C
library).

* S{WORKDIR}/recipe-sysroot-native: A directory populated with the native dependencies of the recipe.

This directory contains the tools the recipe needs to build (e.g. the compiler, Autoconf, libtool, and so forth).

* ${WORKDIR}/build: This subdirectory applies only to recipes that support builds where the source is separate
from the build artifacts. The OpenEmbedded build system uses this directory as a separate build directory (i.e.
${B}).

build/tmp/work-shared/

For efficiency, the OpenEmbedded build system creates and uses this directory to hold recipes that share a work directory
with other recipes. This is for example used for gcc and its variants (e.g. gcc-cross, libgcc, gcc-runtime, and
so forth), or by the kernel class to make the kernel source code and kernel build artifacts available to out-of-tree kernel

modules or other kernel-dependent recipes.

In practice, only a few recipes make use of the work-shared directory. This directory is especially useful for recipes

that would induce a lot of storage space if they were to be shared with the standard Sysroor mechanism.

6.4.3 The Metadata —meta/

As mentioned previously, Metadata is the core of the Yocto Project. Metadata has several important subdivisions:

meta/classes*/

These directories contain the *.bbclass files. Class files are used to abstract common code so it can be reused by
multiple packages. Every package inherits the base file. Examples of other important classes are autotools™*, which in
theory allows any Autotool-enabled package to work with the Yocto Project with minimal effort. Another example is
kernel that contains common code and functions for working with the Linux kernel. Functions like image generation or

packaging also have their specific class files such as image, rootfs* and package*.bbclass.

)

For reference information on classes, see the “Classes” chapter.

meta/conf/

This directory contains the core set of configuration files that start from bitbake.conf and from which all other con-
figuration files are included. See the include statements at the end of the bitbake. conf file and you will note that even
local.conf is loaded from there. While bitbake . conf sets up the defaults, you can often override these by using the

(local.conf) file, machine file or the distribution configuration file.

6.4. Source Directory Structure 153



The Yocto Project ®, Release 5.1.3

meta/conf/machine/

This directory contains all the machine configuration files. If you set MACHINE = "gemux86", the OpenEmbedded
build system looks for a gemux86. conf file in this directory. The include directory contains various data common to

multiple machines. If you want to add support for a new machine to the Yocto Project, look in this directory.

meta/conf/distro/

The contents of this directory controls any distribution-specific configurations. For the Yocto Project, the default-
setup.conf is the main file here. This directory includes the versions and the SRCDATE definitions for applications
that are configured here. An example of an alternative configuration might be poky-bleeding.conf. Although this

file mainly inherits its configuration from Poky.

meta/conf/machine-sdk/

The OpenEmbedded build system searches this directory for configuration files that correspond to the value of SDKMA-
CHINE. By default, 32-bit and 64-bit x86 files ship with the Yocto Project that support some SDK hosts. However, it
is possible to extend that support to other SDK hosts by adding additional configuration files in this subdirectory within

another layer.

meta/files/

This directory contains common license files and several text files used by the build system. The text files contain minimal
device information and lists of files and directories with known permissions.

meta/lib/

This directory contains OpenEmbedded Python library code used during the build process. It is enabled via the addpylib
directive in meta/conf/local.conf. For more information, see Extending Python Library Code.
meta/recipes-bsp/

This directory contains anything linking to specific hardware or hardware configuration information such as “u-boot”
and “grub” .

meta/recipes—connectivity/

This directory contains libraries and applications related to communication with other devices.

meta/recipes-core/

This directory contains what is needed to build a basic working Linux image including commonly used dependencies.

154 Chapter 6. Yocto Project Reference Manual


https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#extending-python-library-code

The Yocto Project ®, Release 5.1.3

meta/recipes—-devtools/

This directory contains tools that are primarily used by the build system. The tools, however, can also be used on targets.

meta/recipes—-extended/

This directory contains non-essential applications that add features compared to the alternatives in core. You might need
this directory for full tool functionality.

meta/recipes—gnome/

This directory contains all things related to the GTK+ application framework.

meta/recipes—graphics/

This directory contains X and other graphically related system libraries.

meta/recipes-kernel/

This directory contains the kernel and generic applications and libraries that have strong kernel dependencies.

meta/recipes-multimedia/

This directory contains codecs and support utilities for audio, images and video.

meta/recipes-rt/

This directory contains package and image recipes for using and testing the PREEMPT_RT kernel.

meta/recipes-sato/

This directory contains the Sato demo/reference UI/UX and its associated applications and configuration data.

meta/recipes-support/

This directory contains recipes used by other recipes, but that are not directly included in images (i.e. dependencies of

other recipes).

meta/site/

This directory contains a list of cached results for various architectures. Because certain “autoconf” test results cannot
be determined when cross-compiling due to the tests not able to run on a live system, the information in this directory is

passed to “autoconf” for the various architectures.

6.4. Source Directory Structure 155



The Yocto Project ®, Release 5.1.3

meta/recipes.txt

This file is a description of the contents of recipes—*.

6.5 Classes

Class files are used to abstract common functionality and share it amongst multiple recipe (. bb) files. To use a class file,
you simply make sure the recipe inherits the class. In most cases, when a recipe inherits a class it is enough to enable its

features. There are cases, however, where in the recipe you might need to set variables or override some default behavior.

Any Metadata usually found in a recipe can also be placed in a class file. Class files are identified by the extension
.bbclass and are usually placed in one of a set of subdirectories beneath the meta*/ directory found in the Source

Directory:
* classes-recipe/ - classes intended to be inherited by recipes individually
* classes—global/ - classes intended to be inherited globally
* classes/ - classes whose usage context is not clearly defined

Class files can also be pointed to by BUILDDIR (e.g. build/) in the same way as .conf files in the conf directory.

Class files are searched for in BBPATH using the same method by which . con £ files are searched.

This chapter discusses only the most useful and important classes. Other classes do exist within the meta/classes*

directories in the Source Directory. You can reference the .bbclass files directly for more information.

6.5.1 allarch

The allarch class is inherited by recipes that do not produce architecture-specific output. The class disables functionality
that is normally needed for recipes that produce executable binaries (such as building the cross-compiler and a C library

as pre-requisites, and splitting out of debug symbols during packaging).

Note

Unlike some distro recipes (e.g. Debian), OpenEmbedded recipes that produce packages that depend on tunings
through use of the RDEPENDS and TUNE_PKGARCH variables, should never be configured for all architectures

using allarch. This is the case even if the recipes do not produce architecture-specific output.

Configuring such recipes for all architectures causes the do_package write_* tasks to have different signatures for
the machines with different tunings. Additionally, unnecessary rebuilds occur every time an image for a different

MACHINE is built even when the recipe never changes.

By default, all recipes inherit the base and package classes, which enable functionality needed for recipes that produce
executable output. If your recipe, for example, only produces packages that contain configuration files, media files, or

scripts (e.g. Python and Perl), then it should inherit the allarch class.

156 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

6.5.2 archiver
The archiver class supports releasing source code and other materials with the binaries.

For more details on the source archiver, see the “Maintaining Open Source License Compliance During Your Product’ s
Lifecycle” section in the Yocto Project Development Tasks Manual. You can also see the ARCHIVER_MODE variable

for information about the variable flags (varflags) that help control archive creation.

6.5.3 autotools*
The autotools* classes support packages built with the GNU Autotools.

The autoconf, automake, and 1ibtool packages bring standardization. This class defines a set of tasks (e.g. con-
figure, compile and so forth) that work for all Autotooled packages. It should usually be enough to define a few
standard variables and then simply inherit autotools. These classes can also work with software that emulates
Autotools. For more information, see the “Building an Autotooled Package” section in the Yocto Project Development
Tasks Manual.

By default, the autotools* classes use out-of-tree builds (i.e. autotools.bbclass building withB != S).

If the software being built by a recipe does not support using out-of-tree builds, you should have the recipe inherit the
autotools-brokensep class. The autotools-brokensep class behaves the same as the autotools* class but builds with B == S.

This method is useful when out-of-tree build support is either not present or is broken.

Note

It is recommended that out-of-tree support be fixed and used if at all possible.

It’ s useful to have some idea of how the tasks defined by the aurotools* classes work and what they do behind the scenes.

* do_configure —regenerates the configure script (using autoreconf) and then launches it with a standard set of
arguments used during cross-compilation. You can pass additional parameters to configure through the EX-
TRA_OECONF or PACKAGECONFIG _CONFARGS variables.

* do_compile —runs make with arguments that specify the compiler and linker. You can pass additional arguments
through the EXTRA_OEMAKE variable.

* do_install —runs make install and passesin ${D} as DESTDIR.

6.5.4 base

The base class is special in that every .bb file implicitly inherits the class. This class contains definitions for standard
basic tasks such as fetching, unpacking, configuring (empty by default), compiling (runs any Make £ i 1e present), installing
(empty by default) and packaging (empty by default). These tasks are often overridden or extended by other classes such

as the autotools* class or the package class.

The class also contains some commonly used functions such as oe_runmake, which runs make with the arguments

specified in EXTRA_OEMAKE variable as well as the arguments passed directly to oe_runmake.

6.5. Classes 157


https://en.wikipedia.org/wiki/GNU_Autotools

The Yocto Project ®, Release 5.1.3

6.5.5 bash-completion

Sets up packaging and dependencies appropriate for recipes that build software that includes bash-completion data.

6.5.6 bin_package

The bin_package class is a helper class for recipes, that disables the do_configure and do_compile tasks and copies the
content of the S directory into the D directory. This is useful for installing binary packages (e.g. RPM packages) by
passing the package in the SRC_URI variable and inheriting this class.

For RPMs and other packages that do not contain a subdirectory, you should set the SRC_URI option subdir to BP so

that the contents are extracted to the directory expected by the default value of S. For example:

SRC_URI = "https://example.com/downloads/somepackage.rpm; subdir=$ "

This class can also be used for tarballs. For example:

SRC_URI = "file://somepackage.tar.xz;subdir=$ "

The bin_package class will copy the extracted content of the tarball from S to D.

This class assumes that the content of the package as installed in S mirrors the expected layout once installed on the
target, which is generally the case for binary packages. For example, an RPM package for a library would usually contain
the usr/1ib directory, and should be extracted to ${S}/usr/1lib/<library>.so.<version> to be installed in D

correctly.

Note

The extraction of the package passed in SRC_URI is not handled by the bin_package class, but rather by the appropriate

fetcher depending on the file extension.

6.5.7 binconfig
The binconfig class helps to correct paths in shell scripts.

Before pkg-config had become widespread, libraries shipped shell scripts to give information about the libraries and
include paths needed to build software (usually named LIBNAME-config). This class assists any recipe using such

scripts.

During staging, the OpenEmbedded build system installs such scripts into the sysroots/ directory. Inheriting this class
results in all paths in these scripts being changed to point into the sysroots/ directory so that all builds that use the script

use the correct directories for the cross compiling layout. See the BINCONFIG_GLOB variable for more information.

158 Chapter 6. Yocto Project Reference Manual



https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-fetching.html#fetchers

The Yocto Project ®, Release 5.1.3

6.5.8 binconfig-disabled

An alternative version of the binconfig class, which disables binary configuration scripts by making them return an error in
favor of using pkg-config to query the information. The scripts to be disabled should be specified using the BINCONFIG

variable within the recipe inheriting the class.

6.5.9 buildhistory

The buildhistory class records a history of build output metadata, which can be used to detect possible regressions as well
as used for analysis of the build output. For more information on using Build History, see the “Maintaining Build Output

Quality” section in the Yocto Project Development Tasks Manual.

6.5.10 buildstats

The buildstats class records performance statistics about each task executed during the build (e.g. elapsed time, CPU

usage, and I/O usage).

When you use this class, the output goes into the BUILDSTATS_BASE directory, which defaults to ${TMPDIR}/
buildstats/. You can analyze the elapsed time using scripts/pybootchartgui/pybootchartgui.py, which

produces a cascading chart of the entire build process and can be useful for highlighting bottlenecks.

Collecting build statistics is enabled by default through the USER_CLASSES variable from your 1ocal.conf file. Con-
sequently, you do not have to do anything to enable the class. However, if you want to disable the class, simply remove
“buildstats” from the USER_CLASSES list.

6.5.11 buildstats—-summary

When inherited globally, prints statistics at the end of the build on sstate re-use. In order to function, this class requires

the buildstats class be enabled.

6.5.12 cargo

The cargo class allows to compile Rust language programs using Cargo. Cargo is Rust’ s package manager, allowing to

fetch package dependencies and build your program.

Using this class makes it very easy to build Rust programs. All you need is to use the SRC_URI variable to point to a
source repository which can be built by Cargo, typically one that was created by the cargo new command, containing a

Cargo.toml file, a Cargo.lock file and a src subdirectory.
If you want to build and package tests of the program, inherit the pfest-cargo class instead of cargo.

You will find an example (that show also how to handle possible git source dependencies) in the zvariant_3.12.0.bb recipe.
Another example, with only crate dependencies, is the uutils-coreutils recipe, which was generated by the cargo-bitbake

tool.

This class inherits the cargo_common class.

6.5. Classes 159


https://doc.rust-lang.org/cargo/
https://git.openembedded.org/openembedded-core/tree/meta-selftest/recipes-extended/zvariant/zvariant_3.12.0.bb
https://git.openembedded.org/meta-openembedded/tree/meta-oe/recipes-core/uutils-coreutils
https://crates.io/crates/cargo-bitbake

The Yocto Project ®, Release 5.1.3

6.5.13 cargo_c

The cargo_c class can be inherited by a recipe to generate a Rust library that can be called by C/C++ code. The recipe

which inherits this class has to only replace inherit cargo by inherit cargo_c.

See the rust-c-lib-example_git.bb example recipe.

6.5.14 cargo_common
The cargo_common class is an internal class that is not intended to be used directly.

An exception is the “rust” recipe, to build the Rust compiler and runtime library, which is built by Cargo but cannot

use the cargo class. This is why this class was introduced.

6.5.15 cargo-update-recipe-crates

The cargo-update-recipe-crates class allows recipe developers to update the list of Cargo crates in SRC_URI by reading

the Cargo. lock file in the source tree.

To do so, create a recipe for your program, for example using devtool, make it inherit the cargo and cargo-update-recipe-

crates and run:

bitbake -c update_crates recipe

This creates a recipe-crates. inc file that you can include in your recipe:

require ${BPN}-crates.inc

That’ s also something you can achieve by using the cargo-bitbake tool.

6.5.16 ccache

The ccache class enables the C/C++ Compiler Cache for the build. This class is used to give a minor performance boost

during the build.

See https://ccache.samba.org/ for information on the C/C++ Compiler Cache, and the ccache.bbclass file for details about
how to enable this mechanism in your configuration file, how to disable it for specific recipes, and how to share ccache

files between builds.

However, using the class can lead to unexpected side-effects. Thus, using this class is not recommended.

6.5.17 chrpath

The chrpath class is a wrapper around the “chrpath” utility, which is used during the build process for nativesdk, cross,

and cross-canadian recipes to change RPATH records within binaries in order to make them relocatable.

160 Chapter 6. Yocto Project Reference Manual



https://git.yoctoproject.org/poky/tree/meta-selftest/recipes-devtools/rust/rust-c-lib-example_git.bb
https://crates.io/crates/cargo-bitbake
https://ccache.samba.org/
https://git.openembedded.org/openembedded-core/tree/meta/classes/ccache.bbclass

The Yocto Project ®, Release 5.1.3

6.5.18 cmake

The cmake class allows recipes to build software using the CMake build system. You can use the EXTRA_OECMAKE

variable to specify additional configuration options to pass to the cmake command line.

By default, the cmake class uses Ninja instead of GNU make for building, which offers better build performance. If a
recipe is broken with Ninja, then the recipe can set the OECMAKE_GENERATOR variable to Unix Makefiles to use
GNU make instead.

If you need to install custom CMake toolchain files supplied by the application being built, you should install them (during
do_install) to the preferred CMake Module directory: ${D}${datadir}/cmake/modules/.

6.5.19 cmake-gemu

The cmake-gemu class might be used instead of the cmake class. In addition to the features provided by the cmake class,
the cmake-qemu class passes the CMAKE_CROSSCOMPILING_EMULATOR setting to cmake. This allows to use QEMU
user-mode emulation for the execution of cross-compiled binaries on the host machine. For more information about

CMAKE_CROSSCOMPILING_EMULATOR please refer to the related section of the CMake documentation.

Not all platforms are supported by QEMU. This class only works for machines with gemu-usermode in the Machine
Features. Using QEMU user-mode therefore involves a certain risk, which is also the reason why this feature is not part

of the main cmake class by default.

One use case is the execution of cross-compiled unit tests with CTest on the build machine. If

CMAKE_CROSSCOMPILING_EMULATOR is configured:

cmake —--build —--target test

works transparently with QEMU user-mode.

If the CMake project is developed with this use case in mind this works very nicely. This also applies to an IDE configured

to use cmake—-native for cross-compiling.

6.5.20 cm11

The cmll class provides basic support for the Linux kernel style build configuration system. “cml” stands for “Config-
uration Menu Language” , which originates from the Linux kernel but is also used in other projects such as U-Boot and

BusyBox. It could have been called “kconfig” too.

6.5.21 compress_doc

Enables compression for manual and info pages. This class is intended to be inherited globally. The default compression

mechanism is gz (gzip) but you can select an alternative mechanism by setting the DOC_COMPRESS variable.

6.5. Classes 161



https://cmake.org/overview/
https://ninja-build.org/
https://cmake.org/cmake/help/latest/variable/CMAKE_CROSSCOMPILING_EMULATOR.html

The Yocto Project ®, Release 5.1.3

6.5.22 copyleft_compliance

The copyleft_compliance class preserves source code for the purposes of license compliance. This class is an alternative

to the archiver class and is still used by some users even though it has been deprecated in favor of the archiver class.

6.5.23 copyleft_filter

A class used by the archiver and copyleft_compliance classes for filtering licenses. The copyleft_filter class is an

internal class and is not intended to be used directly.

6.5.24 core-image

The core-image class provides common definitions for the core-image—-* image recipes, such as support for additional
IMAGE_FEATURES.

6.5.25 cpan*

The cpan’* classes support Perl modules.

Recipes for Perl modules are simple. These recipes usually only need to point to the source’ s archive and then inherit

the proper class file. Building is split into two methods depending on which method the module authors used.
* Modules that use old Makefile.PL-based build system require cpan.bbclass in their recipes.
¢ Modules that use Build.PL-based build system require using cpan_build.bbclass in their recipes.

Both build methods inherit the cpan-base class for basic Perl support.

6.5.26 create-spdx

The create-spdx class provides support for automatically creating SPDX SBOM documents based upon image and SDK

contents.

This class is meant to be inherited globally from a configuration file:

INHERIT += "create-spdx"

The toplevel SPDX output file is generated in JSON format as a IMAGE-MACHINE. spdx. json file in tmp/deploy/
images/MACHINE/ inside the Build Directory. There are other related files in the same directory, as well as in tmp/

deploy/spdx.

The exact behaviour of this class, and the amount of output can be controlled by the SPDX_PRETTY,
SPDX_ARCHIVE_PACKAGED, SPDX_ARCHIVE_SOURCES and SPDX_INCLUDE_SOURCES variables.

See the description of these variables and the “Creating a Software Bill of Materials” section in the Yocto Project

Development Manual for more details.

162 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

6.5.27 cross

The cross class provides support for the recipes that build the cross-compilation tools.

6.5.28 cross-canadian

The cross-canadian class provides support for the recipes that build the Canadian Cross-compilation tools for SDKs. See
the “Cross-Development Toolchain Generation” section in the Yocto Project Overview and Concepts Manual for more

discussion on these cross-compilation tools.

6.5.29 crosssdk

The crosssdk class provides support for the recipes that build the cross-compilation tools used for building SDKs. See
the “Cross-Development Toolchain Generation” section in the Yocto Project Overview and Concepts Manual for more

discussion on these cross-compilation tools.

6.5.30 cve-check

The cve-check class looks for known CVEs (Common Vulnerabilities and Exposures) while building with BitBake. This

class is meant to be inherited globally from a configuration file:

INHERIT += "cve-check"

To filter out obsolete CVE database entries which are known not to impact software from Poky and OE-Core, add

following line to the build configuration file:

include cve-extra-exclusions.inc

You can also look for vulnerabilities in specific packages by passing -c cve_check to BitBake.

After building the software with Bitbake, CVE check output reports are available in tmp/deploy/cve and image specific

summaries in tmp/deploy/images/*.cve or tmp/deploy/images/*. json files.

When building, the CVE checker will emit build time warnings for any detected issues which are in the state Unpatched,
meaning that CVE issue seems to affect the software component and version being compiled and no patches to address
the issue are applied. Other states for detected CVE issues are: Patched meaning that a patch to address the issue is

already applied, and Ignored meaning that the issue can be ignored.

The Pat ched state of a CVE issue is detected from patch files with the format CVE-ID.patch, e.g. CVE-2019-20633.
patch, in the SRC_URI and using CVE metadata of format CVE: CVE-ID in the commit message of the patch file.

Note

Commit message metadata (CVE: CVE-ID in a patch header) will not be scanned in any patches that are remote, i.e.
that are anything other than local files referenced via £ile:// in SRC_URI. However, a CVE-1D in a remote patch

file name itself will be registered.

6.5. Classes 163




The Yocto Project ®, Release 5.1.3

If the recipe adds CVE-1ID as flag of the CVE_STATUS variable with status mapped to Ignored, then the CVE state is

reported as Ignored:

CVE_STATUS[CVE-2020-15523] = "not-applicable-platform: Issue only applies on Windows"

If CVE check reports that a recipe contains false positives or false negatives, these may be fixed in recipes by adjusting the
CVE product name using CVE_PRODUCT and CVE_VERSION variables. CVE_PRODUCT defaults to the plain recipe

name BPN which can be adjusted to one or more CVE database vendor and product pairs using the syntax:

CVE_PRODUCT = "flex_project:flex"

where flex_project is the CVE database vendor name and flex is the product name. Similarly if the default recipe
version PV does not match the version numbers of the software component in upstream releases or the CVE database,

then the CVE_VERSION variable can be used to set the CVE database compatible version number, for example:

CVE_VERSION = "2.39"

Any bugs or missing or incomplete information in the CVE database entries should be fixed in the CVE database via the
NVD feedback form.

Users should note that security is a process, not a product, and thus also CVE checking, analyzing results, patching and
updating the software should be done as a regular process. The data and assumptions required for CVE checker to reliably
detect issues are frequently broken in various ways. These can only be detected by reviewing the details of the issues and
iterating over the generated reports, and following what happens in other Linux distributions and in the greater open

source community.

You will find some more details in the “Checking for Vulnerabilities” section in the Development Tasks Manual.

6.5.31 debian

The debian class renames output packages so that they follow the Debian naming policy (i.e. glibc becomes 1ibc6 and

glibc-devel becomes 1ibc6-dev.) Renaming includes the library name and version as part of the package name.

If a recipe creates packages for multiple libraries (shared object files of . so type), use the LEAD_SONAME variable in

the recipe to specify the library on which to apply the naming scheme.

6.5.32 deploy

The deploy class handles deploying files to the DEPLOY_DIR_IMAGE directory. The main function of this class is to allow
the deploy step to be accelerated by shared state. Recipes that inherit this class should define their own do_deploy function
to copy the files to be deployed to DEPLOYDIR, and use addtask to add the task at the appropriate place, which is usually
after do_compile or do_install. The class then takes care of staging the files from DEPLOYDIR to DEPLOY_DIR_IMAGE.

164 Chapter 6. Yocto Project Reference Manual



https://nvd.nist.gov/info/contact-form

The Yocto Project ®, Release 5.1.3

6.5.33 devicetree
The devicetree class allows to build a recipe that compiles device tree source files that are not in the kernel tree.

The compilation of out-of-tree device tree sources is the same as the kernel in-tree device tree compilation process. This

includes the ability to include sources from the kernel such as SoC dtsi files as well as C header files, such as gpio.h.
The do_compile task will compile two kinds of files:

» Regular device tree sources with a . dts extension.

* Device tree overlays, detected from the presence of the /plugin/; string in the file contents.

This class deploys the generated device tree binaries into ${ DEPLOY_DIR_IMAGE} /devicetree/. This is similar to
what the kernel-devicetree class does, with the added devicetree subdirectory to avoid name clashes. Additionally, the

device trees are populated into the sysroot for access via the sysroot from within other recipes.

By default, all device tree sources located in DT_FILES PATH directory are compiled. To select only particular sources,
set DT_FILES to a space-separated list of files (relative to DT_FILES_PATH). For convenience, both .dts and .dtb

extensions can be used.

An extra padding is appended to non-overlay device trees binaries. This can typically be used as extra space for adding
extra properties at boot time. The padding size can be modified by setting D7T_PADDING_SIZE to the desired size, in
bytes.

See devicetree.bbclass sources for further variables controlling this class.

Here is an excerpt of an example recipes-kernel/linux/devicetree-acme.bb recipe inheriting this class:

inherit devicetree
COMPATIBLE_MACHINE = "“mymachine$"

SRC_URI:mymachine = "file://mymachine.dts"

6.5.34 devshell

The devshell class adds the do_devshell task. Distribution policy dictates whether to include this class. See the “Using a

Development Shell” section in the Yocto Project Development Tasks Manual for more information about using devshell.

6.5.35 devupstream

The devupstream class uses BBCLASSEXTEND to add a variant of the recipe that fetches from an alternative URI (e.g.

Git) instead of a tarball. Here is an example:

BBCLASSEXTEND = "devupstream:target"
SRC_URI:class-devupstream = "git://git.example.com/example;branch=main"
SRCREV:class—devupstream = "abcdl234"

6.5. Classes 165



https://git.openembedded.org/openembedded-core/tree/meta/classes-recipe/devicetree.bbclass

The Yocto Project ®, Release 5.1.3

Adding the above statements to your recipe creates a variant that has DEFAULT _PREFERENCE setto “-1”. Consequently,
you need to select the variant of the recipe to use it. Any development-specific adjustments can be done by using the

class-devupstream override. Here is an example:

DEPENDS:append:class—devupstream = " gperf-native"
do_configure:prepend:class-devupstream() {

touch ${S}/README

The class currently only supports creating a development variant of the target recipe, not native or nativesdk variants.

The BBCLASSEXTEND syntax (i.e. devupstream:target) provides support for native and nativesdk variants. Conse-

quently, this functionality can be added in a future release.

Support for other version control systems such as Subversion is limited due to BitBake’ s automatic fetch dependencies

(e.g. subversion-native).

6.5.36 externalsrc

The externalsrc class supports building software from source code that is external to the OpenEmbedded build system.
Building software from an external source tree means that the build system’ s normal fetch, unpack, and patch process

is not used.

By default, the OpenEmbedded build system uses the S and B variables to locate unpacked recipe source code and to build
it, respectively. When your recipe inherits the externalsrc class, you use the EXTERNALSRC and EXTERNALSRC_BUILD

variables to ultimately define S and B.

By default, this class expects the source code to support recipe builds that use the B variable to point to the directory in
which the OpenEmbedded build system places the generated objects built from the recipes. By default, the B directory is

set to the following, which is separate from the source directory (S):

${WORKDIR}/${BPN}-{PV}/

See these variables for more information: WORKDIR, BPN, and PV,

For more information on the externalsrc class, see the comments in meta/classes/externalsrc.bbclass in the
Source Directory. For information on how to use the externalsrc class, see the “Building Software from an External

Source” section in the Yocto Project Development Tasks Manual.

6.5.37 extrausers

The extrausers class allows additional user and group configuration to be applied at the image level. Inheriting this
class either globally or from an image recipe allows additional user and group operations to be performed using the
EXTRA_USERS_PARAMS variable.

166 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

Note

The user and group operations added using the extrausers class are not tied to a specific recipe outside of the recipe
for the image. Thus, the operations can be performed across the image as a whole. Use the useradd* class to add user

and group configuration to a specific recipe.

Here is an example that uses this class in an image recipe:

inherit extrausers
EXTRA_USERS_PARAMS = "\
useradd -p '' tester; \
groupadd developers; \
userdel nobody; \
groupdel —g video; \
groupmod —g 1020 developers; \

usermod -s /bin/sh tester; \

"

Here is an example that adds two users named “tester-jim” and “tester-sue” and assigns passwords. First on host,

create the (escaped) password hash:

printf "$g" $ (mkpasswd -m sha256crypt tester01)

The resulting hash is set to a variable and used in useradd command parameters:

inherit extrausers

PASSWD = "\$X\S$SABC123\$A-Long-Hash"
EXTRA_USERS_PARAMS = "\
useradd -p 'S ' tester—-jim; \
useradd -p 'S ' tester-sue; \

"

Finally, here is an example that sets the root password:

inherit extrausers

EXTRA_USERS_PARAMS = "\
usermod -p 'S ' root; \
Note

From a security perspective, hardcoding a default password is not generally a good idea or even legal in some juris-

6.5. Classes 167




The Yocto Project ®, Release 5.1.3

dictions. It is recommended that you do not do this if you are building a production image.

6.5.38 features_check

The features_check class allows individual recipes to check for required and conflicting DISTRO_FEATURES, MA-
CHINE_FEATURES or COMBINED_FEATURES.

This class provides support for the following variables:

* REQUIRED_DISTRO_FEATURES

e CONFLICT_DISTRO_FEATURES

* ANY_OF_DISTRO_FEATURES

* REQUIRED_MACHINE_FEATURES

* CONFLICT_MACHINE_FEATURES

* ANY_OF MACHINE_FEATURES

* REQUIRED_COMBINED_FEATURES

* CONFLICT_COMBINED_FEATURES

* ANY_OF_COMBINED_FEATURES

If any conditions specified in the recipe using the above variables are not met, the recipe will be skipped, and if the build

system attempts to build the recipe then an error will be triggered.

6.5.39 fontcache

The fontcache class generates the proper post-install and post-remove (postinst and postrm) scriptlets for font packages.
These scriptlets call fc-cache (part of Fontconfig) to add the fonts to the font information cache. Since the cache
files are architecture-specific, fc—cache runs using QEMU if the postinst scriptlets need to be run on the build host

during image creation.

If the fonts being installed are in packages other than the main package, set FONT_PACKAGES to specify the packages

containing the fonts.

6.5.40 fs-uuid

The fs-uuid class extracts UUID from $ { ROOTFS'}, which must have been built by the time that this function gets called.

The fs-uuid class only works on ext file systems and depends on tune2fs.

168 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

6.5.41 gconf

The gconf class provides common functionality for recipes that need to install GConf schemas. The schemas will be put
into a separate package (${PN }-gconf) that is created automatically when this class is inherited. This package uses the
appropriate post-install and post-remove (postinst/postrm) scriptlets to register and unregister the schemas in the target

image.

6.5.42 gettext

The gettext class provides support for building software that uses the GNU gettext internationalization and localization

system. All recipes building software that use get text should inherit this class.

6.5.43 github-releases

For recipes that fetch release tarballs from github, the github-releases class sets up a standard way for checking available

upstream versions (to support devtool upgrade and the Automated Upgrade Helper (AUH)).

To use it, add  “github-releases” to the inherit line in the recipe, and if the default value of GITHUB_BASE_URI is not
suitable, then set your own value in the recipe. You should then use ${GITHUB_BASE_URI} in the value you set for
SRC_URI within the recipe.

6.5.44 gnomebase

The gnomebase class is the base class for recipes that build software from the GNOME stack. This class sets SRC_URI to
download the source from the GNOME mirrors as well as extending FILES with the typical GNOME installation paths.

6.5.45 go

The go class supports building Go programs. The behavior of this class is controlled by the mandatory GO_IMPORT
variable, and by the optional GO_INSTALL and GO_INSTALL_FILTEROUT ones.

To build a Go program with the Yocto Project, you can use the go-helloworld_0.1.bb recipe as an example.

6.5.46 go-mod

The go-mod class allows to use Go modules, and inherits the go class.

See the associated GO_WORKDIR variable.

6.5.47 go-vendor

The go-vendor class implements support for offline builds, also known as Go vendoring. In such a scenario, the module
dependencias are downloaded during the do_fetch task rather than when modules are imported, thus being coherent with

Yocto’ s concept of fetching every source beforehand.

The dependencies are unpacked into the modules’ vendor directory, where a manifest file is generated.

6.5. Classes 169


https://git.yoctoproject.org/poky/tree/meta/recipes-extended/go-examples/go-helloworld_0.1.bb

The Yocto Project ®, Release 5.1.3

6.5.48 gobject-introspection

Provides support for recipes building software that supports GObject introspection. This functionality is only enabled
if the “gobject-introspection-data” feature is in DISTRO_FEATURES as well as “gemu-usermode” being in MA-
CHINE_FEATURES.

Note

This functionality is backfilled by default and, if not applicable, should be disabled through DIS-
TRO_FEATURES_BACKFILL_CONSIDERED or MACHINE_FEATURES_BACKFILL_CONSIDERED, respectively.

6.5.49 grub-efi
The grub-efi class provides grub-e £ i-specific functions for building bootable images.
This class supports several variables:
¢ INITRD: Indicates list of filesystem images to concatenate and use as an initial RAM disk (initrd) (optional).
* ROOTFS: Indicates a filesystem image to include as the root filesystem (optional).
¢ GRUB_GFXSERIAL: Set thisto “1” to have graphics and serial in the boot menu.
e LABELS: A list of targets for the automatic configuration.
e APPEND: An override list of append strings for each LABEL.

e GRUB_OPTS: Additional options to add to the configuration (optional). Options are delimited using semi-colon

characters (; ).

e GRUB_TIMEOUT: Timeout before executing the default LABEL (optional).

6.5.50 gsettings

The gsettings class provides common functionality for recipes that need to install GSettings (glib) schemas. The schemas
are assumed to be part of the main package. Appropriate post-install and post-remove (postinst/postrm) scriptlets are

added to register and unregister the schemas in the target image.

6.5.51 gtk-doc

The gtk-doc class is a helper class to pull in the appropriate gt k—doc dependencies and disable gt k—doc.

6.5.52 gtk-icon-cache

The gtk-icon-cache class generates the proper post-install and post-remove (postinst/postrm) scriptlets for packages that
use GTK+ and install icons. These scriptlets call gt k—update—icon—-cache to add the fonts to GTK+’ s icon cache.
Since the cache files are architecture-specific, gt k—update—icon—-cache is run using QEMU if the postinst scriptlets

need to be run on the build host during image creation.

170 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

6.5.53 gtk-immodules-cache

The gtk-immodules-cache class generates the proper post-install and post-remove (postinst/postrm) scriptlets for packages
that install GTK+ input method modules for virtual keyboards. These scriptlets call gt k—update—-icon-cache to add
the input method modules to the cache. Since the cache files are architecture-specific, gtk—update—icon-cache is

run using QEMU if the postinst scriptlets need to be run on the build host during image creation.

If the input method modules being installed are in packages other than the main package, set GTKIMMOD-
ULES_PACKAGES to specify the packages containing the modules.

6.5.54 gzipnative

The gzipnative class enables the use of different native versions of gzip and pigz rather than the versions of these tools
from the build host.

6.5.55 icecc

The icecc class supports Icecream, which facilitates taking compile jobs and distributing them among remote machines.

The class stages directories with symlinks from gcc and g++ to icecc, for both native and cross compilers. Depending
on each configure or compile, the OpenEmbedded build system adds the directories at the head of the PATH list and then

sets the TCECC_cxX and ICECC_CC variables, which are the paths to the g++ and gcc compilers, respectively.

For the cross compiler, the class creates a tar . gz file that contains the Yocto Project toolchain and sets ICECC_VERSION,

which is the version of the cross-compiler used in the cross-development toolchain, accordingly.

The class handles all three different compile stages (i.e native, cross-kernel and target) and creates the necessary envi-

ronment tar . gz file to be used by the remote machines. The class also supports SDK generation.

If ICECC _PATH is not set in your local.conf file, then the class tries to locate the icecc binary using which. If
ICECC_ENV_EXEC is setin your local . conf file, the variable should point to the i cecc-create-env script provided
by the user. If you do not point to a user-provided script, the build system uses the default script provided by the recipe

icecc-create-env_0.1.bb.

Note

This script is a modified version and not the one that comes with icecream.

If you do not want the Icecream distributed compile support to apply to specific recipes or classes, you can ask them to be
ignored by Icecream by listing the recipes and classes using the /ICECC_RECIPE_DISABLE and ICECC_CLASS_DISABLE
variables, respectively, in your local.conf file. Doing so causes the OpenEmbedded build system to handle these

compilations locally.

Additionally, you can list recipes using the ICECC_RECIPE_ENABLE variable in your 1local.conf file to force icecc
to be enabled for recipes using an empty PARALLEL,_MAKE variable.

6.5. Classes 171


https://github.com/icecc/icecream
https://git.openembedded.org/openembedded-core/tree/meta/recipes-devtools/icecc-create-env/icecc-create-env_0.1.bb

The Yocto Project ®, Release 5.1.3

Inheriting the icecc class changes all sstate signatures. Consequently, if a development team has a dedicated build system
that populates SSTATE_MIRRORS and they want to reuse sstate from SSTATE_MIRRORS, then all developers and the build

system need to either inherit the icecc class or nobody should.

At the distribution level, you can inherit the icecc class to be sure that all builders start with the same sstate signatures.

After inheriting the class, you can then disable the feature by setting the /ICECC_DISABLED variable to “1” as follows:

INHERIT_DISTRO:append = " icecc"

ICECC_DISABLED ?22= "1"

This practice makes sure everyone is using the same signatures but also requires individuals that do want to use Icecream

to enable the feature individually as follows in your 1ocal. conf file:

ICECC_DISABLED = ""

6.5.56 image

The image class helps support creating images in different formats. First, the root filesystem is created from packages
using one of the root £s*.bbclass files (depending on the package format used) and then one or more image files are

created.
e The IMAGE_FSTYPES variable controls the types of images to generate.
e The IMAGE_INSTALL variable controls the list of packages to install into the image.

For information on customizing images, see the “Customizing Images” section in the Yocto Project Development Tasks

9

Manual. For information on how images are created, see the “/mages” section in the Yocto Project Overview and

Concepts Manual.

6.5.57 image-buildinfo

The image-buildinfo class writes a plain text file containing build information to the target filesystem at $ { sysconfdir}/
buildinfo by default (as specified by IMAGE_BUILDINFO_FILE). This can be useful for manually determining the

origin of any given image. It writes out two sections:

1. Build Configuration: a list of variables and their values (specified by IMAGE_BUILDINFO_VARS, which defaults to
DISTRO and DISTRO_VERSION)

2. Layer Revisions: the revisions of all of the layers used in the build.

Additionally, when building an SDK it will write the same contents to /buildinfo by default (as specified by
SDK_BUILDINFO_FILE).

172 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

6.5.58 image_types

The image_types class defines all of the standard image output types that you can enable through the IMAGE_FSTYPES

variable. You can use this class as a reference on how to add support for custom image output types.

By default, the image class automatically enables the image_types class. The image class uses the IMGCLASSES variable

as follows:

IMGCLASSES = "rootfs_S${IMAGE_PKGTYPE} image_types ${IMAGE_CLASSES}"

# Only Linux SDKs support populate_sdk_ext, fall back to populate_sdk_base

# in the non-Linux SDK_OS case, such as mingw32

inherit populate_sdk_base

IMGCLASSES += "${@Q['', 'populate_sdk_ext']['linux' in d.getVar ("SDK_OS")]}"
IMGCLASSES += "${@bb.utils.contains_any ('IMAGE_FSTYPES', 'live iso hddimg', 'image-—
—live', '', d)}"

IMGCLASSES += "${@bb.utils.contains ('IMAGE_FSTYPES', 'container', 'image-container', '
', d)}"

IMGCLASSES += "image_types_wic"

IMGCLASSES += "rootfs—postcommands"

IMGCLASSES += "image-postinst-intercepts"

IMGCLASSES += "overlayfs—-etc"

inherit_defer ${IMGCLASSES}

The image_types class also handles conversion and compression of images.

Note

To build a VMware VMDK image, you need to add “wic.vmdk” to IMAGE_FSTYPES. This would also be similar
for Virtual Box Virtual Disk Image ( “vdi” ) and QEMU Copy On Write Version 2 ( “qcow2” ) images.

6.5.59 image-live

This class controls building “live” (i.e. HDDIMG and ISO) images. Live images contain syslinux for legacy booting, as
well as the bootloader specified by EFI_PROVIDER if MACHINE_FEATURES contains “efi” .

Normally, you do not use this class directly. Instead, you add “live” to IMAGE_FSTYPES.

6.5.60 insane

The insane class adds a step to the package generation process so that output quality assurance checks are generated by
the OpenEmbedded build system. A range of checks are performed that check the build’ s output for common problems

that show up during runtime. Distribution policy usually dictates whether to include this class.

You can configure the sanity checks so that specific test failures either raise a warning or an error message. Typically,

failures for new tests generate a warning. Subsequent failures for the same test would then generate an error message once

6.5. Classes 173




The Yocto Project ®, Release 5.1.3

the metadata is in a known and good condition. See the “QA Error and Warning Messages” Chapter for a list of all the

warning and error messages you might encounter using a default configuration.

Use the WARN_QA and ERROR_QA variables to control the behavior of these checks at the global level (i.e. in your
custom distro configuration). However, to skip one or more checks in recipes, you should use INSANE_SKIP. For example,
to skip the check for symbolic link . so files in the main package of a recipe, add the following to the recipe. You need

to realize that the package name override, in this example ${PN}, must be used:

INSANE_SKIP:${PN} += "dev-so"

Please keep in mind that the QA checks are meant to detect real or potential problems in the packaged output. So exercise

caution when disabling these checks.
The tests you can list with the WARN_QA and ERROR_QA variables are:

* already-stripped: Checks that produced binaries have not already been stripped prior to the build system
extracting debug symbols. It is common for upstream software projects to default to stripping debug symbols for

output binaries. In order for debugging to work on the target using —~dbg packages, this stripping must be disabled.

* arch: Checks the Executable and Linkable Format (ELF) type, bit size, and endianness of any binaries to ensure
they match the target architecture. This test fails if any binaries do not match the type since there would be an
incompatibility. The test could indicate that the wrong compiler or compiler options have been used. Sometimes

software, like bootloaders, might need to bypass this check.

* buildpaths: Checks for paths to locations on the build host inside the output files. Not only can these leak

information about the build environment, they also hinder binary reproducibility.

* build-deps: Determines if a build-time dependency that is specified through DEPENDS, explicit RDEPENDS,
or task-level dependencies exists to match any runtime dependency. This determination is particularly useful to
discover where runtime dependencies are detected and added during packaging. If no explicit dependency has
been specified within the metadata, at the packaging stage it is too late to ensure that the dependency is built, and
thus you can end up with an error when the package is installed into the image during the do_rootfs task because the
auto-detected dependency was not satisfied. An example of this would be where the update-rc.d class automatically
adds a dependency on the initscripts-functions package to packages that install an initscript that refers to
/etc/init.d/functions. The recipe should really have an explicit RDEPENDS for the package in question
on initscripts—-functions so that the OpenEmbedded build system is able to ensure that the initscripts

recipe is actually built and thus the initscripts-functions package is made available.

e configure-gettext: Checks that if a recipe is building something that uses automake and the automake files
contain an AM_GNU_GETTEXT directive, that the recipe also inherits the gertext class to ensure that gettext is available

during the build.

* compile-host-path: Checks the do_compile log for indications that paths to locations on the build host were

used. Using such paths might result in host contamination of the build output.

* cve_status_not_in_db: Checks for each component if CVEs that are ignored via CVE_STATUS, that those
are (still) reported for this component in the NIST database. If not, a warning is printed. This check is disabled by
default.

174 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

¢ debug-deps: Checks that all packages except ~dbg packages do not depend on —dbg packages, which would

cause a packaging bug.

* debug-files: Checks for .debug directories in anything but the -dbg package. The debug files should all be
in the —~dbg package. Thus, anything packaged elsewhere is incorrect packaging.

e dep-cmp: Checks for invalid version comparison statements in runtime dependency relationships between pack-
ages (i.e. in RDEPENDS, RRECOMMENDS, RSUGGESTS, RPROVIDES, RREPLACES, and RCONFLICTS variable
values). Any invalid comparisons might trigger failures or undesirable behavior when passed to the package man-

ager.

* desktop: Runs the desktop-file-validate program against any .desktop files to validate their contents

against the specification for . desktop files.

¢ dev-deps: Checks that all packages except ~dev or —staticdev packages do not depend on —dev packages,

which would be a packaging bug.

* dev-so: Checks that the . so symbolic links are in the —dev package and not in any of the other packages. In
general, these symlinks are only useful for development purposes. Thus, the —dev package is the correct location
for them. In very rare cases, such as dynamically loaded modules, these symlinks are needed instead in the main

package.

* empty-dirs: Checks that packages are not installing files to directories that are normally expected to be empty
(such as /tmp) The list of directories that are checked is specified by the QA_EMPTY_DIRS variable.

e file-rdeps: Checks that file-level dependencies identified by the OpenEmbedded build system at packaging
time are satisfied. For example, a shell script might start with the line # ! /bin/bash. This line would translate to
a file dependency on /bin/bash. Of the three package managers that the OpenEmbedded build system supports,
only RPM directly handles file-level dependencies, resolving them automatically to packages providing the files.
However, the lack of that functionality in the other two package managers does not mean the dependencies do not
still need resolving. This QA check attempts to ensure that explicitly declared RDEPENDS exist to handle any
file-level dependency detected in packaged files.

e files-invalid: Checks for FILES variable values that contain “//” , which is invalid.

* host-user-contaminated: Checks that no package produced by the recipe contains any files outside of /home
with a user or group ID that matches the user running BitBake. A match usually indicates that the files are being
installed with an incorrect UID/GID, since target IDs are independent from host IDs. For additional information,

see the section describing the do_install task.

* incompatible-license: Report when packages are excluded from being created due to being marked with a
license that is in INCOMPATIBLE_LICENSE.

e install-host-path: Checks the do_install log for indications that paths to locations on the build host were

used. Using such paths might result in host contamination of the build output.

e installed-vs—-shipped: Reports when files have been installed within do_install but have not been included

in any package by way of the FILES variable. Files that do not appear in any package cannot be present in an image

6.5. Classes 175



The Yocto Project ®, Release 5.1.3

later on in the build process. Ideally, all installed files should be packaged or not installed at all. These files can be

deleted at the end of do_install if the files are not needed in any package.

invalid-chars: Checks that the recipe metadata variables DESCRIPTION, SUMMARY, LICENSE, and SEC-

TION do not contain non-UTF-8 characters. Some package managers do not support such characters.

invalid-packageconfig: Checks that no undefined features are being added to PACKAGECONFIG. For ex-

ample, any name “foo” for which the following form does not exist:

PACKAGECONFIG[foo] = "..."

la: Checks . 1a files for any TMPDIR paths. Any . 1a file containing these paths is incorrect since 1ibtool adds

the correct sysroot prefix when using the files automatically itself.

1dflags: Ensures that the binaries were linked with the LDFLAGS options provided by the build system. If this
test fails, check that the LDFLAGS variable is being passed to the linker command.

libdir: Checks for libraries being installed into incorrect (possibly hardcoded) installation paths. For example,
this test will catch recipes that install /1ib/bar.so when ${base_libdir}is “lib32” . Another example is

when recipes install /usr/1ib64/foo.so when ${1ibdir}is “/ust/lib” .

libexec: Checks if a package contains files in /usr/1libexec. This check is not performed if the 1ibexecdir

variable has been set explicitly to /usr/libexec.

mime: Check that if a package contains mime type files (. xm1 files in ${datadir}/mime/packages) that the

recipe also inherits the mime class in order to ensure that these get properly installed.

mime-xdg: Checks that if a package contains a .desktop file with a ‘MimeType’ key present, that the recipe

inherits the mime-xdg class that is required in order for that to be activated.

missing-update-alternatives: Check that if a recipe sets the ALTERNATIVE variable that the recipe also

inherits update-alternatives such that the alternative will be correctly set up.

packages-1list: Checks for the same package being listed multiple times through the PACKAGES variable value.

Installing the package in this manner can cause errors during packaging.

patch-fuzz: Checks for fuzz in patch files that may allow them to apply incorrectly if the underlying code

changes.

patch-status: Checks that the Upstream—Status is specified and valid in the headers of patches for recipes.
pep517-backend: checks that a recipe inheriting sefuptools3 has a PEP517-compliant backend.
perllocalpod: Checks for perllocal.pod being erroneously installed and packaged by a recipe.
perm-config: Reports lines in £s-perms.txt that have an invalid format.

perm-1line: Reports lines in fs—perms.txt that have an invalid format.

perm-link: Reports lines in £s-perms.txt that specify ‘link’ where the specified target already exists.

perms: Currently, this check is unused but reserved.

176

Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

pkgconfig: Checks .pc files for any TMPDIR/ WORKDIR paths. Any . pc file containing these paths is incorrect

since pkg-config itself adds the correct sysroot prefix when the files are accessed.

pkgname: Checks that all packages in PACKAGES have names that do not contain invalid characters (i.e. charac-

ters other than 0-9, a-z, ., +, and -).
pkgv-undefined: Checks to see if the PKGV variable is undefined during do_package.

pkgvarcheck: Checks through the variables RDEPENDS, RRECOMMENDS, RSUGGESTS, RCONFLICTS,
RPROVIDES, RREPLACES, FILES, ALLOW_EMPTY, pkg_preinst, pkg_postinst, pkg_prerm and
pkg_postrm, and reports if there are variable sets that are not package-specific. Using these variables with-
out a package suffix is bad practice, and might unnecessarily complicate dependencies of other packages within

the same recipe or have other unintended consequences.

pn-overrides: Checks that a recipe does not have a name (PN) value that appears in OVERRIDES. If a recipe
is named such that its PN value matches something already in OVERRIDES (e.g. PN happens to be the same as
MACHINE or DISTRO), it can have unexpected consequences. For example, assignments such as FILES: ${PN}

= "xyz" effectively turn into FILES = "xyz".

rpaths: Checks for rpaths in the binaries that contain build system paths such as 7TMPDIR. If this test fails, bad

-rpath options are being passed to the linker commands and your binaries have potential security issues.

shebang-size: Check that the shebang line (#! in the first line) in a packaged script is not longer than 128

characters, which can cause an error at runtime depending on the operating system.
split-strip: Reports that splitting or stripping debug symbols from binaries has failed.
staticdev: Checks for static library files (* . a) in non-staticdev packages.

src-uri-bad: Checks that the SRC_URI value set by a recipe does not contain a reference to $ {PN} (instead of

the correct $ {BPN}) nor refers to unstable Github archive tarballs.

symlink-to-sysroot: Checks for symlinks in packages that point into TMPDIR on the host. Such symlinks

will work on the host, but are clearly invalid when running on the target.

textrel: Checks for ELF binaries that contain relocations in their . text sections, which can result in a perfor-
mance impact at runtime. See the explanation for the ELF binary messagein “QA Error and Warning Messages”

for more information regarding runtime performance issues.

unhandled-features—-check: check that if one of the variables that the fearures_check class supports (e.g.
REQUIRED_DISTRO_FEATURES) is set by a recipe, then the recipe also inherits features_check in order for the

requirement to actually work.
unimplemented-ptest: Checks that ptests are implemented for upstream tests.

unlisted-pkg-lics: Checks that all declared licenses applying for a package are also declared on the recipe

level (i.e. any license in LICENSE : * should appear in LICENSE).

useless-rpaths: Checks for dynamic library load paths (rpaths) in the binaries that by default on a standard
system are searched by the linker (e.g. /1ib and /usr/1ib). While these paths will not cause any breakage, they

do waste space and are unnecessary.

6.5.

Classes 177



The Yocto Project ®, Release 5.1.3

e usrmerge: If usrmerge is in DISTRO_FEATURES, this check will ensure that no package installs files to root
(/bin, /sbin, /1ib, /1ib64) directories.

* var—undefined: Reports when variables fundamental to packaging (i.e. WORKDIR, DEPLOY_DIR, D, PN, and
PKGD)) are undefined during do_package.

* version—-going-backwards: If the buildhistory class is enabled, reports when a package being written out has
a lower version than the previously written package under the same name. If you are placing output packages into
a feed and upgrading packages on a target system using that feed, the version of a package going backwards can

result in the target system not correctly upgrading to the “new” version of the package.

Note

This is only relevant when you are using runtime package management on your target system.

e virtual-slash: Checks to see if virtual/ is being used in RDEPENDS or RPROVIDES, which is not good
practice —virtual/ is a convention intended for use in the build context (i.e. PROVIDES and DEPENDS) rather

than the runtime context.

* xorg-driver-abi: Checks that all packages containing Xorg drivers have ABI dependencies. The
xserver—xorg recipe provides driver ABI names. All drivers should depend on the ABI versions that they have
been built against. Driver recipes that include xorg-driver—-input.inc or xorg-driver-video.inc will
automatically get these versions. Consequently, you should only need to explicitly add dependencies to binary

driver recipes.

6.5.61 kernel

The kernel class handles building Linux kernels. The class contains code to build all kernel trees. All needed headers are

staged into the STAGING _KERNEL_DIR directory to allow out-of-tree module builds using the module class.

If a file named defconfigis listed in SRC_URI, then by default do_configure copies it as . config in the build directory,
so it is automatically used as the kernel configuration for the build. This copy is not performed in case .config already

exists there: this allows recipes to produce a configuration by other means in do_configure:prepend.

Each built kernel module is packaged separately and inter-module dependencies are created by parsing the modinfo
output. If all modules are required, then installing the kernel-modules package installs all packages with modules and

various other kernel packages such as kernel-vmlinux.

The kernel class contains logic that allows you to embed an initial RAM filesystem (/nitramfs) image when you build the
kernel image. For information on how to build an Initramfs, see the “Building an Initial RAM Filesystem (Initramfs)

Image” section in the Yocto Project Development Tasks Manual.

Various other classes are used by the kernel and module classes internally including the kernel-arch, module-base, and

linux-kernel-base classes.

178 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

6.5.62 kernel-arch

The kernel-arch class sets the ARCH environment variable for Linux kernel compilation (including modules).

6.5.63 kernel-devicetree
The kernel-devicetree class, which is inherited by the kernel class, supports device tree generation.
Its behavior is mainly controlled by the following variables:

e KERNEL_DEVICETREE_BUNDLE: whether to bundle the kernel and device tree

e KERNEL_DTBDEST: directory where to install DTB files

e KERNEL_DTBVENDORED: whether to keep vendor subdirectories

e KERNEL_DTC_FLAGS: flags for dtc, the Device Tree Compiler

e KERNEL_PACKAGE_NAME: base name of the kernel packages

6.5.64 kernel-fitimage

The kernel-fitimage class provides support to pack a kernel image, device trees, a U-boot script, an Iniframfs bundle and a
RAM disk into a single FIT image. In theory, a FIT image can support any number of kernels, U-boot scripts, Initramfs
bundles, RAM disks and device-trees. However, kernel-fitimage currently only supports limited usecases: just one kernel

image, an optional U-boot script, an optional /nitramfs bundle, an optional RAM disk, and any number of device trees.

To create a FIT image, it is required that KERNEL_CLASSES is set to include “kernel-fitimage” and one of KER-
NEL_IMAGETYPE, KERNEL_ALT _IMAGETYPE or KERNEL_IMAGETYPES to include “fitlmage” .

The options for the device tree compiler passed to mkimage -D when creating the FIT image are specified using the
UBOOT _MKIMAGE_DTCOPTS variable.

Only a single kernel can be added to the FIT image created by kernel-fitimage and the kernel image in FIT is mandatory.
The address where the kernel image is to be loaded by U-Boot is specified by UBOOT _LOADADDRESS and the entrypoint
by UBOOT _ENTRYPOINT . Setting FIT_ADDRESS CELLS to “2” is necessary if such addresses are 64 bit ones.

Multiple device trees can be added to the FIT image created by kernel- fitimage and the device tree is optional. The address
where the device tree is to be loaded by U-Boot is specified by UBOOT _DTBO_LOADADDRESS for device tree overlays
and by UBOOT_DTB_LOADADDRESS for device tree binaries.

Only a single RAM disk can be added to the FIT image created by kernel-fitimage and the RAM disk in FIT is optional.
The address where the RAM disk image is to be loaded by U-Boot is specified by UBOOT_RD_LOADADDRESS and the
entrypoint by UBOOT_RD_ENTRYPOINT. The ramdisk is added to the FIT image when INITRAMFS_IMAGE is specified
and requires that INITRAMFS_IMAGE_BUNDLE is not set to 1.

Only a single /niftramfs bundle can be added to the FIT image created by kernel-fitimage and the Initramfs bundle in
FIT is optional. In case of Initramfs, the kernel is configured to be bundled with the root filesystem in the same bi-
nary (example: zImage-initramfs-MACHINE.bin). When the kernel is copied to RAM and executed, it unpacks the
Initramfs root filesystem. The Initramfs bundle can be enabled when INITRAMFS_IMAGE is specified and requires that

6.5. Classes 179



The Yocto Project ®, Release 5.1.3

INITRAMFS_IMAGE_BUNDLE is set to 1. The address where the Initramfs bundle is to be loaded by U-boot is specified
by UBOOT_LOADADDRESS and the entrypoint by UBOOT_ENTRYPOINT .

Only a single U-boot boot script can be added to the FIT image created by kernel-fitimage and the boot script is optional.
The boot script is specified in the ITS file as a text file containing U-boot commands. When using a boot script the user
should configure the U-boot do_install task to copy the script to sysroot. So the script can be included in the FIT image by
the kernel-fitimage class. At run-time, U-boot CONFIG_BOOTCOMMAND define can be configured to load the boot

script from the FIT image and execute it.

The FIT image generated by the kernel-fitimage class is signed when the variables UBOOT_SIGN_ENABLE,
UBOOT_MKIMAGE_DTCOPTS, UBOOT _SIGN_KEYDIR and UBOOT_SIGN_KEYNAME are set appropriately. The de-
fault values used for FIT_HASH_ALG and FIT_SIGN_ALG in kernel-fitimage are “sha256” and “rsa2048” respectively.
The keys for signing the FIT image can be generated using the kernel-fitimage class when both FIT GENERATE_KEYS
and UBOOT SIGN_ENABLE are setto “17 .

6.5.65 kernel-grub

The kernel-grub class updates the boot area and the boot menu with the kernel as the priority boot mechanism while

installing a RPM to update the kernel on a deployed target.

6.5.66 kernel-module-split

The kernel-module-split class provides common functionality for splitting Linux kernel modules into separate packages.

6.5.67 kernel-uboot

The kernel-uboot class provides support for building from vmlinux-style kernel sources.

6.5.68 kernel-uimage

The kernel-uimage class provides support to pack ulmage.

6.5.69 kernel-yocto

The kernel-yocto class provides common functionality for building from linux-yocto style kernel source repositories.

6.5.70 kernelsrc

The kernelsrc class sets the Linux kernel source and version.

6.5.71 1ib_package

The lib_package class supports recipes that build libraries and produce executable binaries, where those binaries should
not be installed by default along with the library. Instead, the binaries are added to a separate ${PN}-bin package to

make their installation optional.

180 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

6.5.72 libc*
The libc* classes support recipes that build packages with 1ibc:
¢ The libc-common class provides common support for building with 1ibc.

* The libc-package class supports packaging up glibc and eglibec.

6.5.73 license

The license class provides license manifest creation and license exclusion. This class is enabled by default using the default
value for the INHERIT DISTRO variable.

6.5.74 linux-kernel-base

The linux-kernel-base class provides common functionality for recipes that build out of the Linux kernel source tree.

These builds goes beyond the kernel itself. For example, the Perf recipe also inherits this class.

6.5.75 linuxloader

Provides the function linuxloader (), which gives the value of the dynamic loader/linker provided on the platform.

This value is used by a number of other classes.

6.5.76 logging

The logging class provides the standard shell functions used to log messages for various BitBake severity levels (i.e.

bbplain, bbnote, bbwarn, bberror, bbfatal, and bbdebug).

This class is enabled by default since it is inherited by the base class.

6.5.77 meson

The meson class allows to create recipes that build software using the Meson build system. You can use the ME-
SON_BUILDTYPE, MESON_TARGET and EXTRA_OEMESON variables to specify additional configuration options to

be passed using the meson command line.

6.5.78 metadata_scm

The metadata_scm class provides functionality for querying the branch and revision of a Source Code Manager (SCM)

repository.

The base class uses this class to print the revisions of each layer before starting every build. The meradata_scm class is

enabled by default because it is inherited by the base class.

6.5. Classes 181


https://mesonbuild.com/

The Yocto Project ®, Release 5.1.3

6.5.79 migrate_localcount

The migrate_localcount class verifies a recipe’ s localcount data and increments it appropriately.

6.5.80 mime

The mime class generates the proper post-install and post-remove (postinst/postrm) scriptlets for packages that install

MIME type files. These scriptlets call update-mime-database to add the MIME types to the shared database.

6.5.81 mime-xdg

The mime-xdg class generates the proper post-install and post-remove (postinst/postrm) scriptlets for packages that install
.desktop files containing MimeType entries. These scriptlets call update-desktop-database to add the MIME
types to the database of MIME types handled by desktop files.

Thanks to this class, when users open a file through a file browser on recently created images, they don’ t have to choose

the application to open the file from the pool of all known applications, even the ones that cannot open the selected file.

If you have recipes installing their .desktop files as absolute symbolic links, the detection of such files cannot be
done by the current implementation of this class. In this case, you have to add the corresponding package names to the
MIME_XDG _PACKAGES variable.

6.5.82 mirrors

The mirrors class sets up some standard MIRRORS entries for source code mirrors. These mirrors provide a fall-back

path in case the upstream source specified in SRC_URI within recipes is unavailable.

This class is enabled by default since it is inherited by the base class.

6.5.83 module

The module class provides support for building out-of-tree Linux kernel modules. The class inherits the module-base and
kernel-module-split classes, and implements the do_compile and do_install tasks. The class provides everything needed

to build and package a kernel module.

For general information on out-of-tree Linux kernel modules, see the “Incorporating Out-of-Tree Modules” section in

the Yocto Project Linux Kernel Development Manual.

6.5.84 module-base

The module-base class provides the base functionality for building Linux kernel modules. Typically, a recipe that builds
software that includes one or more kernel modules and has its own means of building the module inherits this class as

opposed to inheriting the module class.

182 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

6.5.85 multilib*

The multilib* classes provide support for building libraries with different target optimizations or target architectures and

installing them side-by-side in the same image.

For more information on using the Multilib feature, see the “Combining Multiple Versions of Library Files into One Image”

section in the Yocto Project Development Tasks Manual.

6.5.86 native

The native class provides common functionality for recipes that build tools to run on the Build Host (i.e. tools that use the

compiler or other tools from the build host).
You can create a recipe that builds tools that run natively on the host a couple different ways:

* Create a myrecipe-native.bb recipe that inherits the native class. If you use this method, you must order the

inherit statement in the recipe after all other inherit statements so that the native class is inherited last.

Note

When creating a recipe this way, the recipe name must follow this naming convention:

myrecipe-native.bb

Not using this naming convention can lead to subtle problems caused by existing code that depends on that

naming convention.

¢ Create or modify a target recipe that contains the following:

BBCLASSEXTEND = "native"

Inside the recipe, use : class—-native and : class-target overrides to specify any functionality specific to the

respective native or target case.

Although applied differently, the native class is used with both methods. The advantage of the second method is that you
do not need to have two separate recipes (assuming you need both) for native and target. All common parts of the recipe

are automatically shared.

6.5.87 nativesdk

The nativesdk class provides common functionality for recipes that wish to build tools to run as part of an SDK (i.e. tools
that run on SDKMACHINE).

You can create a recipe that builds tools that run on the SDK machine a couple different ways:

¢ Create a nativesdk-myrecipe.bb recipe that inherits the nafivesdk class. If you use this method, you must

order the inherit statement in the recipe after all other inherit statements so that the nativesdk class is inherited last.

* Create a nativesdk variant of any recipe by adding the following:

6.5. Classes 183



The Yocto Project ®, Release 5.1.3

BBCLASSEXTEND = "nativesdk"

Inside the recipe, use :class-nativesdk and :class-target overrides to specify any functionality specific

to the respective SDK machine or target case.

Note

When creating a recipe, you must follow this naming convention:

nativesdk-myrecipe.bb

Not doing so can lead to subtle problems because there is code that depends on the naming convention.

Although applied differently, the nativesdk class is used with both methods. The advantage of the second method is that
you do not need to have two separate recipes (assuming you need both) for the SDK machine and the target. All common

parts of the recipe are automatically shared.

6.5.88 nopackages

Disables packaging tasks for those recipes and classes where packaging is not needed.

6.5.89 nospdx

The nospdx allows a recipe to opt out of SPDX generation provided by create-spdx.

6.5.90 npm

Provides support for building Node.js software fetched using the node package manager (NPM).

Note

Currently, recipes inheriting this class must use the npm:// fetcher to have dependencies fetched and packaged

automatically.

For information on how to create NPM packages, see the “Creating Node Package Manager (NPM) Packages” section

in the Yocto Project Development Tasks Manual.

6.5.91 ocelint

The oelint class is an obsolete lint checking tool available in meta/classes in the Source Directory.

There are some classes that could be generally useful in OE-Core but are never actually used within OE-Core itself. The
oelint class is one such example. However, being aware of this class can reduce the proliferation of different versions of

similar classes across multiple layers.

184 Chapter 6. Yocto Project Reference Manual



https://en.wikipedia.org/wiki/Npm_(software)

The Yocto Project ®, Release 5.1.3

6.5.92 overlayfs

It’ s often desired in Embedded System design to have a read-only root filesystem. But a lot of different applications might
want to have read-write access to some parts of a filesystem. It can be especially useful when your update mechanism
overwrites the whole root filesystem, but you may want your application data to be preserved between updates. The
overlayfs class provides a way to achieve that by means of overlayfs and at the same time keeping the base root

filesystem read-only.

To use this class, set a mount point for a partition overlayfs is going to use as upper layer in your machine configuration.
The underlying file system can be anything that is supported by overlayfs. This has to be done in your machine

configuration:

OVERLAYFS_MOUNT_POINT [data] = "/data"

Note
* QA checks fail to catch file existence if you redefine this variable in your recipe!
* Only the existence of the systemd mount unit file is checked, not its contents.

» To get more details on overlayfs, its internals and supported operations, please refer to the official docu-

mentation of the Linux kernel.

The class assumes you have a data.mount systemd unit defined elsewhere in your BSP (e.g. in sys-

temd-machine-units recipe) and it’ s installed into the image.

Then you can specify writable directories on a recipe basis (e.g. in my-application.bb):

OVERLAYFS_WRITABLE_PATHS[data] = "/usr/share/my-custom-application"

To support several mount points you can use a different variable flag. Assuming we want to have a writable location on
the file system, but do not need that the data survives a reboot, then we could have a mnt-overlay.mount unit for a

tmpfs file system.

In your machine configuration:

OVERLAYFS_MOUNT_POINT [mnt-overlay] = "/mnt/overlay"

and then in your recipe:

OVERLAYFS_WRITABLE_PATHS [mnt-overlay] = "/usr/share/another-application"

On a practical note, your application recipe might require multiple overlays to be mounted before running to avoid writing
to the underlying file system (which can be forbidden in case of read-only file system) To achieve that overlayfs provides

a systemd helper service for mounting overlays. This helper service is named $ {PN}-overlays.service and can be

6.5. Classes 185



https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html

The Yocto Project ®, Release 5.1.3

depended on in your application recipe (named application in the following example) systemd unit by adding to the

unit the following:

[Unit]
After=application-overlays.service

Requires=application-overlays.service

Note

The class does not support the /et c directory itself, because sy stemd depends on it. In order to get /et c in overlayfs,

see overlayfs-etc.

6.5.93 overlayfs-etc

In order to have the /et c directory in overlayfs a special handling at early boot stage is required. The idea is to supply a
custom init script that mounts /et c before launching the actual init program, because the latter already requires /etc to

be mounted.

Example usage in image recipe:

IMAGE_FEATURES += "overlayfs-etc"

Note

This class must not be inherited directly. Use IMAGE_FEATURES or EXTRA_IMAGE_FEATURES

Your machine configuration should define at least the device, mount point, and file system type you are going to use for

overlayfs:
OVERLAYFS_ETC_MOUNT_POINT = "/data"
OVERLAYFS_ETC_DEVICE = "/dev/mmcblkOp2"

OVERLAYFS_ETC_FSTYPE ?= "ext4"

To control more mount options you should consider setting mount options (defaults is used by default):

OVERLAYFS_ETC_MOUNT_OPTIONS = "wsync"

The class provides two options for /sbin/init generation:

* The default option is to rename the original /sbin/init to /sbin/init.orig and place the generated init under
original name, i.e. /sbin/init. It has an advantage that you won’ t need to change any kernel parameters in
order to make it work, but it poses a restriction that package-management can’ t be used, because updating the

init manager would remove the generated script.

186 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

* If you wish to keep original init as is, you can set:

OVERLAYFS_ETC_USE_ORIG_INIT_NAME = "O"

Then the generated init will be named /sbin/preinit and you would need to extend your kernel parameters

manually in your bootloader configuration.

6.5.94 own-mirrors

The own-mirrors class makes it easier to set up your own PREMIRRORS from which to first fetch source before attempting

to fetch it from the upstream specified in SRC_URI within each recipe.

To use this class, inherit it globally and specify SOURCE_MIRROR_URL. Here is an example:

INHERIT += "own-mirrors"

SOURCE_MIRROR _URL = "http://example.com/my—-source-mirror"

You can specify only a single URL in SOURCE_MIRROR_URL.

6.5.95 package

The package class supports generating packages from a build’ s output. The core generic functionality is in pack-
age.bbclass. The code specific to particular package types resides in these package-specific classes: package_deb,

package_rpm, package_ipk.

You can control the list of resulting package formats by using the PACKAGE_CLASSES variable defined in your conf/
local.conf configuration file, which is located in the Build Directory. When defining the variable, you can specify
one or more package types. Since images are generated from packages, a packaging class is needed to enable image

generation. The first class listed in this variable is used for image generation.

If you take the optional step to set up a repository (package feed) on the development host that can be used by DNF, you
can install packages from the feed while you are running the image on the target (i.e. runtime installation of packages).
For more information, see the “Using Runtime Package Management” section in the Yocto Project Development Tasks

Manual.

The package-specific class you choose can affect build-time performance and has space ramifications. In general, building
a package with IPK takes about thirty percent less time as compared to using RPM to build the same or similar package.
This comparison takes into account a complete build of the package with all dependencies previously built. The reason
for this discrepancy is because the RPM package manager creates and processes more Metadata than the IPK package
manager. Consequently, you might consider setting PACKAGE_CLASSES to “package_ipk” if you are building smaller

systems.
Before making your package manager decision, however, you should consider some further things about using RPM:

¢ RPM starts to provide more abilities than IPK due to the fact that it processes more Metadata. For example, this
information includes individual file types, file checksum generation and evaluation on install, sparse file support,

conflict detection and resolution for Multilib systems, ACID style upgrade, and repackaging abilities for rollbacks.

6.5. Classes 187




The Yocto Project ®, Release 5.1.3

 For smaller systems, the extra space used for the Berkeley Database and the amount of metadata when using RPM

can affect your ability to perform on-device upgrades.
You can find additional information on the effects of the package class at these two Yocto Project mailing list links:
* https://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html

* https://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html

6.5.96 package_deb

The package_deb class provides support for creating packages that use the Debian (i.e. .deb) file format. The class
ensures the packages are written out in a . deb file format to the ${ DEPLOY_DIR_DEB} directory.

This class inherits the package class and is enabled through the PACKAGE_CLASSES variable in the 1ocal. conf file.

6.5.97 package_ipk

The package_ipk class provides support for creating packages that use the IPK (i.e. . ipk) file format. The class ensures
the packages are written out in a . ipk file format to the s { DEPLOY_DIR_IPK '} directory.

This class inherits the package class and is enabled through the PACKAGE_CLASSES variable in the 1ocal. conf file.

6.5.98 package_rpm

The package_rpm class provides support for creating packages that use the RPM (i.e. . rpm) file format. The class ensures
the packages are written out in a . rpm file format to the $ { DEPLOY_DIR_RPM } directory.

This class inherits the package class and is enabled through the PACKAGE_CLASSES variable in the 1ocal. conf file.

6.5.99 packagedata

The packagedata class provides common functionality for reading pkgdata files found in PKGDATA_DIR. These files

contain information about each output package produced by the OpenEmbedded build system.

This class is enabled by default because it is inherited by the package class.

6.5.100 packagegroup

The packagegroup class sets default values appropriate for package group recipes (e.g. PACKAGES, PACKAGE_ARCH,
ALLOW_EMPTY , and so forth). It is highly recommended that all package group recipes inherit this class.

For information on how to use this class, see the “Customizing Images Using Custom Package Groups” section in the

Yocto Project Development Tasks Manual.

Previously, this class was called the task class.

188 Chapter 6. Yocto Project Reference Manual


https://lists.yoctoproject.org/pipermail/poky/2011-May/006362.html
https://lists.yoctoproject.org/pipermail/poky/2011-May/006363.html

The Yocto Project ®, Release 5.1.3

6.5.101 patch

The patch class provides all functionality for applying patches during the do_patch task.

This class is enabled by default because it is inherited by the base class.

6.5.102 perlnative

When inherited by a recipe, the perinative class supports using the native version of Perl built by the build system rather

than using the version provided by the build host.

6.5.103 pypi

The pypi class sets variables appropriately for recipes that build Python modules from PyPI, the Python Package Index.

113 ? 3

By default it determines the PyPI package name based upon BPN (stripping the “python-” or “python3-” prefix off if

present), however in some cases you may need to set it manually in the recipe by setting PYP/ PACKAGE.

Variables set by the pypi class include SRC_URI, SECTION, HOMEPAGE, UPSTREAM_CHECK_URI, UP-
STREAM_CHECK_REGEX and CVE_PRODUCT .

6.5.104 python_flit_core

The python_flit_core class enables building Python modules which declare the PEP-517 compliant £1it_core.
buildapi build-backend in the [build-system] section of pyproject.toml (See PEP-518).

Python modules built with £1it_core.buildapi are pure Python (no C or Rust extensions).

Internally this uses the python_pep517 class.

6.5.105 python_maturin

The python_maturin class provides support for python-maturin, a replacement for setuptools_rust and another “backend”
for building Python Wheels.

6.5.106 python_mesonpy
The python_mesonpy class enables building Python modules which use the meson-python build system.

Internally this uses the python_pep517 class.

6.5.107 python_pep517
The python_pep517 class builds and installs a Python whee1 binary archive (see PEP-517).

Recipes wouldn’ t inherit this directly, instead typically another class will inherit this and add the relevant native depen-

dencies.

Examples of classes which do this are python_flit_core, python_setuptools_build_meta, and python_poetry_core.

6.5. Classes 189


https://pypi.org/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0518/
https://peps.python.org/pep-0517/

The Yocto Project ®, Release 5.1.3

6.5.108 python_poetry core
The python_poetry_core class enables building Python modules which use the Poetry Core build system.

Internally this uses the python_pep517 class.

6.5.109 python_pyo3

The python_pyo3 class helps make sure that Python extensions written in Rust and built with PyO3, properly set up the

environment for cross compilation.

This class is internal to the python-setuptools3_rust class and is not meant to be used directly in recipes.

6.5.110 python-setuptools3_rust

The python-setuptools3_rust class enables building Python extensions implemented in Rust with PyO3, which allows to

compile and distribute Python extensions written in Rust as easily as if they were written in C.

This class inherits the setuptools3 and python_pyo3 classes.

6.5.111 pixbufcache

The pixbufcache class generates the proper post-install and post-remove (postinst/postrm) scriptlets for packages that
install pixbuf loaders, which are used with gdk-pixbuf. These scriptlets call update_pixbuf_cache to add the
pixbuf loaders to the cache. Since the cache files are architecture-specific, update_pixbuf_cache is run using QEMU

if the postinst scriptlets need to be run on the build host during image creation.

If the pixbuf loaders being installed are in packages other than the recipe’ s main package, set PIXBUF_PACKAGES to

specify the packages containing the loaders.

6.5.112 pkgconfig

The pkgconfig class provides a standard way to get header and library information by using pkg-config. This class aims

to smooth integration of pkg—config into libraries that use it.

During staging, BitBake installs pkg-config data into the sysroots/ directory. By making use of sysroot functionality

within pkg-config, the pkgconfig class no longer has to manipulate the files.

6.5.113 populate_sdk

The populate_sdk class provides support for SDK-only recipes. For information on advantages gained when building a
cross-development toolchain using the do_populate_sdk task, see the “Building an SDK Installer” section in the Yocto

Project Application Development and the Extensible Software Development Kit (eSDK) manual.

190 Chapter 6. Yocto Project Reference Manual


https://python-poetry.org
https://pyo3.rs/
https://pyo3.rs/

The Yocto Project ®, Release 5.1.3

6.5.114 populate_sdk_*
The populate_sdk_* classes support SDK creation and consist of the following classes:
* populate_sdk_base: The base class supporting SDK creation under all package managers (i.e. DEB, RPM, and
opkg).
e populate_sdk_deb: Supports creation of the SDK given the Debian package manager.
* populate_sdk_rpm: Supports creation of the SDK given the RPM package manager.
* populate_sdk_ipk: Supports creation of the SDK given the opkg (IPK format) package manager.
e populate_sdk_ext: Supports extensible SDK creation under all package managers.

The populate_sdk_base class inherits the appropriate populate_sdk_* (i.e. deb, rpm, and ipk) based on /M-
AGE_PKGTYPE.

The base class ensures all source and destination directories are established and then populates the SDK. After populating
the SDK, the populate_sdk_base class constructs two sysroots: ${SDK_ARCH }-nativesdk, which contains the cross-
compiler and associated tooling, and the target, which contains a target root filesystem that is configured for the SDK

usage. These two images reside in SDK_OUTPUT, which consists of the following:

${SDK_OUTPUT}/${SDK_ARCH}-nativesdk-pkgs
${SDK_OUTPUT}/${SDKTARGETSYSROOT } /target—pkgs

Finally, the base populate SDK class creates the toolchain environment setup script, the tarball of the SDK, and the

installer.

The respective populate_sdk_deb, populate_sdk_rpm, and populate_sdk_ipk classes each support the specific type of SDK.

These classes are inherited by and used with the populate_sdk_base class.

For more information on the cross-development toolchain generation, see the “Cross-Development Toolchain Generation”
section in the Yocto Project Overview and Concepts Manual. For information on advantages gained when building a cross-
development toolchain using the do_populate_sdk task, see the “Building an SDK Installer” section in the Yocto Project

Application Development and the Extensible Software Development Kit (eSDK) manual.

6.5.115 prexport

The prexport class provides functionality for exporting PR values.

Note

This class is not intended to be used directly. Rather, it is enabled when using “bitbake-prserv-tool export”

6.5. Classes 191




The Yocto Project ®, Release 5.1.3

6.5.116 primport

The primport class provides functionality for importing PR values.

Note

This class is not intended to be used directly. Rather, it is enabled when using “bitbake-prserv-tool import”

6.5.117 prserv

The prserv class provides functionality for using a PR service in order to automatically manage the incrementing of the

PR variable for each recipe.

This class is enabled by default because it is inherited by the package class. However, the OpenEmbedded build system
will not enable the functionality of this class unless PRSERV_HOST has been set.

6.5.118 ptest

The prest class provides functionality for packaging and installing runtime tests for recipes that build software that provides

these tests.

This class is intended to be inherited by individual recipes. However, the class’ functionality is largely disabled unless
“ptest” appears in DISTRO_FEATURES. See the “Testing Packages With ptest” section in the Yocto Project Development

Tasks Manual for more information on ptest.

6.5.119 ptest-cargo

The ptest-cargo class is a class which extends the cargo class and adds compile_ptest_cargo and in-
stall_ptest_cargo steps to respectively build and install test suites defined in the Cargo. toml file, into a dedicated

-ptest package.

6.5.120 ptest—gnome

Enables package tests (ptests) specifically for GNOME packages, which have tests intended to be executed with

gnome-desktop-testing.

For information on setting up and running ptests, see the “7Testing Packages With ptest” section in the Yocto Project

Development Tasks Manual.

6.5.121 python3-dir

The python3-dir class provides the base version, location, and site package location for Python 3.

192 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

6.5.122 python3native

The python3native class supports using the native version of Python 3 built by the build system rather than support of the
version provided by the build host.

6.5.123 python3targetconfig

The python3targetconfig class supports using the native version of Python 3 built by the build system rather than support
of the version provided by the build host, except that the configuration for the target machine is accessible (such as correct
installation directories). This also adds a dependency on target python3, so should only be used where appropriate in

order to avoid unnecessarily lengthening builds.

6.5.124 gemu

The gemu class provides functionality for recipes that either need QEMU or test for the existence of QEMU. Typically,

this class is used to run programs for a target system on the build host using QEMU’ s application emulation mode.

6.5.125 recipe_sanity

The recipe_sanity class checks for the presence of any host system recipe prerequisites that might affect the build (e.g.

variables that are set or software that is present).

6.5.126 relocatable
The relocatable class enables relocation of binaries when they are installed into the sysroot.

This class makes use of the chrpath class and is used by both the cross and native classes.

6.5.127 remove-libtool

The remove-libtool class adds a post function to the do_install task to remove all . 1a files installed by 1ibtool. Removing

these files results in them being absent from both the sysroot and target packages.

If a recipe needs the . 1a files to be installed, then the recipe can override the removal by setting REMOVE_LIBTOOL_LA

to “0” as follows:

REMOVE_LIBTOOL_LA = "Q"

Note

The remove-libtool class is not enabled by default.

6.5. Classes 193




The Yocto Project ®, Release 5.1.3

6.5.128 report-error

The report-error class supports enabling the error reporting tool” , which allows you to submit build error information to

a central database.

The class collects debug information for recipe, recipe version, task, machine, distro, build system, target system, host
distro, branch, commit, and log. From the information, report files using a JSON format are created and stored in

${LOG_DIR} /error-report.

6.5.129 retain

The retain class can be used to create a tarball of the work directory for a recipe when one of its tasks fails, or any other
nominated directories. It is useful in cases where the environment in which builds are run is ephemeral or otherwise

inaccessible for examination during debugging.

To enable, add the following to your configuration:

INHERIT += "retain"

The class can be disabled for specific recipes using the RETAIN_ENABLED variable.

6.5.130 rm_work

The rm_work class supports deletion of temporary workspace, which can ease your hard drive demands during builds.

The OpenEmbedded build system can use a substantial amount of disk space during the build process. A portion of
this space is the work files under the ${TMPDIR}/work directory for each recipe. Once the build system generates the
packages for a recipe, the work files for that recipe are no longer needed. However, by default, the build system preserves
these files for inspection and possible debugging purposes. If you would rather have these files deleted to save disk space
as the build progresses, you can enable 7m_work by adding the following to your 1ocal. conf file, which is found in the
Build Directory:

INHERIT += "rm_work"

If you are modifying and building source code out of the work directory for a recipe, enabling rm_work will potentially
result in your changes to the source being lost. To exclude some recipes from having their work directories deleted by
rm_work, you can add the names of the recipe or recipes you are working on to the RM_WORK_EXCLUDE variable,

which can also be set in your local. conf file. Here is an example:

RM_WORK_EXCLUDE += "busybox glibc"

194 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

6.5.131 rootfs*

The rootfs* classes support creating the root filesystem for an image and consist of the following classes:
* The rootfs-postcommands class, which defines filesystem post-processing functions for image recipes.
* The rootfs_deb class, which supports creation of root filesystems for images built using . deb packages.
 The rootfs_rpm class, which supports creation of root filesystems for images built using . rpm packages.
 The rootfs_ipk class, which supports creation of root filesystems for images built using . i pk packages.
* The rootfsdebugfiles class, which installs additional files found on the build host directly into the root filesystem.

The root filesystem is created from packages using one of the rootfs* files as determined by the PACKAGE_CLASSES

variable.

For information on how root filesystem images are created, see the “Image Generation” section in the Yocto Project

Overview and Concepts Manual.

6.5.132 rust

The rust class is an internal class which is just used in the “rust” recipe, to build the Rust compiler and runtime library.

Except for this recipe, it is not intended to be used directly.

6.5.133 rust-common

The rust-common class is an internal class to the cargo_common and rust classes and is not intended to be used directly.

6.5.134 sanity

The sanity class checks to see if prerequisite software is present on the host system so that users can be notified of potential
problems that might affect their build. The class also performs basic user configuration checks from the local.conf
configuration file to prevent common mistakes that cause build failures. Distribution policy usually determines whether

to include this class.

6.5.135 scons

The scons class supports recipes that need to build software that uses the SCons build system. You can use the EX-

TRA_OESCONS variable to specify additional configuration options you want to pass SCons command line.

6.5.136 sd1

The sdl class supports recipes that need to build software that uses the Simple DirectMedia Layer (SDL) library.

6.5. Classes 195



The Yocto Project ®, Release 5.1.3

6.5.137 python_setuptools_build_meta

The python_setuptools_build_meta class enables building Python modules which declare the PEP-517 compliant setup-
tools.build_meta build-backend in the [build-system] section of pyproject.toml (See PEP-518).

Python modules built with setuptools.build_meta can be pure Python or include C or Rust extensions).

Internally this uses the python_pep517 class.

6.5.138 setuptools3

The setuptools3 class supports Python version 3.x extensions that use build systems based on setuptools (e.g. only have
a setup.py and have not migrated to the official pyproject.toml format). If your recipe uses these build systems,

the recipe needs to inherit the sefuprools3 class.

Note

The setuptools3 class do_compile task now calls setup.py bdist_wheel to build the wheel binary
archive format (See PEP-427).

A consequence of this is that legacy software still using deprecated distutils from the Python standard
library cannot be packaged as wheels. A common solution is the replace from distutils.core

import setup with from setuptools import setup.

Note

The setuptools3 class do_install task now installs the wheel binary archive. In current versions of se-
tuptools the legacy setup.py install method is deprecated. If the setup.py cannot be used

with wheels, for example it creates files outside of the Python module or standard entry points, then

setuptools3_legacy should be used.

6.5.139 setuptools3_legacy

The setuptools3_legacy class supports Python version 3.x extensions that use build systems based on setuptools (e.g.
only have a setup . py and have not migrated to the official pyproject .toml format). Unlike setuptools3, this uses the
traditional setup.py build and install commands and not wheels. This use of setuptools like this is deprecated

but still relatively common.

6.5.140 setuptools3-base

The setuptools3-base class provides a reusable base for other classes that support building Python version 3.x extensions.
If you need functionality that is not provided by the sefuptools3 class, you may want to inherit setuptools3-base.

Some recipes do not need the tasks in the sefuprools3 class and inherit this class instead.

196 Chapter 6. Yocto Project Reference Manual


https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0427/
https://github.com/pypa/setuptools/blob/main/CHANGES.rst#v5830

The Yocto Project ®, Release 5.1.3

6.5.141 sign_rpm

The sign_rpm class supports generating signed RPM packages.

6.5.142 siteinfo
The siteinfo class provides information about the targets that might be needed by other classes or recipes.

As an example, consider Autotools, which can require tests that must execute on the target hardware. Since this is not
possible in general when cross compiling, site information is used to provide cached test results so these tests can be
skipped over but still make the correct values available. The meta/site directory contains test results sorted into
different categories such as architecture, endianness, and the 1ibc used. Site information provides a list of files containing
data relevant to the current build in the CONFIG_SITE variable that Autotools automatically picks up.

The class also provides variables like SITEINFO_ENDIANNESS and SITEINFO_BITS that can be used elsewhere in the

metadata.

6.5.143 sstate

The sstate class provides support for Shared State (sstate). By default, the class is enabled through the INHERIT _DISTRO

variable’ s default value.

For more information on sstate, see the “Shared State Cache” section in the Yocto Project Overview and Concepts
Manual.

6.5.144 staging

The staging class installs files into individual recipe work directories for sysroots. The class contains the following key

tasks:
* The do_populate_sysroot task, which is responsible for handing the files that end up in the recipe sysroots.

e The do_prepare_recipe_sysroot task (a “partner” task to the populate_sysroot task), which installs the files
into the individual recipe work directories (i.e. WORKDIR).

The code in the staging class is complex and basically works in two stages:

* Stage One: The first stage addresses recipes that have files they want to share with other recipes that have depen-
dencies on the originating recipe. Normally these dependencies are installed through the do_install task into ${D}.
The do_populate_sysroot task copies a subset of these files into ${SYSROOT_DESTDIR}. This subset of files is
controlled by the SYSROOT_DIRS, SYSROOT _DIRS_NATIVE, and SYSROOT _DIRS_IGNORE variables.

Note

Additionally, a recipe can customize the files further by declaring a processing function in the SYS-
ROOT _PREPROCESS_FUNCS variable.

6.5. Classes 197



The Yocto Project ®, Release 5.1.3

A shared state (sstate) object is built from these files and the files are placed into a subdirectory of build/tmp/sysroots-
components/. The files are scanned for hardcoded paths to the original installation location. If the location is found
in text files, the hardcoded locations are replaced by tokens and a list of the files needing such replacements is
created. These adjustments are referred to as “FIXMEs” . The list of files that are scanned for paths is controlled
by the SSTATE_SCAN_FILES variable.

Stage Two: The second stage addresses recipes that want to use something from another recipe and declare a
dependency on that recipe through the DEPENDS variable. The recipe will have a do_prepare_recipe_sysroot task
and when this task executes, it creates the recipe-sysroot and recipe-sysroot-native in the recipe work
directory (i.e. WORKDIR). The OpenEmbedded build system creates hard links to copies of the relevant files from

sysroots-components into the recipe work directory.

Note

If hard links are not possible, the build system uses actual copies.

The build system then addresses any “FIXMEs” to paths as defined from the list created in the first stage.

Finally, any files in ${bindir} within the sysroot that have the prefix “postinst-" are executed.

Note

Although such sysroot post installation scripts are not recommended for general use, the files do allow some

issues such as user creation and module indexes to be addressed.

Because recipes can have other dependencies outside of DEPENDS (e.g. do_unpack[depends] +=
"tar-native:do_populate_sysroot"), the sysroot creation function extend_recipe_sysroot is also

added as a pre-function for those tasks whose dependencies are not through DEPENDS but operate similarly.

When installing dependencies into the sysroot, the code traverses the dependency graph and processes dependencies
in exactly the same way as the dependencies would or would not be when installed from sstate. This processing
means, for example, a native tool would have its native dependencies added but a target library would not have its
dependencies traversed or installed. The same sstate dependency code is used so that builds should be identical
regardless of whether sstate was used or not. For a closer look, see the setscene_depvalid () function in the

sstate class.

The build system is careful to maintain manifests of the files it installs so that any given dependency can be installed

as needed. The sstate hash of the installed item is also stored so that if it changes, the build system can reinstall it.

198

Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

6.5.145 syslinux
The syslinux class provides syslinux-specific functions for building bootable images.
The class supports the following variables:

» INITRD: Indicates list of filesystem images to concatenate and use as an initial RAM disk (initrd). This variable is

optional.
* ROOTFS: Indicates a filesystem image to include as the root filesystem. This variable is optional.
e AUTO_SYSLINUXMENU:: Enables creating an automatic menu when set to  “1” .
e LABELS: Lists targets for automatic configuration.
* APPEND: Lists append string overrides for each label.

e SYSLINUX_OPTS: Lists additional options to add to the syslinux file. Semicolon characters separate multiple op-

tions.
e SYSLINUX_SPLASH: Lists a background for the VGA boot menu when you are using the boot menu.
e SYSLINUX_DEFAULT_CONSOLE: Set to “console=ttyX” to change kernel boot default console.
e SYSLINUX_SERIAL: Sets an alternate serial port. Or, turns off serial when the variable is set with an empty string.

e SYSLINUX_SERIAL_TTY: Sets an alternate “console=tty---” kernel boot argument.

6.5.146 systemd

The systemd class provides support for recipes that install systemd unit files.
The functionality for this class is disabled unless you have “systemd” in DISTRO_FEATURES.

Under this class, the recipe or Makefile (i.e. whatever the recipe is calling during the do_install task) installs unit files into
${D}s${systemd_unitdir}/system. If the unit files being installed go into packages other than the main package,
you need to set SYSTEMD_PACKAGES in your recipe to identify the packages in which the files will be installed.

You should set SYSTEMD_SERVICE to the name of the service file. You should also use a package name override to
indicate the package to which the value applies. If the value applies to the recipe’ s main package, use ${PN}. Here is

an example from the connman recipe:

SYSTEMD_SERVICE:${PN} = "connman.service"

Services are set up to start on boot automatically unless you have set SYSTEMD_AUTO_ENABLE to “disable” .

For more information on systemd, see the “Selecting an Initialization Manager” section in the Yocto Project Development
Tasks Manual.

6.5. Classes 199




The Yocto Project ®, Release 5.1.3

6.5.147 systemd-boot

The systemd-boot class provides functions specific to the systemd-boot bootloader for building bootable images. This is

an internal class and is not intended to be used directly.

Note

The systemd-boot class is a result from merging the gummiboot class used in previous Yocto Project releases with

the systemd project.

Set the EFI_PROVIDER variable to “systemd-boot” to use this class. Doing so creates a standalone EFI bootloader that

is not dependent on systemd.

For information on more variables used and supported in this class, see the SYSTEMD_BOOT_CFG, SYS-
TEMD_BOOT _ENTRIES, and SYSTEMD_BOOT _TIMEOUT variables.

You can also see the Systemd-boot documentation for more information.

6.5.148 terminal

The terminal class provides support for starting a terminal session. The OE_TERMINAL variable controls which terminal

emulator is used for the session.

Other classes use the ferminal class anywhere a separate terminal session needs to be started. For example, the patch class

assuming PATCHRESOLVE is setto “user” , the cmll class, and the devshell class all use the terminal class.

6.5.149 testimage

The testimage class supports running automated tests against images using QEMU and on actual hardware. The classes

handle loading the tests and starting the image. To use the classes, you need to perform steps to set up the environment.

To enable this class, add the following to your configuration:

IMAGE_CLASSES += "testimage"

The tests are commands that run on the target system over ssh. Each test is written in Python and makes use of the

unittest module.

The festimage class runs tests on an image when called using the following:

$ bitbake -c testimage image

Alternatively, if you wish to have tests automatically run for each image after it is built, you can set TESTIMAGE_AUTO:

TESTIMAGE_AUTO = "1"

200 Chapter 6. Yocto Project Reference Manual



https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/

The Yocto Project ®, Release 5.1.3

For information on how to enable, run, and create new tests, see the *Performing Automated Runtime Testing” section

in the Yocto Project Test Environment Manual.

6.5.150 testsdk

This class supports running automated tests against software development kits (SDKs). The testsdk class runs tests on an

SDK when called using the following:

$ bitbake -c testsdk image

Note

Best practices include using IMAGE_CLASSES rather than /NHERIT to inherit the festsdk class for automated SDK

testing.

6.5.151 texinfo

This class should be inherited by recipes whose upstream packages invoke the texinfo utilities at build-time. Native
and cross recipes are made to use the dummy scripts provided by texinfo-dummy-native, for improved performance.

Target architecture recipes use the genuine Texinfo utilities. By default, they use the Texinfo utilities on the host system.

Note

If you want to use the Texinfo recipe shipped with the build system, you can remove “texinfo-native” from AS-
SUME_PROVIDED and makeinfo from SANITY_REQUIRED_UTILITIES.

6.5.152 toaster

The foaster class collects information about packages and images and sends them as events that the BitBake user interface

can receive. The class is enabled when the Toaster user interface is running.

This class is not intended to be used directly.

6.5.153 toolchain-scripts

The toolchain-scripts class provides the scripts used for setting up the environment for installed SDKs.

6.5.154 typecheck

The typecheck class provides support for validating the values of variables set at the configuration level against their defined
types. The OpenEmbedded build system allows you to define the type of a variable using the “type” varflag. Here is an

example:

6.5. Classes 201




The Yocto Project ®, Release 5.1.3

IMAGE_FEATURES [type] = "list"

6.5.155 uboot-config

The uboot-config class provides support for U-Boot configuration for a machine. Specify the machine in your recipe as

follows:

UBOOT_CONFIG ??= <default>

UBOOT_CONFIG[foo] = "config, images,binary"

You can also specify the machine using this method:

UBOOT_MACHINE = "config"

See the UBOOT_CONFIG and UBOOT_MACHINE variables for additional information.

6.5.156 uboot-sign
The uboot-sign class provides support for U-Boot verified boot. It is intended to be inherited from U-Boot recipes.
The variables used by this class are:
* SPL_MKIMAGE_DTCOPTS: DTC options for U-Boot mkimage when building the FIT image.
* SPL_SIGN_ENABLE: enable signing the FIT image.
e SPL_SIGN_KEYDIR: directory containing the signing keys.
* SPL_SIGN_KEYNAME: base filename of the signing keys.
e UBOOT_FIT_ADDRESS_CELLS: #address—cells value for the FIT image.
e UBOOT_FIT_DESC: description string encoded into the FIT image.
e UBOOT_FIT_GENERATE_KEYS: generate the keys if they don’ t exist yet.
e UBOOT_FIT_HASH_ALG: hash algorithm for the FIT image.
* UBOOT_FIT_KEY_GENRSA_ARGS: openssl genrsa arguments.
e UBOOT_FIT _KEY_REQ_ARGS: openssl regq arguments.
e UBOOT_FIT _SIGN_ALG: signature algorithm for the FIT image.
e UBOOT_FIT_SIGN_NUMBITS: size of the private key for FIT image signing.
e UBOOT_FIT_KEY_SIGN_PKCS: algorithm for the public key certificate for FIT image signing.
e UBOOT_FITIMAGE_ENABLE: enable the generation of a U-Boot FIT image.

e UBOOT_MKIMAGE_DTCOPTS: DTC options for U-Boot mk image when rebuilding the FIT image containing the

kernel.

202 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

See U-Boot’ s documentation for details about verified boot and the signature process.

See also the description of kernel-fitimage class, which this class imitates.

6.5.157 uninative

Attempts to isolate the build system from the host distribution’ s C library in order to make re-use of native shared
state artifacts across different host distributions practical. With this class enabled, a tarball containing a pre-built C
library is downloaded at the start of the build. In the Poky reference distribution this is enabled by default through
meta/conf/distro/include/yocto-uninative.inc. Other distributions that do not derive from poky can also
“require conf/distro/include/yocto-uninative.inc” to use this. Alternatively if you prefer, you can build
the uninative-tarball recipe yourself, publish the resulting tarball (e.g. via HTTP) and set UNINATIVE_URL and UNINA-

TIVE_CHECKSUM appropriately. For an example, see the meta/conf/distro/include/yocto—uninative.inc.

The uninative class is also used unconditionally by the extensible SDK. When building the extensible SDK, unina-

tive-tarball is built and the resulting tarball is included within the SDK.

6.5.158 update-alternatives

The update-alternatives class helps the alternatives system when multiple sources provide the same command. This situa-
tion occurs when several programs that have the same or similar function are installed with the same name. For example,
the ar command is available from the busybox, binutils and elfutils packages. The update-alternatives class
handles renaming the binaries so that multiple packages can be installed without conflicts. The ar command still works
regardless of which packages are installed or subsequently removed. The class renames the conflicting binary in each

package and symlinks the highest priority binary during installation or removal of packages.
To use this class, you need to define a number of variables:

* ALTERNATIVE

e ALTERNATIVE_LINK _NAME

* ALTERNATIVE_TARGET

* ALTERNATIVE_PRIORITY

These variables list alternative commands needed by a package, provide pathnames for links, default links for targets, and

so forth. For details on how to use this class, see the comments in the update-alternatives.bbclass file.

Note

You can use the update-alternatives command directly in your recipes. However, this class simplifies things in

most cases.

6.5. Classes 203


https://source.denx.de/u-boot/u-boot/-/blob/master/doc/uImage.FIT/verified-boot.txt
https://source.denx.de/u-boot/u-boot/-/blob/master/doc/uImage.FIT/signature.txt
https://git.yoctoproject.org/poky/tree/meta/classes-recipe/update-alternatives.bbclass

The Yocto Project ®, Release 5.1.3

6.5.159 update-rc.d

The update-rc.d class uses update-rc.d to safely install an initialization script on behalf of the package. The Open-
Embedded build system takes care of details such as making sure the script is stopped before a package is removed and

started when the package is installed.

Three variables control this class: INITSCRIPT _PACKAGES, INITSCRIPT_NAME and INITSCRIPT _PARAMS. See the

variable links for details.

6.5.160 useradd*

The useradd* classes support the addition of users or groups for usage by the package on the target. For example, if you
have packages that contain system services that should be run under their own user or group, you can use these classes
to enable creation of the user or group. The meta-skeleton/recipes-skeleton/useradd/useradd-example.bb recipe in the

Source Directory provides a simple example that shows how to add three users and groups to two packages.
The useradd_base class provides basic functionality for user or groups settings.

The useradd* classes support the USERADD_PACKAGES, USERADD_PARAM, GROUPADD_PARAM, and GROUP-
MEMS_PARAM variables.

The useradd-staticids class supports the addition of users or groups that have static user identification (uid) and group

identification (gid) values.

The default behavior of the OpenEmbedded build system for assigning uid and gid values when packages add users and
groups during package install time is to add them dynamically. This works fine for programs that do not care what the
values of the resulting users and groups become. In these cases, the order of the installation determines the final uid
and gid values. However, if non-deterministic uid and gid values are a problem, you can override the default, dynamic
application of these values by setting static values. When you set static values, the OpenEmbedded build system looks in
BBPATH for files/passwd and files/group files for the values.

To use static uid and gid values, you need to set some variables. See the USERADDEXTENSION, USER-
ADD_UID_TABLES, USERADD_GID_TABLES, and USERADD_ERROR_DYNAMIC variables. You can also see the

useradd* class for additional information.

Note

You do not use the useradd-staticids class directly. You either enable or disable the class by setting the USERADDEX-
TENSION variable. If you enable or disable the class in a configured system, 7MPDIR might contain incorrect uid
and gid values. Deleting the TMPDIR directory will correct this condition.

204 Chapter 6. Yocto Project Reference Manual


https://git.openembedded.org/openembedded-core/tree/meta-skeleton/recipes-skeleton/useradd/useradd-example.bb

The Yocto Project ®, Release 5.1.3

6.5.161 utility-tasks

The utility-tasks class provides support for various “utility” type tasks that are applicable to all recipes, such as do_clean

and do_listtasks.

This class is enabled by default because it is inherited by the base class.

6.5.162 utils

The utils class provides some useful Python functions that are typically used in inline Python expressions (e.g. ${@. .. }).

One example use is for bb.utils.contains ().

This class is enabled by default because it is inherited by the base class.

6.5.163 vala

The vala class supports recipes that need to build software written using the Vala programming language.

6.5.164 vex

The vex class is used to generate metadata needed by external tools to check for vulnerabilities, for example CVEs. It can

be used as a replacement for cve-check.

In order to use this class, inherit the class in the 1local.conf file and it will add the generate_vex task for every

recipe:

INHERIT += "vex"

If an image is built it will generate a report in DEPLOY_DIR_IMAGE for all the packages used, it will also generate a file

for all recipes used in the build.
Variables use the CVE_CHECK prefix to keep compatibility with the cve-check class.

Example usage:

bitbake -c generate_vex openssl

6.5.165 waf

The waf class supports recipes that need to build software that uses the Waf build system. You can use the EX-
TRA_OECONF or PACKAGECONFIG_CONFARGS variables to specify additional configuration options to be passed on

the Waf command line.

6.5. Classes 205




The Yocto Project ®, Release 5.1.3

6.6 Tasks

Tasks are units of execution for BitBake. Recipes (. bb files) use tasks to complete configuring, compiling, and packaging

software. This chapter provides a reference of the tasks defined in the OpenEmbedded build system.

6.6.1 Normal Recipe Build Tasks

The following sections describe normal tasks associated with building a recipe. For more information on tasks and

dependencies, see the “Tasks” and “Dependencies” sections in the BitBake User Manual.

do_build

The default task for all recipes. This task depends on all other normal tasks required to build a recipe.

do_compile
Compiles the source code. This task runs with the current working directory set to ${B}.

The default behavior of this task is to run the oe_runmake function if a makefile (Makefile, makefile, or GNUmake—

file)is found. If no such file is found, the do_compile task does nothing.

do_compile_ptest_base

Compiles the runtime test suite included in the software being built.

do_configure

Configures the source by enabling and disabling any build-time and configuration options for the software being built.

The task runs with the current working directory set to ${B5?}.

The default behavior of this task is to run oe_runmake clean if a makefile (Makefile, makefile, or GNUmakefile)
is found and CLEANBROKEN is not set to “1” . If no such file is found or the CLEANBROKEN variable is set to “1”

, the do_configure task does nothing.

do_configure_ptest_base

Configures the runtime test suite included in the software being built.

do_deploy

Writes output files that are to be deployed to ${ DEPLOY_DIR_IMAGE}. The task runs with the current working directory
set to ${B}.

Recipes implementing this task should inherit the deploy class and should write the output to ${DEPLOYDIR}, which
is not to be confused with ${DEPLOY_DIR}. The deploy class sets up do_deploy as a shared state (sstate) task that
can be accelerated through sstate use. The sstate mechanism takes care of copying the output from ${DEPLOYDIR} to

${DEPLOY_DIR_IMAGE}.

206 Chapter 6. Yocto Project Reference Manual


https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#tasks
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-execution.html#dependencies

The Yocto Project ®, Release 5.1.3

Note

Do not write the output directly to ${DEPLOY_DIR_IMAGE}, as this causes the sstate mechanism to malfunction.

The do_deploy task is not added as a task by default and consequently needs to be added manually. If you want the task

to run after do_compile, you can add it by doing the following:

addtask deploy after do_compile

Adding do_deploy after other tasks works the same way.

Note

You do not need to add before do_buildtothe addtask command (though it is harmless), because the base class

contains the following:

do_build[recrdeptask] += "do_deploy"

See the “Dependencies” section in the BitBake User Manual for more information.

If the do_deploy task re-executes, any previous output is removed (i.e. “cleaned” ).

do_fetch

Fetches the source code. This task uses the SRC_URI variable and the argument’ s prefix to determine the correct fetcher

module.

do_image

Starts the image generation process. The do_image task runs after the OpenEmbedded build system has run the do_rootfs
task during which packages are identified for installation into the image and the root filesystem is created, complete with

post-processing.

The do_image task performs pre-processing on the image through the IMAGE_PREPROCESS_COMMAND and dynami-

cally generates supporting do_image_* tasks as needed.

For more information on image creation, see the “/mage Generation” section in the Yocto Project Overview and Concepts

Manual.

do_image_complete

Completes the image generation process. The do_image_complete task runs after the OpenEmbedded build system has
run the do_image task during which image pre-processing occurs and through dynamically generated do_image_* tasks

the image is constructed.

The do_image_complete task performs post-processing on the image through the IMAGE_POSTPROCESS_COMMAND.

6.6. Tasks 207



https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-execution.html#dependencies
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-fetching.html#fetchers

The Yocto Project ®, Release 5.1.3

For more information on image creation, see the “Image Generation” section in the Yocto Project Overview and Concepts

Manual.

do_install

Copies files that are to be packaged into the holding area ${D}. This task runs with the current working directory set
to ${B}, which is the compilation directory. The do_install task, as well as other tasks that either directly or indirectly

depend on the installed files (e.g. do_package, do_package_write_*, and do_rootfs), run under fakeroot.

Note

When installing files, be careful not to set the owner and group IDs of the installed files to unintended values. Some
methods of copying files, notably when using the recursive cp command, can preserve the UID and/or GID of the
original file, which is usually not what you want. The host-user-contaminated QA check checks for files that

probably have the wrong ownership.
Safe methods for installing files include the following:
e The install utility. This utility is the preferred method.
¢ The cp command with the -—no-preserve=ownership option.

e The tar command with the -—no-same-owner option. See the bin_package.bbclass file in the meta/

classes-recipe subdirectory of the Source Directory for an example.

do_install_ptest_base

Copies the runtime test suite files from the compilation directory to a holding area.

do_package

Analyzes the content of the holding area ${D} and splits the content into subsets based on available packages and files.
This task makes use of the PACKAGES and FILES variables.

The do_package task, in conjunction with the do_packagedata task, also saves some important package metadata. For
additional information, see the PKGDESTWORK variable and the “Automatically Added Runtime Dependencies” section

in the Yocto Project Overview and Concepts Manual.

do_package_ga

Runs QA checks on packaged files. For more information on these checks, see the insane class.

208 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

do_package_write_deb

Creates Debian packages (i.e. *.deb files) and places them in the $ { DEPLOY_DIR_DEB} directory in the package feeds
area. For more information, see the ‘“Package Feeds” section in the Yocto Project Overview and Concepts Manual.
do_package_write_ipk

Creates IPK packages (i.e. *.ipk files) and places them in the ${ DEPLOY_DIR_IPK} directory in the package feeds
area. For more information, see the ‘“Package Feeds” section in the Yocto Project Overview and Concepts Manual.
do_package_write_rpm

Creates RPM packages (i.e. *.rpm files) and places them in the ${ DEPLOY_DIR_RPM} directory in the package feeds
area. For more information, see the ‘“Package Feeds” section in the Yocto Project Overview and Concepts Manual.
do_packagedata

Saves package metadata generated by the do_package task in PKGDATA_DIR to make it available globally.

do_patch
Locates patch files and applies them to the source code.

After fetching and unpacking source files, the build system uses the recipe’ s SRC_URI statements to locate and apply

patch files to the source code.

Note

The build system uses the FILESPATH variable to determine the default set of directories when searching for patches.

Patch files, by default, are * .patch and *.diff files created and kept in a subdirectory of the directory holding the

recipe file. For example, consider the bluez5 recipe from the OE-Core layer (i.e. poky/meta):

poky/meta/recipes-connectivity/bluez5

This recipe has two patch files located here:

poky/meta/recipes-connectivity/bluez5/bluez5

In the bluez5 recipe, the SRC_URI statements point to the source and patch files needed to build the package.

Note

In the case for the bluez5_5.48.bb recipe, the SRC_URI statements are from an include file bluez5. inc.

6.6. Tasks 209



https://git.yoctoproject.org/poky/tree/meta/recipes-connectivity/bluez5

The Yocto Project ®, Release 5.1.3

As mentioned earlier, the build system treats files whose file types are .patch and .diff as patch files. However, you

can use the ‘“apply=yes” parameter with the SRC_URI statement to indicate any file as a patch file:

SRC_URI = " \
git://path_to_repo/some_package \
file://file;apply=yes \

"

Conversely, if you have a file whose file type is .patch or .diff and you want to exclude it so that the do_patch task

does not apply it during the patch phase, you can use the “apply=no” parameter with the SRC_URI statement:

SRC_URI = " \
git://path_to_repo/some_package \
file://filel.patch \

file://file2.patch;apply=no \

"

In the previous example £ilel .patch would be applied as a patch by default while fi1le2.patch would not be applied.

You can find out more about the patching process in the “Patching” section in the Yocto Project Overview and Concepts

Manual and the “Patching Code” section in the Yocto Project Development Tasks Manual.

do_populate_lic

Writes license information for the recipe that is collected later when the image is constructed.

do_populate_sdk

Creates the file and directory structure for an installable SDK. See the “SDK Generation” section in the Yocto Project

Overview and Concepts Manual for more information.

do_populate_sdk_ext

Creates the file and directory structure for an installable extensible SDK (eSDK). See the “SDK Generation” section in

the Yocto Project Overview and Concepts Manual for more information.

do_populate_sysroot

Stages (copies) a subset of the files installed by the do_install task into the appropriate sysroot. For information on how
to access these files from other recipes, see the STAGING _DIR * variables. Directories that would typically not be needed
by other recipes at build time (e.g. /etc) are not copied by default.

For information on what directories are copied by default, see the SYSROOT _DIRS* variables. You can change these

variables inside your recipe if you need to make additional (or fewer) directories available to other recipes at build time.

The do_populate_sysroot task is a shared state (sstate) task, which means that the task can be accelerated through sstate

use. Realize also that if the task is re-executed, any previous output is removed (i.e. “cleaned” ).

210 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

do_prepare_recipe_sysroot

Installs the files into the individual recipe specific sysroots (i.e. recipe-sysroot and recipe-sysroot—native
under ${ WORKDIR } based upon the dependencies specified by DEPENDS). See the “staging” class for more information.
do_rm_work

Removes work files after the OpenEmbedded build system has finished with them. You can learn more by looking at the
“rm_work” section.

do_unpack

Unpacks the source code into a working directory pointed to by ${ UNPACKDIR}. A legacy way to specify this directory
is through the S and WORKDIR variables. For more information on how source files are unpacked, see the “Source

Fetching” section in the Yocto Project Overview and Concepts Manual.

6.6.2 Manually Called Tasks

These tasks are typically manually triggered (e.g. by using the bitbake -c command-line option):

do_checkuri

Validates the SRC_URI value.

do_clean

Removes all output files for a target from the do_unpack task forward (i.e. do_unpack, do_configure, do_compile,

do_install, and do_package).

You can run this task using BitBake as follows:

$ bitbake -c clean recipe

Running this task does not remove the sstate cache files. Consequently, if no changes have been made and the recipe is
rebuilt after cleaning, output files are simply restored from the sstate cache. If you want to remove the sstate cache files

for the recipe, you need to use the do_cleansstate task instead (i.e. bitbake —-c cleansstate recipe).

do_cleanall

Removes all output files, shared state (sstaze) cache, and downloaded source files for a target (i.e. the contents of DL_DIR).

Essentially, the do_cleanall task is identical to the do_cleansstate task with the added removal of downloaded source files.

You can run this task using BitBake as follows:

$ bitbake -c cleanall recipe

You should never use the do_cleanall task in a normal scenario. If you want to start fresh with the do_fetch task, use

instead:

6.6. Tasks 211




The Yocto Project ®, Release 5.1.3

$ bitbake -f -c fetch recipe

Note

The reason to prefer bitbake —-f —c fetch is that the do_cleanall task would break in some cases, such as:

S bitbake -c fetch recipe
$ bitbake -c cleanall recipe-native

$ bitbake -c unpack recipe

because after step 1 there is a stamp file for the do_ferch task of recipe, and it won’ t be removed at step 2 because
step 2 uses a different work directory. So the unpack task at step 3 will try to extract the downloaded archive and fail

as it has been deleted in step 2.

Note that this also applies to BitBake from concurrent processes when a shared download directory (DL_DIR) is setup.

do_cleansstate

Removes all output files and shared state (sstate) cache for a target. Essentially, the do_cleansstate task is identical to the

do_clean task with the added removal of shared state (sstate) cache.

You can run this task using BitBake as follows:

$ bitbake -c cleansstate recipe

When you run the do_cleansstate task, the OpenEmbedded build system no longer uses any sstate. Consequently, building

the recipe from scratch is guaranteed.

Note

Using do_cleansstate with a shared SSTATE_DIR is not recommended because it could trigger an error during the
build of a separate BitBake instance. This is because the builds check sstate “up front” but download the files later,

so it if is deleted in the meantime, it will cause an error but not a total failure as it will rebuild it.

The reliable and preferred way to force a new build is to use bitbake -f instead.

Note

The do_cleansstate task cannot remove sstate from a remote sstate mirror. If you need to build a target from scratch

using remote mirrors, use the “-f” option as follows:

$ bitbake -f -c do_cleansstate target

212 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

do_pydevshell

Starts a shell in which an interactive Python interpreter allows you to interact with the BitBake build environment. From
within this shell, you can directly examine and set bits from the data store and execute functions as if within the BitBake
environment. See the “Using a Python Development Shell” section in the Yocto Project Development Tasks Manual for
more information about using pydevshell.

do_devshell

Starts a shell whose environment is set up for development, debugging, or both. See the “Using a Development Shell”
section in the Yocto Project Development Tasks Manual for more information about using devshell.

do_1listtasks

Lists all defined tasks for a target.

do_package_index

Creates or updates the index in the Package Feeds area.

Note

This task is not triggered with the bitbake -c command-line option as are the other tasks in this section. Because

this task is specifically for the package—-index recipe, you run it using bitbake package-index.

6.6.3 Image-Related Tasks

The following tasks are applicable to image recipes.

do_bootimg

Creates a bootable live image. See the IMAGE_FSTYPES variable for additional information on live image types.

do_bundle_initramfs

Combines an /nitramfs image and kernel together to form a single image.

do_rootfs

Creates the root filesystem (file and directory structure) for an image. See the “/mage Generation” section in the Yocto

Project Overview and Concepts Manual for more information on how the root filesystem is created.

6.6. Tasks 213



The Yocto Project ®, Release 5.1.3

do_testimage

Boots an image and performs runtime tests within the image. For information on automatically testing images, see the

“Performing Automated Runtime Testing” section in the Yocto Project Test Environment Manual.

do_testimage_auto

Boots an image and performs runtime tests within the image immediately after it has been built. This task is enabled
when you set TESTIMAGE_AUTO equalto “1” .

For information on automatically testing images, see the “Performing Automated Runtime Testing” section in the Yocto

Project Test Environment Manual.

6.6.4 Kernel-Related Tasks

The following tasks are applicable to kernel recipes. Some of these tasks (e.g. the do_menuconfig task) are also applicable

to recipes that use Linux kernel style configuration such as the BusyBox recipe.

do_compile_kernelmodules

Runs the step that builds the kernel modules (if needed). Building a kernel consists of two steps: 1) the kernel (vm1inux)

is built, and 2) the modules are built (i.e. make modules).

do_diffconfig

When invoked by the user, this task creates a file containing the differences between the original config as produced by
do_kernel_configme task and the changes made by the user with other methods (i.e. using (do_kernel_menuconfig). Once
the file of differences is created, it can be used to create a config fragment that only contains the differences. You can

invoke this task from the command line as follows:

$ bitbake linux-yocto -c diffconfig

For more information, see the “Creating Configuration Fragments” section in the Yocto Project Linux Kernel Development

Manual.

do_kernel_checkout

Converts the newly unpacked kernel source into a form with which the OpenEmbedded build system can work. Because
the kernel source can be fetched in several different ways, the do_kernel_checkout task makes sure that subsequent tasks

are given a clean working tree copy of the kernel with the correct branches checked out.

do_kernel_configcheck

Validates the configuration produced by the do_kernel_menuconfig task. The do_kernel_configcheck task produces warn-
ings when a requested configuration does not appear in the final . config file or when you override a policy configuration
in a hardware configuration fragment. You can run this task explicitly and view the output by using the following com-

mand:

214 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

$ bitbake linux-yocto -c kernel_ configcheck -f

For more information, see the “ Validating Configuration” section in the Yocto Project Linux Kernel Development Manual.

do_kernel_configme

After the kernel is patched by the do_patch task, the do_kernel_configme task assembles and merges all the kernel config
fragments into a merged configuration that can then be passed to the kernel configuration phase proper. This is also the time
during which user-specified defconfigs are applied if present, and where configuration modes such as -—allnoconfig

are applied.

do_kernel_menuconfig

Invoked by the user to manipulate the . config file used to build a linux-yocto recipe. This task starts the Linux kernel

configuration tool, which you then use to modify the kernel configuration.

Note

You can also invoke this tool from the command line as follows:

S bitbake linux-yocto —-c menuconfig

See the “Using menuconfig” section in the Yocto Project Linux Kernel Development Manual for more information on

this configuration tool.

do_kernel_metadata

Collects all the features required for a given kernel build, whether the features come from SRC_URI or from Git reposi-
tories. After collection, the do_kernel_metadata task processes the features into a series of config fragments and patches,

which can then be applied by subsequent tasks such as do_patch and do_kernel_configme.

do_menuconfig

Runs make menuconfig for the kernel. For information on menuconfig, see the “Using menuconfig” section in the

Yocto Project Linux Kernel Development Manual.

do_savedefconfig

When invoked by the user, creates a defconfig file that can be used instead of the default defconfig. The saved defconfig
contains the differences between the default defconfig and the changes made by the user using other methods (i.e. the

do_kernel_menuconfig task. You can invoke the task using the following command:

$ bitbake linux-yocto -c savedefconfig

6.6. Tasks 215




The Yocto Project ®, Release 5.1.3

do_shared_workdir

After the kernel has been compiled but before the kernel modules have been compiled, this task copies files required
for module builds and which are generated from the kernel build into the shared work directory. With these copies
successfully copied, the do_compile_kernelmodules task can successfully build the kernel modules in the next step of the
build.

do_sizecheck

After the kernel has been built, this task checks the size of the stripped kernel image against KERNEL_IMAGE_MAXSIZE.
If that variable was set and the size of the stripped kernel exceeds that size, the kernel build produces a warning to that

effect.

do_strip

If KERNEL_IMAGE_STRIP_EXTRA_SECTIONS is defined, this task strips the sections named in that variable from vm—
linux. This stripping is typically used to remove nonessential sections such as . comment sections from a size-sensitive

configuration.

do_validate_branches

After the kernel is unpacked but before it is patched, this task makes sure that the machine and metadata branches as
specified by the SRCREV variables actually exist on the specified branches. Otherwise, if AUTOREV is not being used,
the do_validate_branches task fails during the build.

6.7 devtool Quick Reference

The devtool command-line tool provides a number of features that help you build, test, and package software. This
command is available alongside the bitbake command. Additionally, the devtool command is a key part of the
extensible SDK.

This chapter provides a Quick Reference for the devt ool command. For more information on how to apply the command
when using the extensible SDK, see the “Using the Extensible SDK” chapter in the Yocto Project Application Development
and the Extensible Software Development Kit (eSDK) manual.

6.7.1 Getting Help

The devtool command line is organized similarly to Git in that it has a number of sub-commands for each function.

You can run devtool —-help to see all the commands:

$ devtool --help
NOTE: Starting bitbake server...
usage: devtool [—--basepath BASEPATH] [—-—-bbpath BBPATH] [-d] [-g] [-—-color COLOR] [-h]

—<subcommand> ...

(continues on next page)

216 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

(continued from previous page)

OpenEmbedded development tool

options:

——basepath BASEPATH

——bbpath BBPATH
—the metadata

-d, —--debug

-gq, ——quiet

——color COLOR

=la, ==la@l®

subcommands :

Base directory of SDK / build directory

Explicitly specify the BBPATH, rather than getting it from.

Enable debug output
Print only errors
Colorize output (where COLOR is auto, always, never)

show this help message and exit

Beginning work on a recipe:

add
modify
upgrade

Getting information:
status
latest-version
check-upgrade-status

search

Add a new recipe
Modify the source for an existing recipe

Upgrade an existing recipe

Show workspace status
Report the latest version of an existing recipe
Report upgradability for multiple (or all) recipes

Search available recipes

Working on a recipe in the workspace:

build

ide-sdk

rename
edit-recipe
find-recipe
configure-help
update-recipe
reset

finish

Build a recipe

Setup the SDK and configure the IDE

Rename a recipe file in the workspace

Edit a recipe file

Find a recipe file

Get help on configure script options

Apply changes from external source tree to recipe
Remove a recipe from your workspace

Finish working on a recipe in your workspace

Testing changes on target:

deploy-target

undeploy-target

build-image
Advanced:

create-workspace

import

export

extract

Deploy recipe output files to live target machine
Undeploy recipe output files in live target machine

Build image including workspace recipe packages

Set up workspace in an alternative location
Import exported tar archive into workspace
Export workspace into a tar archive

Extract the source for an existing recipe

(continues on next page)

6.7. devtool Quick Reference 217




The Yocto Project ®, Release 5.1.3

(continued from previous page)
sync Synchronize the source tree for an existing recipe
menuconfig Alter build-time configuration for a recipe

Use devtool <subcommand> —--help to get help on a specific command

As directed in the general help output, you can get more syntax on a specific command by providing the command name

and using ——help:

$ devtool add --help
NOTE: Starting bitbake server...

usage: devtool add [-h] [-—-same-dir | —--no-same-dir] [-—-fetch URI] [--npm-dev] [-—-no-—
—pypi] [-—-version VERSION] [--no-git] [--srcrev SRCREV | —--autorev]
[-—srcbranch SRCBRANCH] [--binary] [--also-native] [-—-src-subdir.

—SUBDIR] [-—-mirrors] [-—-provides PROVIDES]

[recipename] [srctree] [fetchuri]

Adds a new recipe to the workspace to build a specified source tree. Can optionally..

—fetch a remote URI and unpack it to create the source tree.

arguments:

recipename Name for new recipe to add (just name - no version, path or.
—extension). If not specified, will attempt to auto-detect it.

srctree Path to external source tree. If not specified, a.

—subdirectory of /media/buildl/poky/build/workspace/sources will be used.

fetchuri Fetch the specified URI and extract it to create the source.
—tree
options:

-h, --help show this help message and exit

—--same-dir, -s Build in same directory as source

—-—no-same-dir Force build in a separate build directory

—-—fetch URI, -f URI Fetch the specified URI and extract it to create the source.
—tree (deprecated - pass as positional argument instead)

——npm-dev For npm, also fetch devDependencies

——-no-pypi Do not inherit pypi class

—-—-version VERSION, -V VERSION

Version to use within recipe (PV)

--no-git, -g If fetching source, do not set up source tree as a git.
—repository

——srcrev SRCREV, —-S SRCREV

Source revision to fetch if fetching from an SCM such as git._

(continues on next page)

218 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

(continued from previous page)
— (default latest)
—-—autorev, -a When fetching from a git repository, set SRCREV in the recipe.
—~to a floating revision instead of fixed
——srcbranch SRCBRANCH, -B SRCBRANCH
Branch in source repository if fetching from an SCM such as.

—git (default master)

——binary, -b Treat the source tree as something that should be installed.
—verbatim (no compilation, same directory structure). Useful with binary packages e.
—g. RPMs.

——also-native Also add native variant (i.e. support building recipe for the.

—build host as well as the target machine)
—-src-subdir SUBDIR Specify subdirectory within source tree to use
——mirrors Enable PREMIRRORS and MIRRORS for source tree fetching.
— (disable by default).
——provides PROVIDES, -p PROVIDES
Specify an alias for the item provided by the recipe. E.g..

—virtual/libgl

6.7.2 The Workspace Layer Structure

devtool uses a “Workspace” layer in which to accomplish builds. This layer is not specific to any single devtool

command but is rather a common working area used across the tool.

The following figure shows the workspace structure:

6.7. devtool Quick Reference 219




The Yocto Project ®, Release 5.1.3

| |attic

- README

# = | .devtool md>5

Workspace

Layer |l lappends
Structure

o[l [conf

_I layer.conf
.—‘,j_‘?reci pes

il [recipe
_| recipe.bb

.—EEDUFCEE

attic - A directory created if devtool believes it must preserve
anything when you run "devtool reset". For example, if you
run "devtool add", make changes to the recipe, and then
run "devtool reset", devtool takes notice that the file has
been changed and moves it into the attic should you still

want the recipe.

README - Provides information on what is in workspace layer and how to

(continues on next page)

220 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

(continued from previous page)

manage it.

.devtool_md5 - A checksum file used by devtool.

appends — A directory that contains *.bbappend files, which point to

external source.

conf - A configuration directory that contains the layer.conf file.

recipes - A directory containing recipes. This directory contains a
folder for each directory added whose name matches that of the
added recipe. devtool places the recipe.bb file

within that sub-directory.

sources — A directory containing a working copy of the source files used
when building the recipe. This is the default directory used
as the location of the source tree when you do not provide a
source tree path. This directory contains a folder for each

set of source files matched to a corresponding recipe.

6.7.3 Adding a New Recipe to the Workspace Layer

Use the devtool add command to add a new recipe to the workspace layer. The recipe you add should not exist —

devtool creates it for you. The source files the recipe uses should exist in an external area.

The following example creates and adds a new recipe named jackson to a workspace layer the tool creates. The source

code built by the recipes resides in /home/user/sources/jackson

$ devtool add jackson /home/user/sources/Jjackson

If you add a recipe and the workspace layer does not exist, the command creates the layer and populates it as described

in “The Workspace Layer Structure” section.

Running devtool add when the workspace layer exists causes the tool to add the recipe, append files, and source files

into the existing workspace layer. The . bbappend file is created to point to the external source tree.

Note

If your recipe has runtime dependencies defined, you must be sure that these packages exist on the target hardware
before attempting to run your application. If dependent packages (e.g. libraries) do not exist on the target, your
application, when run, will fail to find those functions. For more information, see the “Deploying Your Software on

the Target Machine” section.

6.7. devtool Quick Reference 221



The Yocto Project ®, Release 5.1.3

By default, devtool add uses the latest revision (i.e. master) when unpacking files from a remote URI. In some cases,
you might want to specify a source revision by branch, tag, or commit hash. You can specify these options when using

the devtool add command:

¢ To specify a source branch, use the ——srcbranch option:

$ devtool add --srcbranch styhead jackson /home/user/sources/jackson

In the previous example, you are checking out the styhead branch.

* To specify a specific tag or commit hash, use the -—srcrev option:

$ devtool add --srcrev yocto-5.1.3 jackson /home/user/sources/jackson

$ devtool add --srcrev some_commit_hash /home/user/sources/jackson

The previous examples check out the yocto-5.1.3 tag and the commit associated with the some_commit_hash hash.

Note

If you prefer to use the latest revision every time the recipe is built, use the options -—autorev or -a.

6.7.4 Extracting the Source for an Existing Recipe

Use the devtool extract command to extract the source for an existing recipe. When you use this command, you
must supply the root name of the recipe (i.e. no version, paths, or extensions), and you must supply the directory to which

you want the source extracted.

Additional command options let you control the name of a development branch into which you can checkout the source

and whether or not to keep a temporary directory, which is useful for debugging.

6.7.5 Synchronizing a Recipe’ s Extracted Source Tree

Use the devtool sync command to synchronize a previously extracted source tree for an existing recipe. When you use
this command, you must supply the root name of the recipe (i.e. no version, paths, or extensions), and you must supply

the directory to which you want the source extracted.

Additional command options let you control the name of a development branch into which you can checkout the source

and whether or not to keep a temporary directory, which is useful for debugging.

6.7.6 Modifying an Existing Recipe

Use the devtool modify command to begin modifying the source of an existing recipe. This command is very similar
to the add command except that it does not physically create the recipe in the workspace layer because the recipe already

exists in an another layer.

222 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

The devtool modify command extracts the source for a recipe, sets it up as a Git repository if the source had not
already been fetched from Git, checks out a branch for development, and applies any patches from the recipe as commits

on top. You can use the following command to checkout the source files:

$ devtool modify recipe

Using the above command form, devtool uses the existing recipe’ s SRC_URI statement to locate the upstream source,

extracts the source into the default sources location in the workspace. The default development branch used is “devtool”

6.7.7 Edit an Existing Recipe

Use the devtool edit-recipe command to run the default editor, which is identified using the EDITOR variable, on

the specified recipe.

When you use the devtool edit-recipe command, you must supply the root name of the recipe (i.e. no version,
paths, or extensions). Also, the recipe file itself must reside in the workspace as a result of the devtool addor devtool

upgrade commands.

6.7.8 Updating a Recipe

Use the devtool update-recipe command to update your recipe with patches that reflect changes you make to
the source files. For example, if you know you are going to work on some code, you could first use the devtool modify

command to extract the code and set up the workspace. After which, you could modify, compile, and test the code.

When you are satisfied with the results and you have committed your changes to the Git repository, you can then run the

devtool update-recipe to create the patches and update the recipe:

$ devtool update-recipe recipe

If you run the devtool update-recipe without committing your changes, the command ignores the changes.

Often, you might want to apply customizations made to your software in your own layer rather than apply them to the
original recipe. If so, you can use the —a or ——append option with the devtool update-recipe command. These

options allow you to specify the layer into which to write an append file:

$ devtool update-recipe recipe -a base-layer-directory

The *.bbappend file is created at the appropriate path within the specified layer directory, which may or may not be in

your bblayers.conf file. If an append file already exists, the command updates it appropriately.

6.7. devtool Quick Reference 223




The Yocto Project ®, Release 5.1.3

6.7.9 Checking on the Upgrade Status of a Recipe

Upstream recipes change over time. Consequently, you might find that you need to determine if you can upgrade a recipe

to a newer version.

To check on the upgrade status of a recipe, you can use the devtool latest-version recipe command, which
quickly shows the current version and the latest version available upstream. To get a more global picture, use the devtool
check-upgrade-status command, which takes a list of recipes as input, or no arguments, in which case it checks all
available recipes. This command will only print the recipes for which a new upstream version is available. Each such
recipe will have its current version and latest upstream version, as well as the email of the maintainer and any additional

information such as the commit hash or reason for not being able to upgrade it, displayed in a table.

This upgrade checking mechanism relies on the optional UPSTREAM_CHECK_URI, UPSTREAM_CHECK_REGEX,
UPSTREAM_CHECK_GITTAGREGEX, UPSTREAM_CHECK_COMMITS and UPSTREAM_VERSION_UNKNOWN vari-

ables in package recipes.

Note

* Most of the time, the above variables are unnecessary. They are only required when upstream does something

unusual, and default mechanisms cannot find the new upstream versions.
* For the oe-core layer, recipe maintainers come from the maintainers.inc file.

« If the recipe is using the Git Fetcher (git://) rather than a tarball, the commit hash points to the commit that
matches the recipe’ s latest version tag, or in the absence of suitable tags, to the latest commit (when UP-
STREAM_CHECK_COMMITS set to 1 in the recipe).

As with all devtool commands, you can get help on the individual command:

$ devtool check-upgrade-status -h
NOTE: Starting bitbake server...

usage: devtool check-upgrade-status [-h] [-—-all] [recipe [recipe ...]]

Prints a table of recipes together with versions currently provided by recipes, and.

—~latest upstream versions, when there is a later version available

arguments:
recipe Name of the recipe to report (omit to report upgrade info for all.

—recipes)

options:
-h, —--help show this help message and exit

--all, -a Show all recipes, not just recipes needing upgrade

Unless you provide a specific recipe name on the command line, the command checks all recipes in all configured layers.

224 Chapter 6. Yocto Project Reference Manual



https://git.yoctoproject.org/poky/tree/meta/conf/distro/include/maintainers.inc
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-fetching.html#git-fetcher-git

The Yocto Project ®, Release 5.1.3

Here is a partial example table that reports on all the recipes:

$ devtool check-upgrade-status

INFO: bind 9.16.20 9.16.21 Armin Kuster
—<akuster808@gmail.com>

INFO: inetutils 2.1 2.2 Tom Rini
—<trini@konsulko.com>

INFO: iproute2 5.13.0 5.14.0 Changhyeok Bae
—<changhyeok.bae@gmail.com>

INFO: openssl 1.1.11 3.0.0 Alexander Kanavin
—~<alex.kanavin@gmail.com>

INFO: base-passwd 3.5.29 3.5.51 Anuj Mittal <anuj.
—mittal@intel.com> cannot be updated due to: Version 3.5.38 requires cdebconf for.

—update-passwd utility

Notice the reported reason for not upgrading the base-passwd recipe. In this example, while a new version is available
upstream, you do not want to use it because the dependency on cdebcon  is not easily satisfied. Maintainers can explicit
the reason that is shown by adding the RECIPE_NO_UPDATE_REASON variable to the corresponding recipe. See base-

passwd.bb for an example:

RECIPE_NO_UPDATE_REASON = "Version 3.5.38 requires cdebconf for update-passwd utility"

Last but not least, you may set UPSTREAM_VERSION_UNKNOWN to 1 in a recipe when there’ s currently no way to

determine its latest upstream version.

6.7.10 Upgrading a Recipe

As software matures, upstream recipes are upgraded to newer versions. As a developer, you need to keep your local
recipes up-to-date with the upstream version releases. There are several ways of upgrading recipes. You can read about
them in the “Upgrading Recipes” section of the Yocto Project Development Tasks Manual. This section overviews the

devtool upgrade command.

Before you upgrade a recipe, you can check on its upgrade status. See the “Checking on the Upgrade Status of a Recipe”

section for more information.

The devtool upgrade command upgrades an existing recipe to a more recent version of the recipe upstream. The
command puts the upgraded recipe file along with any associated files into a “workspace” and, if necessary, extracts
the source tree to a specified location. During the upgrade, patches associated with the recipe are rebased or added as

needed.

When you use the devtool upgrade command, you must supply the root name of the recipe (i.e. no version, paths, or

extensions), and you must supply the directory to which you want the source extracted. Additional command options let

6.7. devtool Quick Reference 225



https://git.yoctoproject.org/poky/tree/meta/recipes-core/base-passwd/base-passwd_3.5.29.bb?h=kirkstone
https://git.yoctoproject.org/poky/tree/meta/recipes-core/base-passwd/base-passwd_3.5.29.bb?h=kirkstone

The Yocto Project ®, Release 5.1.3

you control things such as the version number to which you want to upgrade (i.e. the PV), the source revision to which

you want to upgrade (i.e. the SRCREV), whether or not to apply patches, and so forth.

You can read more on the devtool upgrade workflow in the *Use deviool upgrade to Create a Version of the Recipe
that Supports a Newer Version of the Software” section in the Yocto Project Application Development and the Extensible
Software Development Kit (eSDK) manual. You can also see an example of how to use devtool upgrade in the

“Using devtool upgrade” section in the Yocto Project Development Tasks Manual.

6.7.11 Resetting a Recipe

Use the devtool reset command to remove a recipe and its configuration (e.g. the corresponding .bbappend file)
from the workspace layer. Realize that this command deletes the recipe and the append file. The command does not
physically move them for you. Consequently, you must be sure to physically relocate your updated recipe and the append

file outside of the workspace layer before running the devtool reset command.

If the devtool reset command detects that the recipe or the append files have been modified, the command preserves

the modified files in a separate “attic” subdirectory under the workspace layer.

Here is an example that resets the workspace directory that contains the mt r recipe:

$ devtool reset mtr

NOTE: Cleaning sysroot for recipe mtr...

NOTE: Leaving source tree /home/scottrif/poky/build/workspace/sources/mtr as—-is; if.
—you no longer need it then please delete it manually

$

6.7.12 Finish Working on a Recipe

Use the devtool finish command to push any committed changes to the specified recipe in the specified layer and

remove it from your workspace.

This is roughly equivalent to the devtool update-recipe command followed by the devtool reset command.

The changes must have been committed to the git repository created by devtool. Here is an example:

$ devtool finish recipe /path/to/custom/layer

6.7.13 Building Your Recipe

Use the devtool build command to build your recipe. The devtool build command is equivalent to the bitbake

-c populate_sysroot command.

When you use the devtool build command, you must supply the root name of the recipe (i.e. do not provide versions,
paths, or extensions). You can use either the —s or the -——disable-parallel-make options to disable parallel makes

during the build. Here is an example:

226 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

$ devtool build recipe

6.7.14 Building Your Image

Use the devtool build-image command to build an image, extending it to include packages from recipes in the
workspace. Using this command is useful when you want an image that ready for immediate deployment onto a device

for testing. For proper integration into a final image, you need to edit your custom image recipe appropriately.

When you use the devtool build-image command, you must supply the name of the image. This command has no

command line options:

$ devtool build-image image

6.7.15 Deploying Your Software on the Target Machine

Use the devtool deploy-target command to deploy the recipe’ s build output to the live target machine:

$ devtool deploy-target recipe target

The target is the address of the target machine, which must be running an SSH server (i.e.

user@hostname[:destdir]).

This command deploys all files installed during the do_install task. Furthermore, you do not need to have package

management enabled within the target machine. If you do, the package manager is bypassed.

Note

The deploy-target functionality is for development only. You should never use it to update an image that will be

used in production.

Some conditions could prevent a deployed application from behaving as expected. When both of the following conditions

are met, your application has the potential to not behave correctly when run on the target:

* You are deploying a new application to the target and the recipe you used to build the application had correctly

defined runtime dependencies.
 The target does not physically have the packages on which the application depends installed.

If both of these conditions are met, your application will not behave as expected. The reason for this misbehavior is
because the devtool deploy-target command does not deploy the packages (e.g. libraries) on which your new
application depends. The assumption is that the packages are already on the target. Consequently, when a runtime call is

made in the application for a dependent function (e.g. a library call), the function cannot be found.

6.7. devtool Quick Reference 227




The Yocto Project ®, Release 5.1.3

Warning

Runtime dependencies can be explicitly listed in the RDEPENDS variable, but may also be the result of a DEPENDS
assignment in your application’ s recipe. This is usually the case when your application depends on libraries for
compilation: these libraries are listed as build-time dependencies in the DEPENDS variable in your application’ s
recipe. However these may also be runtime dependencies if they install shared objects on which your application will

dynamically link to at runtime (e.g. shared libraries ending with . so).

These runtime dependencies are automatically resolved by the OpenEmbedded Build System during the packaging
phase. Since devtool ignores packaging dependencies, they will not be installed automatically with devtool de-

ploy-target.

For more information on how the OpenEmbedded Build System handles packaging, see the Automatically Added Run-

time Dependencies section of the Yocto Project Overview and Concepts Manual.

To be sure you have all the dependencies local to the target, you need to be sure that the packages are pre-deployed

(installed) on the target before attempting to run your application.

6.7.16 Removing Your Software from the Target Machine

Use the devtool undeploy-target command to remove deployed build output from the target machine. For the

devtool undeploy-target command to work, you must have previously used the “deviool deploy-target” command:

$ devtool undeploy-target recipe target

The target is the address of the target machine, which must be running an SSH server (i.e. user@hostname).

6.7.17 Creating the Workspace Layer in an Alternative Location

Use the devtool create-workspace command to create a new workspace layer in your Build Directory. When you

create a new workspace layer, it is populated with the README file and the con £ directory only.

The following example creates a new workspace layer in your current working and by default names the workspace layer

“workspace” :

$ devtool create-workspace

You can create a workspace layer anywhere by supplying a pathname with the command. The following command creates

a new workspace layer named “new-workspace” :

$ devtool create-workspace /home/scottrif/new-workspace

228 Chapter 6. Yocto Project Reference Manual




The Yocto Project ®, Release 5.1.3

6.7.18 Get the Status of the Recipes in Your Workspace

Use the devtool status command to list the recipes currently in your workspace. Information includes the paths to

their respective external source trees.

The devtool status command has no command-line options:

$ devtool status

Here is sample output after using deviool add to create and add the mtr_0.86.bb recipe to the workspace directory:

$ devtool status
mtr:/home/scottrif/poky/build/workspace/sources/mtr (/home/scottrif/poky/build/
—workspace/recipes/mtr/mtr_0.86.bb)

$

6.7.19 Search for Available Target Recipes

Use the devtool search command to search for available target recipes. The command matches the recipe name,

package name, description, and installed files. The command displays the recipe name as a result of a match.

When you use the devtool search command, you must supply a keyword. The command uses the keyword when

searching for a match.

Alternatively, the devtool find-recipe command can be used to search for recipe files instead of recipe names.

Likewise, you must supply a keyword.

6.7.20 Get Information on Recipe Configuration Scripts

Use the devtool configure-help command to get help on the configuration script options for a given recipe. You
must supply the recipe name to the command. For example, it shows the output of . /configure —--help for autorools-

based recipes.

The configure-help command will also display the configuration options currently in use, including the ones passed
through the EXTRA_OECONF variable.

6.7.21 Generate an IDE Configuration for a Recipe

The devtool ide-sdk automatically creates an IDE configuration and SDK to work on a given recipe. Depending on

the —-mode parameter, different types of SDKs are generated:
* modified mode: this creates an SDK and generates an IDE configuration in the workspace directory.

* shared mode: this creates a cross-compiling toolchain and the corresponding shared sysroot directories of the

supplied recipe(s).

The --target option can be used to specify a username@hostname string and create a remote debugging configuration

for the recipe. Similarly to devtool deploy-target, it requires an SSH server running on the target.

6.7. devtool Quick Reference 229




The Yocto Project ®, Release 5.1.3

For further details on the devtool ide-sdk command, see the “Using the Extensible SDK” chapter in the Yocto Project

Application Development and the Extensible Software Development Kit (eSDK) manual.

6.8 OpenEmbedded Kickstart (.wks) Reference

6.8.1 Introduction

The current Wic implementation supports only the basic kickstart partitioning commands: partition (or part for

short) and bootloader

Note

Future updates will implement more commands and options. If you use anything that is not specifically supported,

results can be unpredictable.

This chapter provides a reference on the available kickstart commands. The information lists the commands, their
syntax, and meanings. Kickstart commands are based on the Fedora kickstart versions but with modifications to re-
flect Wic capabilities. You can see the original documentation for those commands at the following link: https:

/Ipykickstart.readthedocs.io/en/latest/kickstart-docs.html

6.8.2 Command: part or partition

Either of these commands creates a partition on the system and uses the following syntax:

part [mntpoint]

partition [mntpoint]

If you do not provide mntpoint, Wic creates a partition but does not mount it.

The mntpoint is where the partition is mounted and must be in one of the following forms:
¢ /path: For example, “/” , “/usr” ,or “/home”
* swap: The created partition is used as swap space

Specifying a mntpoint causes the partition to automatically be mounted. Wic achieves this by adding entries to the
filesystem table (fstab) during image generation. In order for Wic to generate a valid fstab, you must also provide one of

the --ondrive, ——ondisk, or ——use—uuid partition options as part of the command.

Note

The mount program must understand the PARTUUID syntax you use with ——use-uuid and non-root mountpoint,
including swap. The default configuration of BusyBox in OpenEmbedded supports this, but this may be disabled in

custom configurations.

230 Chapter 6. Yocto Project Reference Manual



https://pykickstart.readthedocs.io/en/latest/kickstart-docs.html
https://pykickstart.readthedocs.io/en/latest/kickstart-docs.html

The Yocto Project ®, Release 5.1.3

Here is an example that uses ““/” as the mountpoint. The command uses --ondisk to force the partition onto the sdb
disk:

part / ——source rootfs —--ondisk sdb ——fstype=ext3 --label platform —--align 1024

Here is a list that describes other supported options you can use with the part and partition commands:

e —-size: The minimum partition size. Specify as an integer value optionally followed by one of the units “k” /
“K” for kibibyte, “M” for mebibyte and “G” for gibibyte. The default unit if none is givenis “M” . You do

not need this option if you use ——source.

e ——fixed-size: The exact partition size. Specify as an integer value optionally followed by one of the units “k”
/ “K” for kibibyte, “M” for mebibyte and “G” for gibibyte. The default unit if none is givenis “M” . Cannot
be specify together with ——size. An error occurs when assembling the disk image if the partition data is larger

than --fixed-size.

* ——source: This option is a Wic-specific option that names the source of the data that populates the partition. The
most common value for this option is “rootfs” , but you can use any value that maps to a valid source plugin.
For information on the source plugins, see the “Using the Wic Plugin Interface” section in the Yocto Project

Development Tasks Manual.

If you use ——source rootfs, Wic creates a partition as large as needed and fills it with the contents of the
root filesystem pointed to by the —r command-line option or the equivalent root filesystem derived from the —e
command-line option. The filesystem type used to create the partition is driven by the value of the --fstype

option specified for the partition. See the entry on ——fstype that follows for more information.

If you use -—source plugin-name, Wic creates a partition as large as needed and fills it with the contents of the
partition that is generated by the specified plugin name using the data pointed to by the -r command-line option
or the equivalent root filesystem derived from the —e command-line option. Exactly what those contents are and

filesystem type used are dependent on the given plugin implementation.

If you do not use the ——source option, the wic command creates an empty partition. Consequently, you must

use the —-size option to specify the size of the empty partition.
e ——ondisk or ——ondrive: Forces the partition to be created on a particular disk.
e ——fstype: Sets the file system type for the partition. Valid values are:
— btrfs
— erofs
- ext2
— ext3
— ext4
— squashfs

— swap

6.8. OpenEmbedded Kickstart (.wks) Reference 231




The Yocto Project ®, Release 5.1.3

- vfat

—--fsoptions: Specifies a free-form string of options to be used when mounting the filesystem. This string is
copied into the /etc/fstab file of the installed system and should be enclosed in quotes. If not specified, the

default string is  “defaults” .

—--label label: Specifies the label to give to the filesystem to be made on the partition. If the given label is

already in use by another filesystem, a new label is created for the partition.
——active: Marks the partition as active.

--align (in KBytes): This option is a Wic-specific option that says to start partitions on boundaries given x
KBytes.

—--offset: This option is a Wic-specific option that says to place a partition at exactly the specified offset. If the
partition cannot be placed at the specified offset, the image build will fail. Specify as an integer value optionally
followed by one of the units “s” / “S” for 512 byte sector, “k” / “K” for kibibyte, “M” for mebibyte and
“G” for gibibyte. The default unit if none is givenis “k” .

—--no-table: This option is a Wic-specific option. Using the option reserves space for the partition and causes it

to become populated. However, the partition is not added to the partition table.

——exclude—-path: This option is a Wic-specific option that excludes the given relative path from the resulting

image. This option is only effective with the rootfs source plugin.

—-—extra-space: This option is a Wic-specific option that adds extra space after the space filled by the content of
the partition. The final size can exceed the size specified by the ——si ze option. The default value is 10M. Specify
as an integer value optionally followed by one of the units “k” / “K” for kibibyte, “M” for mebibyte and “G”
for gibibyte. The default unit if none is givenis “M” .

—-—overhead-factor: This option is a Wic-specific option that multiplies the size of the partition by the option’

s value. You must supply a value greater than or equal to “1” . The default value is “1.3” .
--part-name: This option is a Wic-specific option that specifies a name for GPT partitions.

—--part-type: This option is a Wic-specific option that specifies the partition type globally unique identifier
(GUID) for GPT partitions. You can find the list of partition type GUIDs at https://en.wikipedia.org/wiki/GUID_
Partition_Table#Partition_type_GUIDs.

—-use—uuid: This option is a Wic-specific option that causes Wic to generate a random GUID for the partition.

The generated identifier is used in the bootloader configuration to specify the root partition.
——uuid: This option is a Wic-specific option that specifies the partition UUID.

—--fsuuid: This option is a Wic-specific option that specifies the filesystem UUID. You can generate or mod-
ify WKS_FILE with this option if a preconfigured filesystem UUID is added to the kernel command line in the

bootloader configuration before you run Wic.

—--system-id: This option is a Wic-specific option that specifies the partition system ID, which is a one byte long,

hexadecimal parameter with or without the Ox prefix.

232

Chapter 6. Yocto Project Reference Manual


https://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs
https://en.wikipedia.org/wiki/GUID_Partition_Table#Partition_type_GUIDs

The Yocto Project ®, Release 5.1.3

e ——mkfs-extraopts: This option specifies additional options to pass to the mk £s utility. Some default options

for certain filesystems do not take effect. See Wic’ s help on kickstart (i.e. wic help kickstart).

6.8.3 Command: bootloader

This command specifies how the bootloader should be configured and supports the following options:

Note

Bootloader functionality and boot partitions are implemented by the various source plugins that implement bootloader

functionality. The bootloader command essentially provides a means of modifying bootloader configuration.

* ——append: Specifies kernel parameters. These parameters will be added to the syslinux APPEND or grub kernel

command line.

e ——configfile: Specifies a user-defined configuration file for the bootloader. You can provide a full pathname

for the file or a file located in the canned-wks folder. This option overrides all other bootloader options.
e ——ptable: Specifies the partition table format. Valid values are:
— msdos
- gpt

* ——timeout: Specifies the number of seconds before the bootloader times out and boots the default option.

6.9 QA Error and Warning Messages

6.9.1 Introduction

When building a recipe, the OpenEmbedded build system performs various QA checks on the output to ensure that
common issues are detected and reported. Sometimes when you create a new recipe to build new software, it will build
with no problems. When this is not the case, or when you have QA issues building any software, it could take a little time

to resolve them.

While it is tempting to ignore a QA message or even to disable QA checks, it is best to try and resolve any reported QA
issues. This chapter provides a list of the QA messages and brief explanations of the issues you could encounter so that

you can properly resolve problems.

The next section provides a list of all QA error and warning messages based on a default configuration. Each entry provides

the message or error form along with an explanation.

Note

¢ At the end of each message, the name of the associated QA test (as listed in the “insane” section) appears

within square brackets.

6.9. QA Error and Warning Messages 233



The Yocto Project ®, Release 5.1.3

¢ As mentioned, this list of error and warning messages is for QA checks only. The list does not cover all possible

build errors or warnings you could encounter.

* Because some QA checks are disabled by default, this list does not include all possible QA check errors and

warnings.

6.9.2 Errors and Warnings

* <packagename>: <path> is using libexec please relocate to <libexecdir> [libexec]

The specified package contains files in /usr/libexec when the distro configuration uses a different path for
<libexecdir> By default, <libexecdir> is Sprefix/libexec. However, this default can be changed (e.g.
${libdir}).

package <packagename> contains bad RPATH <rpath> in file <file> [rpaths]

The specified binary produced by the recipe contains dynamic library load paths (rpaths) that contain build system
paths such as TMPDIR, which are incorrect for the target and could potentially be a security issue. Check for bad
—-rpath options being passed to the linker in your do_compile log. Depending on the build system used by the
software being built, there might be a configure option to disable rpath usage completely within the build of the

software.
<packagename>: <file> contains probably-redundant RPATH <rpath> [useless-rpaths]

The specified binary produced by the recipe contains dynamic library load paths (rpaths) that on a standard system
are searched by default by the linker (e.g. /1ib and /usr/1ib). While these paths will not cause any breakage,
they do waste space and are unnecessary. Depending on the build system used by the software being built, there

might be a configure option to disable rpath usage completely within the build of the software.
<packagename> requires <files>, but no providers in its RDEPENDS [file-rdeps]

A file-level dependency has been identified from the specified package on the specified files, but there is no explicit
corresponding entry in RDEPENDS. If particular files are required at runtime then RDEPENDS should be declared

in the recipe to ensure the packages providing them are built.

<packagenamel> rdepends on <packagename2>, but it isn't a build dependency?

[build-deps]

There is a runtime dependency between the two specified packages, but there is nothing explicit within the recipe to
enable the OpenEmbedded build system to ensure that dependency is satisfied. This condition is usually triggered
by an RDEPENDS value being added at the packaging stage rather than up front, which is usually automatic based
on the contents of the package. In most cases, you should change the recipe to add an explicit RDEPENDS for the
dependency.

non —-dev/-dbg/nativesdk- package contains symlink .so: <packagename> path '<path>'

[dev—-s0]

Symlink . so files are for development only, and should therefore go into the —~dev package. This situation might

234

Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

occur if you add * . so* rather than *. so. * to a non-dev package. Change FI/LES (and possibly PACKAGES) such

that the specified . so file goes into an appropriate —dev package.

* non -staticdev package contains static .a library: <packagename> path '<path>'

[staticdev]

Static . a library files should go into a —~staticdev package. Change FILES (and possibly PACKAGES) such that

the specified . a file goes into an appropriate —staticdev package.
* <packagename>: found library in wrong location [libdir]

The specified file may have been installed into an incorrect (possibly hardcoded) installation path. For example,
this test will catch recipes that install /1ib/bar.so when ${base_libdir}is “lib32” . Another example is
when recipes install /usr/1ib64/foo.so when ${1libdir} is “/ust/lib” . False positives occasionally exist.
For these cases add “libdir” to INSANE_SKIP for the package.

* non debug package contains .debug directory: <packagename> path <path> [debug-files]

The specified package contains a .debug directory, which should not appear in anything but the —~dbg package.
This situation might occur if you add a path which contains a . debug directory and do not explicitly add the . debug
directory to the —dbg package. If this is the case, add the . debug directory explicitly to FILES: ${PN}-dbg. See
FILES for additional information on FILES.

* <packagename> installs files in <path>, but it is expected to be empty [empty-dirs]

The specified package is installing files into a directory that is normally expected to be empty (such as /tmp). These
files may be more appropriately installed to a different location, or perhaps alternatively not installed at all, usually

by updating the do_install task/function.
® Architecture did not match (<file_arch>, expected <machine_arch>) in <file> [arch]

By default, the OpenEmbedded build system checks the Executable and Linkable Format (ELF) type, bit size, and
endianness of any binaries to ensure they match the target architecture. This test fails if any binaries do not match
the type since there would be an incompatibility. The test could indicate that the wrong compiler or compiler
options have been used. Sometimes software, like bootloaders, might need to bypass this check. If the file you
receive the error for is firmware that is not intended to be executed within the target operating system or is intended
to run on a separate processor within the device, you can add “arch” to INSANE_SKIP for the package. Another

option is to check the do_compile log and verify that the compiler options being used are correct.
® Bit size did not match (<file_bits>, expected <machine_bits>) in <file> [arch]

By default, the OpenEmbedded build system checks the Executable and Linkable Format (ELF) type, bit size, and
endianness of any binaries to ensure they match the target architecture. This test fails if any binaries do not match
the type since there would be an incompatibility. The test could indicate that the wrong compiler or compiler
options have been used. Sometimes software, like bootloaders, might need to bypass this check. If the file you
receive the error for is firmware that is not intended to be executed within the target operating system or is intended
to run on a separate processor within the device, you can add “arch” to INSANE_SKIP for the package. Another

option is to check the do_compile log and verify that the compiler options being used are correct.

6.9. QA Error and Warning Messages 235



The Yocto Project ®, Release 5.1.3

® Endianness did not match (<file_endianness>, expected <machine_endianness>) in <file>

[arch]

By default, the OpenEmbedded build system checks the Executable and Linkable Format (ELF) type, bit size, and
endianness of any binaries to ensure they match the target architecture. This test fails if any binaries do not match
the type since there would be an incompatibility. The test could indicate that the wrong compiler or compiler
options have been used. Sometimes software, like bootloaders, might need to bypass this check. If the file you
receive the error for is firmware that is not intended to be executed within the target operating system or is intended
to run on a separate processor within the device, you can add “arch” to INSANE_SKIP for the package. Another

option is to check the do_compile log and verify that the compiler options being used are correct.
ELF binary '<file>' has relocations in .text [textrel]

The specified ELF binary contains relocations in its .text sections. This situation can result in a performance

impact at runtime.

Typically, the way to solve this performance issue is to add “-fPIC” or “-fpic” to the compiler command-line
options. For example, given software that reads CFLAGS when you build it, you could add the following to your

recipe:

CFLAGS:append = " —fPIC "

For more information on text relocations at runtime, see https://www.akkadia.org/drepper/textrelocs.html.

¢ File '<file>' in package '<package>' doesn't have GNU_HASH (didn't pass LDFLAGS?)

[1dflags]

This indicates that binaries produced when building the recipe have not been linked with the LDFLAGS options
provided by the build system. Check to be sure that the LDFLAGS variable is being passed to the linker command.
A common workaround for this situation is to pass in LDFLAGS using TARGET_CC_ARCH within the recipe as

follows:

TARGET_CC_ARCH += "S "

Package <packagename> contains Xorg driver (<driver>) but no xorg-abi- dependencies

[xorg-driver—-abi]

The specified package contains an Xorg driver, but does not have a corresponding ABI package dependency. The
xserver-xorg recipe provides driver ABI names. All drivers should depend on the ABI versions that they have
been built against. Driver recipes that include xorg-driver-input.inc or xorg—driver—-video.inc will
automatically get these versions. Consequently, you should only need to explicitly add dependencies to binary driver

recipes.

The /usr/share/info/dir file is not meant to be shipped in a particular package.

[infodir]

The /usr/share/info/dir should not be packaged. Add the following line to your do_install task or to your

do_install:append within the recipe as follows:

236

Chapter 6. Yocto Project Reference Manual



https://www.akkadia.org/drepper/textrelocs.html

The Yocto Project ®, Release 5.1.3

rm ${D}${infodir}/dir

¢ Symlink <path> in <packagename> points to TMPDIR [symlink-to-sysroot]

The specified symlink points into 7MPDIR on the host. Such symlinks will work on the host. However, they are
clearly invalid when running on the target. You should either correct the symlink to use a relative path or remove

the symlink.
e <file> failed sanity test (workdir) in path <path> [la]

The specified . 1a file contains TMPDIR paths. Any .1a file containing these paths is incorrect since 1ibtool

adds the correct sysroot prefix when using the files automatically itself.
¢ <file> failed sanity test (tmpdir) in path <path> [pkgconfig]

The specified .pc file contains TMPDIR/ WORKDIR paths. Any . pc file containing these paths is incorrect since

pkg-config itself adds the correct sysroot prefix when the files are accessed.
* <packagename> rdepends on <debug_packagename> [debug-deps]

There is a dependency between the specified non-dbg package (i.e. a package whose name does not end in -dbg)
and a package that is a dbg package. The dbg packages contain debug symbols and are brought in using several
different methods:

— Using the dbg-pkgs IMAGE_FEATURES value.
— Using IMAGE_INSTALL.
— As a dependency of another dbg package that was brought in using one of the above methods.

The dependency might have been automatically added because the dbg package erroneously contains files that
it should not contain (e.g. a non-symlink . so file) or it might have been added manually (e.g. by adding to
RDEPENDS).

* <packagename> rdepends on <dev_packagename> [dev-deps]

There is a dependency between the specified non-dev package (a package whose name does not end in -dev) and
a package that is a dev package. The dev packages contain development headers and are usually brought in using

several different methods:
— Using the dev-pkgs IMAGE_FEATURES value.
— Using IMAGE_INSTALL.
— As a dependency of another dev package that was brought in using one of the above methods.

The dependency might have been automatically added (because the dev package erroneously contains files that it

should not have (e.g. a non-symlink . so file) or it might have been added manually (e.g. by adding to RDEPENDS).

® <var>:<packagename> is invalid: <comparison> (<value>) only comparisons <, =, >,

<=, and >= are allowed [dep-cmp]

6.9. QA Error and Warning Messages 237



The Yocto Project ®, Release 5.1.3

If you are adding a versioned dependency relationship to one of the dependency variables (RDEPENDS, RRECOM-
MENDS, RSUGGESTS, RPROVIDES, RREPLACES, or RCONFLICTS), you must only use the named comparison

operators. Change the versioned dependency values you are adding to match those listed in the message.

<recipename>: The compile log indicates that host include and/or library paths were

used. Please check the log '<logfile>' for more information. [compile-host-path]

The log for the do_compile task indicates that paths on the host were searched for files, which is not appropriate
when cross-compiling. Look for “is unsafe for cross-compilation” or “CROSS COMPILE Badness” in the

specified log file.

<recipename>: The install log indicates that host include and/or library paths were

used. Please check the log '<logfile>' for more information. [install-host-path]

The log for the do_install task indicates that paths on the host were searched for files, which is not appropriate when
cross-compiling. Look for “is unsafe for cross-compilation” or “CROSS COMPILE Badness” in the specified

log file.

This autoconf log indicates errors, it looked at host include and/or library paths
while determining system capabilities. Rerun configure task after fixing this.

[configure-unsafe]

The log for the do_configure task indicates that paths on the host were searched for files, which is not appropriate
when cross-compiling. Look for “is unsafe for cross-compilation” or “CROSS COMPILE Badness” in the

specified log file.
<packagename> doesn't match the [a-z0-9.+-]+ regex [pkgname]

The convention within the OpenEmbedded build system (sometimes enforced by the package manager itself) is to
require that package names are all lower case and to allow a restricted set of characters. If your recipe name does
not match this, or you add packages to PACKAGES that do not conform to the convention, then you will receive
this error. Rename your recipe. Or, if you have added a non-conforming package name to PACKAGES, change the

package name appropriately.

<recipe>: configure was passed unrecognized options: <options> [un—

known-configure-option]

The configure script is reporting that the specified options are unrecognized. This situation could be because the
options were previously valid but have been removed from the configure script. Or, there was a mistake when
the options were added and there is another option that should be used instead. If you are unsure, consult the
upstream build documentation, the . /configure --help output, and the upstream change log or release notes.
Once you have worked out what the appropriate change is, you can update EXTRA_OECONF, PACKAGECON-
FIG_CONFARGS, or the individual PACKAGECONFIG option values accordingly.

Recipe <recipefile> has PN of "<recipename>" which is in OVERRIDES, this can result

in unexpected behavior. [pn-overrides]

The specified recipe has a name (PN) value that appears in OVERRIDES. If a recipe is named such that its PN value
matches something already in OVERRIDES (e.g. PN happens to be the same as MACHINE or DISTRO), it can have

238

Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

unexpected consequences. For example, assignments such as FILES: ${PN} = "xyz" effectively turn into FILES
= "xyz". Rename your recipe (or if PN is being set explicitly, change the PN value) so that the conflict does not

occur. See FILES for additional information.

® <recipefile>: Variable <variable> is set as not being package specific, please fix

this. [pkgvarcheck]

Certain variables (RDEPENDS, RRECOMMENDS, RSUGGESTS, RCONFLICTS, RPROVIDES, RREPLACES,
FILES, pkg_preinst, pkg_postinst, pkg_prerm, pkg_postrm, and ALLOW_EMPTY) should always be set
specific to a package (i.e. they should be set with a package name override such as RDEPENDS : ${PN} = "value"
rather than RDEPENDS = "value"). If you receive this error, correct any assignments to these variables within

your recipe.
* recipe uses DEPENDS:${PN}, should use DEPENDS [pkgvarcheck]

This check looks for instances of setting DEPENDS : $ {PN} which is erroneous (DEPENDS is a recipe-
wide variable and thus it is not correct to specify it for a particular package, nor will such an assignment
actually work.) Set DEPENDS instead.

* File '<file>' from <recipename> was already stripped, this will prevent future

debugging! [already-stripped]

Produced binaries have already been stripped prior to the build system extracting debug symbols. It is common
for upstream software projects to default to stripping debug symbols for output binaries. In order for debugging to

work on the target using —~dbg packages, this stripping must be disabled.

Depending on the build system used by the software being built, disabling this stripping could be as easy as specify-
ing an additional configure option. If not, disabling stripping might involve patching the build scripts. In the latter

case, look for references to “strip” or “STRIP” ,orthe “-s” or “-S” command-line options being specified

on the linker command line (possibly through the compiler command line if preceded with “-WL"” ).

Note

Disabling stripping here does not mean that the final packaged binaries will be unstripped. Once the Open-
Embedded build system splits out debug symbols to the —dbg package, it will then strip the symbols from the

binaries.

* <packagename> is listed in PACKAGES multiple times, this leads to packaging errors.

[packages—1list]

Package names must appear only once in the PACKAGES variable. You might receive this error if you are attempting

to add a package to PACKAGES that is already in the variable’ s value.

* FILES variable for package <packagename> contains '//' which is invalid. Attempting

to fix this but you should correct the metadata. [files-invalid]

The string “//” is invalid in a Unix path. Correct all occurrences where this string appears in a F/LES variable so

that there is only a single “/” .

6.9. QA Error and Warning Messages 239



The Yocto Project ®, Release 5.1.3

* <recipename>: Files/directories were installed but not shipped in any package [in-

stalled-vs—-shipped]

Files have been installed within the do_install task but have not been included in any package by way of the FILES
variable. Files that do not appear in any package cannot be present in an image later on in the build process. You

need to do one of the following:
— Add the files to FILES for the package you want them to appear in (e.g. FILES: $ { PN } for the main package).
— Delete the files at the end of the do_install task if the files are not needed in any package.

* <oldpackage>-<oldpkgversion> was registered as shlib provider for <library>, changing

it to <newpackage>-<newpkgversion> because it was built later

This message means that both <oldpackage> and <newpackage> provide the specified shared library. You can
expect this message when a recipe has been renamed. However, if that is not the case, the message might indicate
that a private version of a library is being erroneously picked up as the provider for a common library. If that is the
case, you should add the library’ s . so filename to PRIVATE_LIBS in the recipe that provides the private version
of the library.

* LICENSE:<packagename> includes licenses (<licenses>) that are not listed in LICENSE

[unlisted-pkg-lics]

The LICENSE of the recipe should be a superset of all the licenses of all packages produced by this recipe. In other
words, any license in LICENSE : * should also appear in LICENSE.

® AM_GNU_GETTEXT used but no inherit gettext [configure-gettext]

If a recipe is building something that uses automake and the automake files contain an
AM_GNU_GETTEXT directive then this check will fail if there is no inherit gettext statement in
the recipe to ensure that gettext is available during the build. Add inherit gettext to remove the

warning.

* package contains mime types but does not inherit mime: <packagename> path '<file>'

[mime]

The specified package contains mime type files (. xm1 files in ${datadir}/mime/packages)and yet
does not inherit the mime class which will ensure that these get properly installed. Either add inherit

mime to the recipe or remove the files at the do_install step if they are not needed.

* package contains desktop file with key 'MimeType' but does not inhert mime-xdg:

<packagename> path '<file>' [mime-xdg]

The specified package contains a .desktop file with a ‘MimeType’ key present, but does not inherit
the mime-xdg class that is required in order for that to be activated. Either add inherit mime to the

recipe or remove the files at the do_install step if they are not needed.
¢ <recipename>: SRC_URI uses unstable GitHub archives [src-uri-bad]

GitHub provides ‘“archive” tarballs, however these can be re-generated on the fly and thus the file’ s

signature will not necessarily match that in the SRC_URI checksums in future leading to build failures.

240 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

It is recommended that you use an official release tarball or switch to pulling the corresponding revision

in the actual git repository instead.
¢ SRC_URI uses PN not BPN [src-uri-bad]

If some part of SRC_URI needs to reference the recipe name, it should do so using ${ BPN } rather than
${PN} as the latter will change for different variants of the same recipe e.g. when BBCLASSEXTEND
or multilib are being used. This check will fail if a reference to ${PN} is found within the SRC_URI

value —change it to $ {BPN} instead.
® <recipename>: recipe doesn't inherit features_check [unhandled-features-check]

This check ensures that if one of the variables that the features check class supports (e.g. RE-
QUIRED_DISTRO_FEATURES) is used, then the recipe inherits features_check in order for the require-
ment to actually work. If you are seeing this message, either add inherit features_check to your

recipe or remove the reference to the variable if it is not needed.

® <recipename>: recipe defines ALTERNATIVE:<packagename> but doesn't in-
herit update—-alternatives. This might fail during do_rootfs later! [miss—

ing-update-alternatives]

This check ensures that if a recipe sets the ALTERNATIVE variable that the recipe also inherits update-
alternatives such that the alternative will be correctly set up. If you are seeing this message, either add
inherit update-alternatives to your recipe or remove the reference to the variable if it is not

needed.

* <packagename>: <file> maximum shebang size exceeded, the maximum size is 128.

[shebang-size]

This check ensures that the shebang line (# ! in the first line) for a script is not longer than 128 characters,
which can cause an error at runtime depending on the operating system. If you are seeing this message

then the specified script may need to be patched to have a shorter in order to avoid runtime problems.

* <packagename> contains perllocal.pod (<files>), should not be installed [perllocal-

pod]

perllocal.pod is an index file of locally installed modules and so shouldn’ t be installed by any
distribution packages. The cpan* class already sets NO_PERLLOCAL to stop this file being generated by
most Perl recipes, but if a recipe is using MakeMake r directly then they might not be doing this correctly.
This check ensures that perllocal.pod is not in any package in order to avoid multiple packages shipping

this file and thus their packages conflicting if installed together.

* <packagename> package 1is not obeying usrmerge distro feature. /<path> should be

relocated to /usr. [usrmerge]

If usrmerge is in DISTRO_FEATURES, this check will ensure that no package installs files to root (/
bin, /sbin, /1ib, /1ib64) directories. If you are seeing this message, it indicates that the do_install

step (or perhaps the build process that do_install is calling into, e.g. make install is using hardcoded

6.9.

QA Error and Warning Messages 241



The Yocto Project ®, Release 5.1.3

paths instead of the variables set up for this (bindir, sbindir, etc.), and should be changed so that it

does.
® Fuzz detected: <patch output> [patch-fuzz]

This check looks for evidence of “fuzz” when applying patches within the do_patch task. Patch fuzz is
a situation when the pat ch tool ignores some of the context lines in order to apply the patch. Consider

this example:

Patch to be applied:

——— filename

+++ filename
context line 1
context line 2
context line 3

+newly added line
context line 4
context line 5

context line 6

Original source code:

different context line 1
different context line 2
context line 3
context line 4
different context line 5

different context line 6

Outcome (after applying patch with fuzz):

different context line 1
different context line 2
context line 3

newly added line

context line 4

different context line 5

different context line 6

Chances are, the newly added line was actually added in a completely wrong location, or it was already
in the original source and was added for the second time. This is especially possible if the context line
3 and 4 are blank or have only generic things in them, such as #endif or }. Depending on the patched

code, it is entirely possible for an incorrectly patched file to still compile without errors.

242 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

How to eliminate patch fuzz warnings

Use the devtool command as explained by the warning. First, unpack the source into devtool

workspace:

devtool modify <recipe>

This will apply all of the patches, and create new commits out of them in the workspace —with the

patch context updated.

Then, replace the patches in the recipe layer:

devtool finish —--force-patch-refresh <recipe> <layer_path>

The patch updates then need be reviewed (preferably with a side-by-side diff tool) to ensure they are
indeed doing the right thing i.e.:

1. they are applied in the correct location within the file;
2. they do not introduce duplicate lines, or otherwise do things that are no longer necessary.

To confirm these things, you can also review the patched source code in devtool’ s workspace, typically

in <build_dir>/workspace/sources/<recipe>/

Once the review is done, you can create and publish a layer commit with the patch updates that modify

the context. Devtool may also refresh other things in the patches, those can be discarded.

® Missing Upstream-Status 1in patch <patchfile> Please add according to <url>

[patch-status]

The Upstream-Status value is missing in the specified patch file’ s header. This value is intended

to track whether or not the patch has been sent upstream, whether or not it has been merged, etc.

For more information, see the “Patch Upstream Status” section in the Yocto Project and OpenEmbedded

Contributor Guide.

® Malformed Upstream-Status in patch <patchfile> Please correct according to <url>

[patch-status]

The Upstream-Status value in the specified patch file’ s header is invalid - it must be a specific

format. See the “Missing Upstream-Status” entry above for more information.
® File <filename> in package <packagename> contains reference to TMPDIR [buildpaths]

This check ensures that build system paths (including 7MPDIR) do not appear in output files, which
not only leaks build system configuration into the target, but also hinders binary reproducibility as the

output will change if the build system configuration changes.

Typically these paths will enter the output through some mechanism in the configuration or compilation
of the software being built by the recipe. To resolve this issue you will need to determine how the

detected path is entering the output. Sometimes it may require adjusting scripts or code to use a relative

6.9. QA Error and Warning Messages 243



The Yocto Project ®, Release 5.1.3

path rather than an absolute one, or to pick up the path from runtime configuration or environment

variables.
® <tool> tests detected [unimplemented-ptest]

This check will detect if the source of the package contains some upstream-provided tests and, if so,
that ptests are implemented for this recipe. See the “Testing Packages With ptest” section in the Yocto

Project Development Tasks Manual. See also the “prest” section.

* <variable> is set to <value> but the substring 'virtual/' holds no meaning in this
context. It only works for build time dependencies, not runtime ones. It is suggested

to use 'VIRTUAL-RUNTIME_' variables instead.

virtual/ is a convention intended for use in the build context (i.e. PROVIDES and DEPENDS) rather
than the runtime context (i.e. RPROVIDES and RDEPENDS). Use VIRTUAL-RUNTIME variables in-

stead for the latter.

6.9.3 Configuring and Disabling QA Checks

You can configure the QA checks globally so that specific check failures either raise a warning or an error message, using
the WARN_QA and ERROR_QA variables, respectively. You can also disable checks within a particular recipe using
INSANE_SKIP. For information on how to work with the QA checks, see the “insane” section.

Note

Please keep in mind that the QA checks are meant to detect real or potential problems in the packaged output. So

exercise caution when disabling these checks.

6.10 Images

The OpenEmbedded build system provides several example images to satisfy different needs. When you issue the bit-

bake command you provide a “top-level” recipe that essentially begins the build for the type of image you want.

Note

Building an image without GNU General Public License Version 3 (GPLv3), GNU Lesser General Public License
Version 3 (LGPLv3), and the GNU Affero General Public License Version 3 (AGPL-3.0) components is only tested
for core-image-minimal image. Furthermore, if you would like to build an image and verify that it does not include
GPLv3 and similarly licensed components, you must make the following changes in the image recipe file before using

the BitBake command to build the image:
INCOMPATIBLE_LICENSE = “GPL-3.0* LGPL-3.0*”

Alternatively, you can adjust local.conf file, repeating and adjusting the line for all images where the license

restriction must apply:

244 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

INCOMPATIBLE_LICENSE:pn-your-image-name = “GPL-3.0* LGPL-3.0*”

From within the poky Git repository, you can use the following command to display the list of directories within the

Source Directory that contain image recipe files:

$ 1ls meta*/recipes*/images/*.bb

Here is a list of supported recipes:

build-appliance-image: An example virtual machine that contains all the pieces required to run builds using
the build system as well as the build system itself. You can boot and run the image using either the VMware Player
or VMware Workstation. For more information on this image, see the Build Appliance page on the Yocto Project

website.
core-image-base: A console-only image that fully supports the target device hardware.

core-image-full-cmdline: A console-only image with more full-featured Linux system functionality in-
stalled.

core-image-1sb: Animage that conforms to the Linux Standard Base (LSB) specification. This image requires a
distribution configuration that enables LSB compliance (e.g. poky—1sb). If you build core-image—1sb without

that configuration, the image will not be LSB-compliant.

core-image-lsb-dev: A core—image-1sb image that is suitable for development work using the host. The
image includes headers and libraries you can use in a host development environment. This image requires a distri-
bution configuration that enables LSB compliance (e.g. poky—1sb). If you build core-image-1sb-dev without

that configuration, the image will not be LSB-compliant.

core-image-1lsb-sdk: A core-image-1sb that includes everything in the cross-toolchain but also includes
development headers and libraries to form a complete standalone SDK. This image requires a distribution con-
figuration that enables LSB compliance (e.g. poky-1sb). If you build core-image-1sb-sdk without that

configuration, the image will not be LSB-compliant. This image is suitable for development using the target.
core-image-minimal: A small image just capable of allowing a device to boot.

core-image-minimal-dev: A core-image-minimal image suitable for development work using the host.

The image includes headers and libraries you can use in a host development environment.

core-image-minimal-initramfs: A core-image-minimal image that has the Minimal RAM-based Initial
Root Filesystem (/nitramfs) as part of the kernel, which allows the system to find the first “init” program more
efficiently. See the PACKAGE INSTALL variable for additional information helpful when working with Initramfs

images.

core-image-minimal-mtdutils: A core-image-minimal image that has support for the Minimal MTD

Utilities, which let the user interact with the MTD subsystem in the kernel to perform operations on flash devices.

core-image-rt: A core-image-minimal image plus a real-time test suite and tools appropriate for real-time

use.

6.10.

Images 245



https://www.vmware.com/products/player/overview.html
https://www.vmware.com/products/workstation/overview.html
https://www.yoctoproject.org/software-item/build-appliance

The Yocto Project ®, Release 5.1.3

* core-image-rt-sdk: A core-image-rt image that includes everything in the cross-toolchain. The image also
includes development headers and libraries to form a complete stand-alone SDK and is suitable for development

using the target.

* core-image-sato: An image with Sato support, a mobile environment and visual style that works well with
mobile devices. The image supports X 11 with a Sato theme and applications such as a terminal, editor, file manager,

media player, and so forth.

* core-image-sato-dev: A core-image-sato image suitable for development using the host. The image
includes libraries needed to build applications on the device itself, testing and profiling tools, and debug symbols.

This image was formerly core-image-sdk.

* core-image-sato-sdk: A core-image-sato image that includes everything in the cross-toolchain. The
image also includes development headers and libraries to form a complete standalone SDK and is suitable for

development using the target.

¢ core-image-testmaster: A ‘“controller” image designed to be used for automated runtime testing. Provides
a “known good” image that is deployed to a separate partition so that you can boot into it and use it to deploy a
second image to be tested. You can find more information about runtime testing in the “Performing Automated

Runtime Testing” section in the Yocto Project Test Environment Manual.

* core-image-testmaster—-initramfs: A RAM-based Initial Root Filesystem (Initramfs) image tailored for

use with the core-image-testmaster image.

* core-image-weston: A very basic Wayland image with a terminal. This image provides the Wayland protocol
libraries and the reference Weston compositor. For more information, see the “ Using Wayland and Weston” section

in the Yocto Project Development Tasks Manual.

e core-image-x11: A very basic X11 image with a terminal.

6.11 Features

This chapter provides a reference of shipped machine and distro features you can include as part of your image, a reference

on image features you can select, and a reference on Feature Backfilling.

Features provide a mechanism for working out which packages should be included in the generated images. Distributions
can select which features they want to support through the DISTRO_FEATURES variable, which is set or appended to in
a distribution’ s configuration file such as poky.conf, poky-tiny.conf, poky-1sb.conf and so forth. Machine
features are set in the MACHINE_FEATURES variable, which is set in the machine configuration file and specifies the

hardware features for a given machine.

These two variables combine to work out which kernel modules, utilities, and other packages to include. A given distri-
bution can support a selected subset of features so some machine features might not be included if the distribution itself

does not support them.

One method you can use to determine which recipes are checking to see if a particular feature is contained or not is
to grep through the Metadata for the feature. Here is an example that discovers the recipes whose build is potentially

changed based on a given feature:

246 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

$ cd poky

$ git grep 'contains.*MACHINE_FEATURES.*feature'

6.11.1 Machine Features

The items below are features you can use with MACHINE_FEATURES. Features do not have a one-to-one correspondence
to packages, and they can go beyond simply controlling the installation of a package or packages. Sometimes a feature
can influence how certain recipes are built. For example, a feature might determine whether a particular configure option

is specified within the do_configure task for a particular recipe.
This feature list only represents features as shipped with the Yocto Project metadata:
* acpi: Hardware has ACPI (x86/x86_64 only)

¢ alsa: Hardware has ALSA audio drivers

bluetooth: Hardware has integrated BT
* ¢fi: Support for booting through EFI

e ext2: Hardware HDD or Microdrive

keyboard: Hardware has a keyboard

* numa: Hardware has non-uniform memory access

pcbios: Support for booting through BIOS

e pci: Hardware has a PCI bus

* pcmcia: Hardware has PCMCIA or CompactFlash sockets

 phone: Mobile phone (voice) support

o gemu-usermode: QEMU can support user-mode emulation for this machine
* gvga: Machine has a QVGA (320x240) display

* rtc: Machine has a Real-Time Clock

e screen: Hardware has a screen

* serial: Hardware has serial support (usually RS232)

¢ touchscreen: Hardware has a touchscreen

usbgadget: Hardware is USB gadget device capable

* usbhost: Hardware is USB Host capable

vfat: FAT file system support

 wifi: Hardware has integrated WiFi

6.11. Features 247




The Yocto Project ®, Release 5.1.3

6.11.2 Distro Features

The items below are features you can use with DISTRO_FEATURES to enable features across your distribution. Features
do not have a one-to-one correspondence to packages, and they can go beyond simply controlling the installation of a
package or packages. In most cases, the presence or absence of a feature translates to the appropriate option supplied to
the configure script during the do_configure task for the recipes that optionally support the feature. Appropriate options
must be supplied, and enabling/disabling PACKAGECONFIG for the concerned packages is one way of supplying such

options.

Some distro features are also machine features. These select features make sense to be controlled both at the machine
and distribution configuration level. See the COMBINED_FEATURES variable for more information.

Note

DISTRO_FEATURES is normally independent of kernel configuration, so if a feature specified in DISTRO_FEATURES

also relies on support in the kernel, you will also need to ensure that support is enabled in the kernel configuration.

This list only represents features as shipped with the Yocto Project metadata, as extra layers can define their own:
¢ 3g: Include support for cellular data.
* acl: Include Access Control List support.

¢ alsa: Include Advanced Linux Sound Architecture support (OSS compatibility kernel modules installed if avail-
able).

* api-documentation: Enables generation of API documentation during recipe builds. The resulting documentation
is added to SDK tarballs when the bitbake -c populate_sdk command is used. See the “Adding API
Documentation to the Standard SDK” section in the Yocto Project Application Development and the Extensible

Software Development Kit (eSDK) manual.
* bluetooth: Include bluetooth support (integrated BT only).
* cramfs: Include CramFS support.
¢ debuginfod: Include support for getting ELF debugging information through a debuginfod server.
* directfb: Include DirectFB support.

¢ ext2: Include tools for supporting devices with internal HDD/Microdrive for storing files (instead of Flash only

devices).
* gobject-introspection-data: Include data to support GObject Introspection.
* ipsec: Include IPSec support.
* ipv4: Include IPv4 support.
* ipv6: Include IPv6 support.

* keyboard: Include keyboard support (e.g. keymaps will be loaded during boot).

248 Chapter 6. Yocto Project Reference Manual


https://en.wikipedia.org/wiki/Access-control_list
https://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture
https://gi.readthedocs.io/en/latest/

The Yocto Project ®, Release 5.1.3

minidebuginfo: Add minimal debug symbols (minidebuginfo) to binary files containing, allowing coredumpctl

and gdb to show symbolicated stack traces.

multiarch: Enable building applications with multiple architecture support.

ld-is-gold: Use the gold linker instead of the standard GCC linker (bfd).

ldconfig: Include support for ldconfig and 1d. so.conf on the target.

Ito: Enable Link-Time Optimisation.

* nfc: Include support for Near Field Communication.

nfs: Include NFS client support (for mounting NFS exports on device).

nls: Include National Language Support (NLS).

¢ opengl: Include the Open Graphics Library, which is a cross-language, multi-platform application programming

interface used for rendering two and three-dimensional graphics.

overlayfs: Include OverlayFS support.

* pam: Include Pluggable Authentication Module (PAM) support.
¢ pci: Include PCI bus support.

* pcmcia: Include PCMCIA/CompactFlash support.

* pni-names: Enable generation of persistent network interface names, i.e. the system tries hard to have the same

but unique names for the network interfaces even after a reinstall.

polkit: Include Polkit support.

* ppp: Include PPP dialup support.

ptest: Enables building the package tests where supported by individual recipes. For more information on package

tests, see the “Testing Packages With ptest” section in the Yocto Project Development Tasks Manual.

pulseaudio: Include support for Pulse Audio.

selinux: Include support for Security-Enhanced Linux (SELinux) (requires meta-selinux).

* seccomp: Enables building applications with seccomp support, to allow them to strictly restrict the system calls that

they are allowed to invoke.

smbfs: Include SMB networks client support (for mounting Samba/Microsoft Windows shares on device).

systemd: Include support for this init manager, which is a full replacement of for init with parallel starting of

services, reduced shell overhead, and other features. This init manager is used by many distributions.

¢ systemd-resolved: Include support and use systemd-resolved as the main DNS name resolver in glibc Name

Service Switch. This is a DNS resolver daemon from systemd.

usbgadget: Include USB Gadget Device support (for USB networking/serial/storage).

usbhost: Include USB Host support (allows to connect external keyboard, mouse, storage, network etc).

6.11. Features 249


https://en.wikipedia.org/wiki/Gold_(linker)
https://gcc.gnu.org/wiki/LinkTimeOptimization
https://en.wikipedia.org/wiki/Near-field_communication
https://docs.kernel.org/filesystems/overlayfs.html
https://en.wikipedia.org/wiki/Pluggable_authentication_module
https://en.wikipedia.org/wiki/Polkit
https://www.freedesktop.org/wiki/Software/PulseAudio/
https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://layers.openembedded.org/layerindex/layer/meta-selinux/
https://en.wikipedia.org/wiki/Seccomp

The Yocto Project ®, Release 5.1.3

usrmerge: Merges the /bin, /sbin, /1ib, and /1ib64 directories into their respective counterparts in the /usr

directory to provide better package and application compatibility.

vfat: Include FAT filesystem support.

vulkan: Include support for the Vulkan APIL.

wayland: Include the Wayland display server protocol and the library that supports it.
wifi: Include WiFi support (integrated only).

x11: Include the X server and libraries.

xattr: Include support for extended file attributes.

zeroconf: Include support for zero configuration networking.

6.11.3 Image Features

The contents of images generated by the OpenEmbedded build system can be controlled by the IMAGE _FEATURES and
EXTRA_IMAGE_FEATURES variables that you typically configure in your image recipes. Through these variables, you

can add several different predefined packages such as development utilities or packages with debug information needed

to investigate application problems or profile applications.

The image features available for all images are:

allow-empty-password: Allows Dropbear and OpenSSH to accept logins from accounts having an empty password

string.
allow-root-login: Allows Dropbear and OpenSSH to accept root logins.
dbg-pkgs: Installs debug symbol packages for all packages installed in a given image.

debug-tweaks: Makes an image suitable for development (e.g. allows root logins, logins without pass-
words —including root ones, and enables post-installation logging). See the allow-empty-password, al-
low-root-login, empty-root—password, and post—install-logging features in this list for additional

information.
dev-pkgs: Installs development packages (headers and extra library links) for all packages installed in a given image.
doc-pkgs: Installs documentation packages for all packages installed in a given image.

empty-root-password: This feature or debug-tweaks is required if you want to allow root login with an empty
password. If these features are not present in IMAGE_FEATURES, a non-empty password is forced in /etc/

passwd and /etc/shadow if such files exist.

Note

empty-root—-password doesn’ t set an empty root password by itself. You get an initial empty root pass-
word thanks to the base-passwd and shadow recipes, and the presence of empty-root-password or de-

bug-tweaks just disables the mechanism which forces an non-empty password for the root user.

250

Chapter 6. Yocto Project Reference Manual


https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/Vulkan
https://en.wikipedia.org/wiki/Extended_file_attributes
https://en.wikipedia.org/wiki/Zero-configuration_networking
https://git.openembedded.org/openembedded-core/tree/meta/recipes-core/base-passwd/
https://git.openembedded.org/openembedded-core/tree/meta/recipes-extended/shadow/

The Yocto Project ®, Release 5.1.3

* lic-pkgs: Installs license packages for all packages installed in a given image.

overlayfs-etc: Configures the /etc directory to be in overlayfs. This allows to store device specific information

elsewhere, especially if the root filesystem is configured to be read-only.

* package-management: Installs package management tools and preserves the package manager database.

post-install-logging: Enables logging postinstall script runs to the /var/log/postinstall. log file on first boot

of the image on the target system.

Note

To make the /var/log directory on the target persistent, remove the files/fs-perms-volatile-log.
txt value from FILESYSTEM_PERMS_TABLES.

ptest-pkgs: Installs ptest packages for all ptest-enabled recipes.

read-only-rootfs: Creates an image whose root filesystem is read-only. See the “Creating a Read-Only Root Filesys-

tem” section in the Yocto Project Development Tasks Manual for more information.

read-only-rootfs-delayed-postinsts: when specified in conjunction with read-only-rootfs, specifies that post-
install scripts are still permitted (this assumes that the root filesystem will be made writeable for the first boot; this

feature does not do anything to ensure that - it just disables the check for post-install scripts.)

serial-autologin-root: when specified in conjunction with empt y-root-password will automatically login as root
on the serial console. This of course opens up a security hole if the serial console is potentially accessible to an

attacker, so use with caution.

splash: Enables showing a splash screen during boot. By default, this screen is provided by psplash, which does
allow customization. If you prefer to use an alternative splash screen package, you can do so by setting the SPLASH

variable to a different package name (or names) within the image recipe or at the distro configuration level.

stateless-rootfs:: specifies that the image should be created as stateless - when using systemd, systemct1-native

will not be run on the image, leaving the image for population at runtime by systemd.

staticdev-pkgs: Installs static development packages, which are static libraries (i.e. *.a files), for all packages

installed in a given image.

Some image features are available only when you inherit the core-image class. The current list of these valid features is

as follows:
e hwcodecs: Installs hardware acceleration codecs.
* nfs-server: Installs an NFS server.

e perf: Installs profiling tools such as perf, systemtap, and LTTng. For general information on user-space tools,

see the Yocto Project Application Development and the Extensible Software Development Kit (eSDK) manual.

e ssh-server-dropbear: Installs the Dropbear minimal SSH server.

6.11. Features 251



The Yocto Project ®, Release 5.1.3

Note

As of the 4.1 release, the ssh-server—-dropbear feature also recommends the openssh-sftp-server
package, which by default will be pulled into the image. This is because recent versions of the OpenSSH
scp client now use the SFTP protocol, and thus require an SFTP server to be present to connect to. How-
ever, if you wish to use the Dropbear ssh server without the SFTP server installed, you can either remove
ssh-server-dropbear from IMAGE_FEATURES and add dropbear to IMAGE_INSTALL instead, or alter-
natively still use the feature but set BAD_RECOMMENDATIONS as follows:

BAD_RECOMMENDATIONS += "openssh-sftp-server"

o ssh-server-openssh: Installs the OpenSSH SSH server, which is more full-featured than Dropbear. Note that if
both the OpenSSH SSH server and the Dropbear minimal SSH server are present in IMAGE_FEATURES, then
OpenSSH will take precedence and Dropbear will not be installed.

* tools-debug: Installs debugging tools such as strace and gdb. For information on GDB, see the “Debugging
With the GNU Project Debugger (GDB) Remotely” section in the Yocto Project Development Tasks Manual. For

information on tracing and profiling, see the Yocto Project Profiling and Tracing Manual.
* tools-sdk: Installs a full SDK that runs on the device.
* tools-testapps: Installs device testing tools (e.g. touchscreen debugging).
* weston: Installs Weston (reference Wayland environment).
e x11: Installs the X server.
* xI1-base: Installs the X server with a minimal environment.

e xII-sato: Installs the OpenedHand Sato environment.

6.11.4 Feature Backfilling

Sometimes it is necessary in the OpenEmbedded build system to add new functionality to MACHINE_FEATURES or
DISTRO_FEATURES, but at the same time, allow existing distributions or machine definitions to opt out of such new

features, to retain the same overall level of functionality.

To make this possible, the OpenEmbedded build system has a mechanism to automatically “backfill” features into
existing distro or machine configurations. You can see the list of features for which this is done by checking the DIS-
TRO_FEATURES_BACKFILL and MACHINE _FEATURES_BACKFILL variables in the meta/conf/bitbake. conf file.

These two variables are paired with the DISTRO_FEATURES_BACKFILL_CONSIDERED and MA-
CHINE_FEATURES_BACKFILL_CONSIDERED variables which allow distro or machine configuration maintainers
to consider any added feature, and decide when they wish to keep or exclude such feature, thus preventing the backfilling

from happening.

Here are two examples to illustrate feature backfilling:

252 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

e The “pulseaudio” distro feature option: Previously, PulseAudio support was enabled within the Qt and GStreamer
frameworks. Because of this, the feature is now backfilled and thus enabled for all distros through the DIS-
TRO_FEATURES_BACKFILL variable in the meta/conf/bitbake.conf file. However, if your distro needs
to disable the feature, you can do so without affecting other existing distro configurations that need PulseAudio
support. You do this by adding “pulseaudio” to DISTRO_FEATURES_BACKFILL_CONSIDERED in your distro’ s
.conf file. So, adding the feature to this variable when it also exists in the DISTRO_FEATURES_BACKFILL vari-
able prevents the build system from adding the feature to your configuration’ s DISTRO_FEATURES, effectively

disabling the feature for that particular distro.

e The “rtc” machine feature option: Previously, real time clock (RTC) support was enabled for all tar-
get devices. Because of this, the feature is backfilled and thus enabled for all machines through the
MACHINE_FEATURES_BACKFILL variable in the meta/conf/bitbake.conf file. However, if your tar-
get device does not have this capability, you can disable RTC support for your device without affect-
ing other machines that need RTC support. ~You do this by adding the “rtc” feature to the MA-
CHINE_FEATURES_BACKFILL_CONSIDERED list in your machine’ s .conf file. So, adding the feature to
this variable when it also exists in the MACHINE_FEATURES_BACKFILL variable prevents the build system from
adding the feature to your configuration’ s MACHINE_FEATURES, effectively disabling RTC support for that

particular machine.

6.12 Variables Glossary

This chapter lists common variables used in the OpenEmbedded build system and gives an overview of their function and
contents.

ABCDEFGHIKLMNOPRSTUVWX

ABIEXTENSION
Extension to the Application Binary Interface (ABI) field of the GNU canonical architecture name (e.g. “eabi” ).

ABI extensions are set in the machine include files. For example, the meta/conf/machine/include/arm/

arch-arm. inc file sets the following extension:

ABIEXTENSION = "eabi"

ALLOW_EMPTY
Specifies whether to produce an output package even if it is empty. By default, BitBake does not produce empty
packages. This default behavior can cause issues when there is an RDEPENDS or some other hard runtime require-

ment on the existence of the package.

Like all package-controlling variables, you must always use them in conjunction with a package name override, as

in:

ALLOW_EMPTY:${PN} = "1"
ALLOW_EMPTY:${PN}-dev = "1"
ALLOW_EMPTY:S${PN}-staticdev = "1"

6.12. Variables Glossary 253



The Yocto Project ®, Release 5.1.3

ALTERNATIVE
Lists commands in a package that need an alternative binary naming scheme. Sometimes the same command is
provided in multiple packages. When this occurs, the OpenEmbedded build system needs to use the alternatives

system to create a different binary naming scheme so the commands can co-exist.

To use the variable, list out the package’ s commands that are also provided by another package. For example, if

the busybox package has four such commands, you identify them as follows:

ALTERNATIVE:busybox = "sh sed test bracket"

For more information on the alternatives system, see the “update-alternatives” section.

ALTERNATIVE_LINK_NAME
Used by the alternatives system to map duplicated commands to actual locations. For example, if the bracket
command provided by the busybox package is duplicated through another package, you must use the ALTERNA-
TIVE_LINK_NAME variable to specify the actual location:

ALTERNATIVE_LINK_NAME [bracket] = "/usr/bin/["

In this example, the binary for the bracket command (i.e. [) from the busybox package resides in /usr/bin/.

Note

If ALTERNATIVE _LINK_NAME is not defined, it defaults to ${bindir}/name.

For more information on the alternatives system, see the “update-alternatives” section.

ALTERNATIVE_PRIORITY
Used by the alternatives system to create default priorities for duplicated commands. You can use the variable to
create a single default regardless of the command name or package, a default for specific duplicated commands
regardless of the package, or a default for specific commands tied to particular packages. Here are the available

syntax forms:

ALTERNATIVE_PRIORITY = "priority"
ALTERNATIVE_PRIORITY [name] = "priority"
ALTERNATIVE_PRIORITY_pkg[name] = "priority"

For more information on the alternatives system, see the “update-alternatives” section.

ALTERNATIVE_TARGET
Used by the alternatives system to create default link locations for duplicated commands. You can use the variable to
create a single default location for all duplicated commands regardless of the command name or package, a default
for specific duplicated commands regardless of the package, or a default for specific commands tied to particular

packages. Here are the available syntax forms:

254 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

ALTERNATIVE_TARGET = "target"

ALTERNATIVE_TARGET [name] = "target"

ALTERNATIVE_TARGET_pkg[name] = "target"
Note

If ALTERNATIVE TARGET is not defined, it inherits the value from the ALTERNATIVE LINK NAME vari-
able.

If ALTERNATIVE_LINK_NAME and ALTERNATIVE_TARGET are the same, the target for ALTERNA-
TIVE_TARGET has “.{BPN}” appended to it.

Finally, if the file referenced has not been renamed, the alternatives system will rename it to avoid the need to

rename alternative files in the do_install task while retaining support for the command if necessary.

For more information on the alternatives system, see the “update-alternatives” section.

ANY_OF_DISTRO_FEATURES
When inheriting the features_check class, this variable identifies a list of distribution features where at least one
must be enabled in the current configuration in order for the OpenEmbedded build system to build the recipe. In
other words, if none of the features listed in ANY_OF_DISTRO_FEATURES appear in DISTRO_FEATURES within
the current configuration, then the recipe will be skipped, and if the build system attempts to build the recipe then

an error will be triggered.

APPEND
An override list of append strings for each target specified with LABELS.

See the grub-efi class for more information on how this variable is used.

AR

The minimal command and arguments used to run ar.

ARCHIVER_MODE
When used with the archiver class, determines the type of information used to create a released archive. You can
use this variable to create archives of patched source, original source, configured source, and so forth by employing

the following variable flags (varflags):

ARCHIVER_MODE [src] = "original" # Uses original (unpacked).
—source files.

ARCHIVER_MODE [src] = "patched" # Uses patched source files..
—This is the default.

ARCHIVER_MODE [src] = "configured" # Uses configured source files.
ARCHIVER_MODE [diff] = "1" # Uses patches between do_

—unpack and do_patch.

(continues on next page)

6.12. Variables Glossary 255




The Yocto Project ®, Release 5.1.3

(continued from previous page)
ARCHIVER_MODE [diff-exclude] ?= "file file ..." # Lists files and directories..

—~to exclude from diff.

ARCHIVER_MODE [dumpdata] = "1" # Uses environment data.
ARCHIVER_MODE [recipe] = "1" # Uses recipe and include files.
ARCHIVER_MODE [srpm] = "1" # Uses RPM package files.

For information on how the variable works, see the meta/classes/archiver.bbclass file in the Source Di-

rectory.

Minimal command and arguments needed to run the assembler.

ASSUME_PROVIDED
Lists recipe names (PN values) BitBake does not attempt to build. Instead, BitBake assumes these recipes have

already been built.

In OpenEmbedded-Core, ASSUME_PROVIDED mostly specifies native tools that should not be built. An example
is git-native, which when specified, allows for the Git binary from the host to be used rather than building

git-native.

ASSUME_SHLIBS
Provides additional sh1ibs provider mapping information, which adds to or overwrites the information provided

automatically by the system. Separate multiple entries using spaces.

As an example, use the following form to add an sh1ib provider of shlibname in packagename with the optional

version:

shlibname:packagename |[_version]

Here is an example that adds a shared library named 1ibEGL.so.l1 as being provided by the

libegl-implementation package:

ASSUME_SHLIBS = "libEGL.so.l:libegl-implementation"

AUTO_LIBNAME_PKGS
When the debian class is inherited, which is the default behavior, AUTO_LIBNAME_PKGS specifies which packages

should be checked for libraries and renamed according to Debian library package naming.

The default value is “${PACKAGES}” , which causes the debian class to act on all packages that are explicitly

generated by the recipe.

AUTO_SYSLINUXMENU
Enables creating an automatic menu for the syslinux bootloader. You must set this variable in your recipe. The

syslinux class checks this variable.

AUTOREV

256 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

When SRCREV is set to the value of this variable, it specifies to use the latest source revision in the repository.

Here is an example:

SRCREV = "§ "

If you use the previous statement to retrieve the latest version of software, you need to make sure PV contains the

+ sign so bitbake includes source control information to PKGV when packaging the recipe. For example:

PV = "6.10.y+git"

For more information see the “Automatically Incrementing a Package Version Number” section in the Yocto Project

Development Tasks Manual.

AVAILTUNES
The list of defined CPU and Application Binary Interface (ABI) tunings (i.e. “tunes” ) available for use by the
OpenEmbedded build system.

The list simply presents the tunes that are available. Not all tunes may be compatible with a particular machine

configuration, or with each other in a Multilib configuration.

To add a tune to the list, be sure to append it with spaces using the “+=" BitBake operator. Do not simply replace

W

the list by using the operator. See the “Basic Syntax” section in the BitBake User Manual for more information.

AZ_SAS
Azure Storage Shared Access Signature, when using the Azure Storage fetcher (az://) This variable can be defined

to be used by the fetcher to authenticate and gain access to non-public artifacts:

AZ_SAS = ""s5e=2021-01-01&sp=r&sv=2018-11-09&sr=c&skoid=<skoid>&sig=<signature>""

For more information see Microsoft’ s Azure Storage documentation at https://docs.microsoft.com/en-us/azure/

storage/common/storage-sas-overview

The directory within the Build Directory in which the OpenEmbedded build system places generated objects during

arecipe’ s build process. By default, this directory is the same as the S directory, which is defined as:

S ="s /$ "

You can separate the (S) directory and the directory pointed to by the B variable. Most Autotools-based recipes
support separating these directories. The build system defaults to using separate directories for gcc and some

kernel recipes.

BAD_RECOMMENDATIONS
Lists “recommended-only” packages to not install. Recommended-only packages are packages installed only
through the RRECOMMENDS variable. You can prevent any of these “recommended” packages from being
installed by listing them with the BAD_RECOMMENDATIONS variable:

6.12. Variables Glossary 257


https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-metadata.html#basic-syntax
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-fetching.html#fetchers
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview

The Yocto Project ®, Release 5.1.3

BAD_RECOMMENDATIONS = "package_name package_name package_name ..."

You can set this variable globally in your 1ocal.conf file or you can attach it to a specific image recipe by using

the recipe name override:

BAD_RECOMMENDATIONS:pn-target_image = "package_name"

It is important to realize that if you choose to not install packages using this variable and some other packages are
dependent on them (i.e. listed in a recipe’ s RDEPENDS variable), the OpenEmbedded build system ignores your

request and will install the packages to avoid dependency errors.
This variable is supported only when using the IPK and RPM packaging backends. DEB is not supported.
See the NO_RECOMMENDATIONS and the PACKAGE EXCLUDE variables for related information.

BASE_LIB
The library directory name for the CPU or Application Binary Interface (ABI) tune. The BASE_LIB applies only in
the Multilib context. See the “Combining Multiple Versions of Library Files into One Image” section in the Yocto

Project Development Tasks Manual for information on Multilib.

The BASE_LIB variable is defined in the machine include files in the Source Directory. If Multilib is not being used,

the value defaults to “lib” .

BASE_WORKDIR
Points to the base of the work directory for all recipes. The default value is “${ TMPDIR }/work” .

BB_ALLOWED_NETWORKS
Specifies a space-delimited list of hosts that the fetcher is allowed to use to obtain the required source code. Here

are considerations surrounding this variable:
* This host list is only used if BB_NO_NETWORK is either not set or set to  “0” .

* There is limited support for wildcard matching against the beginning of host names. For example, the fol-

lowing setting matches git.gnu.org, ftp.gnu.org, and foo.git.gnu.org

BB_ALLOWED_NETWORKS = "*.gnu.org"

Note

The use of the “*” character only works at the beginning of a host name and it must be isolated from
the remainder of the host name. You cannot use the wildcard character in any other location of the name

or combined with the front part of the name.

For example, * . foo.bar is supported, while *aa. foo.bar is not.

* Mirrors not in the host list are skipped and logged in debug.

258 Chapter 6. Yocto Project Reference Manual



The Yocto Project ®, Release 5.1.3

* Attempts to access networks not in the host list cause a failure.

Using BB_ALLOWED_NETWORKS in conjunction with PREMIRRORS is very useful. Adding the host you want to
use to PREMIRRORS results in the source code being fetched from an allowed location and avoids raising an error
when a host that is not allowed is in a SRC_URI statement. This is because the fetcher does not attempt to use the
host listed in SRC_URI after a successful fetch from the PREMIRRORS occurs.

BB_BASEHASH _IGNORE_VARS
See BB_BASEHASH_IGNORE_VARS in the BitBake manual.

BB_CACHEDIR
See BB_CACHEDIR in the BitBake manual.

BB_CHECK_SSL_CERTS
See BB CHECK_SSL._CERTS in the BitBake manual.

BB_CONSOLELOG
See BB_CONSOLELOG in the BitBake manual.

BB_CURRENTTASK
See BB_.CURRENTTASK in the BitBake manual.

BB_DANGLINGAPPENDS_WARNONLY
Defines how BitBake handles situations where an append file (. bbappend) has no corresponding recipe file (. bb).
This condition often occurs when layers get out of sync (e.g. oe—core bumps a recipe version and the old recipe

no longer exists and the other layer has not been updated to the new version of the recipe yet).

The default fatal behavior is safest because it is the sane reaction given something is out of sync. It is important to

realize when your changes are no longer being applied.

o 7

You can change the default behavior by setting this variable to “1” , “yes” ,or “true” in your local.conf

file, which is located in the Build Directory: Here is an example:

BB_DANGLINGAPPENDS_WARNONLY = "1"

BB_DEFAULT _TASK
See BB_ DEFAULT_TASK in the BitBake manual.

BB_DEFAULT_UMASK
See BB_ DEFAULT_UMASK in the BitBake manual.

BB_DISKMON_DIRS
Monitors disk space and available inodes during the build and allows you to control the build based on these pa-

rameters.

Disk space monitoring is disabled by default. To enable monitoring, add the BB_DISKMON_DIRS variable to your

conf/local.conf file found in the Build Directory. Use the following form:

6.12. Variables Glossary 259


https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-ref-variables.html#term-BB_BASEHASH_IGNORE_VARS
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manual/bitbake-user-manual-ref-variables.html#term-BB_CACHEDIR
https://docs.yoctoproject.org/bitbake/2.10/bitbake-user-manua