[linux-yocto] [PATCH 1/2] valleyisland-io: add patch for Baytrail SPI support

Bruce Ashfield bruce.ashfield at windriver.com
Mon Dec 9 06:26:43 PST 2013


On 13-12-09 05:08 AM, rebecca.swee.fun.chang at intel.com wrote:
> From: "Chang, Rebecca Swee Fun" <rebecca.swee.fun.chang at intel.com>
>
> spi-pxa2xx: Baytrail has 1 SPI controller which can be PCI and ACPI
> enumerated.
>
> Signed-off-by: Chang, Rebecca Swee Fun <rebecca.swee.fun.chang at intel.com>
> ---
>   ...add-support-for-Intel-Baytrail-SPI-contro.patch | 3278 ++++++++++++++++++++
>   1 file changed, 3278 insertions(+)
>   create mode 100644 meta/cfg/kernel-cache/features/valleyisland-io/0007-spi-pxa2xx-add-support-for-Intel-Baytrail-SPI-contro.patch
>
> diff --git a/meta/cfg/kernel-cache/features/valleyisland-io/0007-spi-pxa2xx-add-support-for-Intel-Baytrail-SPI-contro.patch b/meta/cfg/kernel-cache/features/valleyisland-io/0007-spi-pxa2xx-add-support-for-Intel-Baytrail-SPI-contro.patch
> new file mode 100644
> index 0000000..46902fb
> --- /dev/null
> +++ b/meta/cfg/kernel-cache/features/valleyisland-io/0007-spi-pxa2xx-add-support-for-Intel-Baytrail-SPI-contro.patch
> @@ -0,0 +1,3278 @@
> +spi-pxa2xx: add support for Intel Valley Island SPI controller
> +
> +Intel Valley Island has 1 SPI controller which can be PCI or ACPI enumerated.
> +
> +Signed-off-by: Chang, Rebecca Swee Fun <rebecca.swee.fun.chang at intel.com>
> +---
> + drivers/spi/Kconfig             |   35 +-
> + drivers/spi/Makefile            |    5 +-
> + drivers/spi/spi-pxa2xx-dma.c    |  392 ++++++++++++++
> + drivers/spi/spi-pxa2xx-pci.c    |  210 +++-----
> + drivers/spi/spi-pxa2xx-pxadma.c |  490 +++++++++++++++++
> + drivers/spi/spi-pxa2xx.c        | 1118 +++++++++++++--------------------------
> + drivers/spi/spi-pxa2xx.h        |  221 ++++++++
> + include/linux/pxa2xx_ssp.h      |   18 +
> + include/linux/spi/pxa2xx_spi.h  |  108 +---
> + 9 files changed, 1604 insertions(+), 993 deletions(-)
> + create mode 100644 drivers/spi/spi-pxa2xx-dma.c
> + create mode 100644 drivers/spi/spi-pxa2xx-pxadma.c
> + create mode 100644 drivers/spi/spi-pxa2xx.h
> +
> +diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig
> +index 2e188e1..bc1445e 100644
> +--- a/drivers/spi/Kconfig
> ++++ b/drivers/spi/Kconfig
> +@@ -88,7 +88,7 @@ config SPI_BFIN_SPORT
> +
> + config SPI_AU1550
> + 	tristate "Au1550/Au1200/Au1300 SPI Controller"
> +-	depends on MIPS_ALCHEMY && EXPERIMENTAL
> ++	depends on MIPS_ALCHEMY

This is the problem with these sort of backports. Clearly the source of
this patch is from a tree without the EXPERIMENTAL Kconfig, hence why
it is being removed from all of the SPI drivers. But that isn't something
a patch that is *adding* support for a particular platform should do.

Temporary/transition/in progress or not, we need to get these patches
to at least indicate what development tree / upstream kernel they
come from, so I can sort out what is new, versus the development intent
of the patch.

Bruce

> + 	select SPI_BITBANG
> + 	help
> + 	  If you say yes to this option, support will be included for the
> +@@ -188,7 +188,7 @@ config SPI_IMX
> +
> + config SPI_LM70_LLP
> + 	tristate "Parallel port adapter for LM70 eval board (DEVELOPMENT)"
> +-	depends on PARPORT && EXPERIMENTAL
> ++	depends on PARPORT
> + 	select SPI_BITBANG
> + 	help
> + 	  This driver supports the NS LM70 LLP Evaluation Board,
> +@@ -204,7 +204,7 @@ config SPI_MPC52xx
> +
> + config SPI_MPC52xx_PSC
> + 	tristate "Freescale MPC52xx PSC SPI controller"
> +-	depends on PPC_MPC52xx && EXPERIMENTAL
> ++	depends on PPC_MPC52xx
> + 	help
> + 	  This enables using the Freescale MPC52xx Programmable Serial
> + 	  Controller in master SPI mode.
> +@@ -273,8 +273,8 @@ config SPI_OMAP_100K
> + 	  OMAP SPI 100K master controller for omap7xx boards.
> +
> + config SPI_ORION
> +-	tristate "Orion SPI master (EXPERIMENTAL)"
> +-	depends on PLAT_ORION && EXPERIMENTAL
> ++	tristate "Orion SPI master"
> ++	depends on PLAT_ORION
> + 	help
> + 	  This enables using the SPI master controller on the Orion chips.
> +
> +@@ -297,9 +297,20 @@ config SPI_PPC4xx
> + 	help
> + 	  This selects a driver for the PPC4xx SPI Controller.
> +
> ++config SPI_PXA2XX_PXADMA
> ++	bool "PXA2xx SSP legacy PXA DMA API support"
> ++	depends on SPI_PXA2XX && ARCH_PXA
> ++	help
> ++	  Enable PXA private legacy DMA API support. Note that this is
> ++	  deprecated in favor of generic DMA engine API.
> ++
> ++config SPI_PXA2XX_DMA
> ++	def_bool y
> ++	depends on SPI_PXA2XX && !SPI_PXA2XX_PXADMA
> ++
> + config SPI_PXA2XX
> + 	tristate "PXA2xx SSP SPI master"
> +-	depends on (ARCH_PXA || (X86_32 && PCI)) && EXPERIMENTAL
> ++	depends on ARCH_PXA || PCI || ACPI
> + 	select PXA_SSP if ARCH_PXA
> + 	help
> + 	  This enables using a PXA2xx or Sodaville SSP port as a SPI master
> +@@ -307,7 +318,10 @@ config SPI_PXA2XX
> + 	  additional documentation can be found a Documentation/spi/pxa2xx.
> +
> + config SPI_PXA2XX_PCI
> +-	def_bool SPI_PXA2XX && X86_32 && PCI
> ++	tristate "PCI glue for PXA2xx SSP SPI master"
> ++	depends on SPI_PXA2XX && PCI
> ++	help
> ++	  This enables using PXA2xx SPI controller via PCI interface.
> +
> + config SPI_RSPI
> + 	tristate "Renesas RSPI controller"
> +@@ -317,7 +331,7 @@ config SPI_RSPI
> +
> + config SPI_S3C24XX
> + 	tristate "Samsung S3C24XX series SPI"
> +-	depends on ARCH_S3C24XX && EXPERIMENTAL
> ++	depends on ARCH_S3C24XX
> + 	select SPI_BITBANG
> + 	help
> + 	  SPI driver for Samsung S3C24XX series ARM SoCs
> +@@ -432,7 +446,7 @@ config SPI_XCOMM
> +
> + config SPI_XILINX
> + 	tristate "Xilinx SPI controller common module"
> +-	depends on HAS_IOMEM && EXPERIMENTAL
> ++	depends on HAS_IOMEM
> + 	select SPI_BITBANG
> + 	help
> + 	  This exposes the SPI controller IP from the Xilinx EDK.
> +@@ -444,7 +458,7 @@ config SPI_XILINX
> +
> + config SPI_NUC900
> + 	tristate "Nuvoton NUC900 series SPI"
> +-	depends on ARCH_W90X900 && EXPERIMENTAL
> ++	depends on ARCH_W90X900
> + 	select SPI_BITBANG
> + 	help
> + 	  SPI driver for Nuvoton NUC900 series ARM SoCs
> +@@ -478,7 +492,6 @@ comment "SPI Protocol Masters"
> +
> + config SPI_SPIDEV
> + 	tristate "User mode SPI device driver support"
> +-	depends on EXPERIMENTAL
> + 	help
> + 	  This supports user mode SPI protocol drivers.
> +
> +diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile
> +index 64e970b..e53c309 100644
> +--- a/drivers/spi/Makefile
> ++++ b/drivers/spi/Makefile
> +@@ -47,7 +47,10 @@ obj-$(CONFIG_SPI_OMAP24XX)		+= spi-omap2-mcspi.o
> + obj-$(CONFIG_SPI_ORION)			+= spi-orion.o
> + obj-$(CONFIG_SPI_PL022)			+= spi-pl022.o
> + obj-$(CONFIG_SPI_PPC4xx)		+= spi-ppc4xx.o
> +-obj-$(CONFIG_SPI_PXA2XX)		+= spi-pxa2xx.o
> ++spi-pxa2xx-platform-objs		:= spi-pxa2xx.o
> ++spi-pxa2xx-platform-$(CONFIG_SPI_PXA2XX_PXADMA)	+= spi-pxa2xx-pxadma.o
> ++spi-pxa2xx-platform-$(CONFIG_SPI_PXA2XX_DMA)	+= spi-pxa2xx-dma.o
> ++obj-$(CONFIG_SPI_PXA2XX)		+= spi-pxa2xx-platform.o
> + obj-$(CONFIG_SPI_PXA2XX_PCI)		+= spi-pxa2xx-pci.o
> + obj-$(CONFIG_SPI_RSPI)			+= spi-rspi.o
> + obj-$(CONFIG_SPI_S3C24XX)		+= spi-s3c24xx-hw.o
> +diff --git a/drivers/spi/spi-pxa2xx-dma.c b/drivers/spi/spi-pxa2xx-dma.c
> +new file mode 100644
> +index 0000000..03478c2
> +--- /dev/null
> ++++ b/drivers/spi/spi-pxa2xx-dma.c
> +@@ -0,0 +1,392 @@
> ++/*
> ++ * PXA2xx SPI DMA engine support.
> ++ *
> ++ * Copyright (C) 2013, Intel Corporation
> ++ * Author: Mika Westerberg <mika.westerberg at linux.intel.com>
> ++ *
> ++ * This program is free software; you can redistribute it and/or modify
> ++ * it under the terms of the GNU General Public License version 2 as
> ++ * published by the Free Software Foundation.
> ++ */
> ++
> ++#include <linux/init.h>
> ++#include <linux/device.h>
> ++#include <linux/dma-mapping.h>
> ++#include <linux/dmaengine.h>
> ++#include <linux/pxa2xx_ssp.h>
> ++#include <linux/scatterlist.h>
> ++#include <linux/sizes.h>
> ++#include <linux/spi/spi.h>
> ++#include <linux/spi/pxa2xx_spi.h>
> ++
> ++#include "spi-pxa2xx.h"
> ++
> ++static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
> ++				     enum dma_data_direction dir)
> ++{
> ++	int i, nents, len = drv_data->len;
> ++	struct scatterlist *sg;
> ++	struct device *dmadev;
> ++	struct sg_table *sgt;
> ++	void *buf, *pbuf;
> ++
> ++	/*
> ++	 * Some DMA controllers have problems transferring buffers that are
> ++	 * not multiple of 4 bytes. So we truncate the transfer so that it
> ++	 * is suitable for such controllers, and handle the trailing bytes
> ++	 * manually after the DMA completes.
> ++	 *
> ++	 * REVISIT: It would be better if this information could be
> ++	 * retrieved directly from the DMA device in a similar way than
> ++	 * ->copy_align etc. is done.
> ++	 */
> ++	len = ALIGN(drv_data->len, 4);
> ++
> ++	if (dir == DMA_TO_DEVICE) {
> ++		dmadev = drv_data->tx_chan->device->dev;
> ++		sgt = &drv_data->tx_sgt;
> ++		buf = drv_data->tx;
> ++		drv_data->tx_map_len = len;
> ++	} else {
> ++		dmadev = drv_data->rx_chan->device->dev;
> ++		sgt = &drv_data->rx_sgt;
> ++		buf = drv_data->rx;
> ++		drv_data->rx_map_len = len;
> ++	}
> ++
> ++	nents = DIV_ROUND_UP(len, SZ_2K);
> ++	if (nents != sgt->nents) {
> ++		int ret;
> ++
> ++		sg_free_table(sgt);
> ++		ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
> ++		if (ret)
> ++			return ret;
> ++	}
> ++
> ++	pbuf = buf;
> ++	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
> ++		size_t bytes = min_t(size_t, len, SZ_2K);
> ++
> ++		if (buf)
> ++			sg_set_buf(sg, pbuf, bytes);
> ++		else
> ++			sg_set_buf(sg, drv_data->dummy, bytes);
> ++
> ++		pbuf += bytes;
> ++		len -= bytes;
> ++	}
> ++
> ++	nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
> ++	if (!nents)
> ++		return -ENOMEM;
> ++
> ++	return nents;
> ++}
> ++
> ++static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
> ++					enum dma_data_direction dir)
> ++{
> ++	struct device *dmadev;
> ++	struct sg_table *sgt;
> ++
> ++	if (dir == DMA_TO_DEVICE) {
> ++		dmadev = drv_data->tx_chan->device->dev;
> ++		sgt = &drv_data->tx_sgt;
> ++	} else {
> ++		dmadev = drv_data->rx_chan->device->dev;
> ++		sgt = &drv_data->rx_sgt;
> ++	}
> ++
> ++	dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
> ++}
> ++
> ++static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
> ++{
> ++	if (!drv_data->dma_mapped)
> ++		return;
> ++
> ++	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
> ++	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
> ++
> ++	drv_data->dma_mapped = 0;
> ++}
> ++
> ++static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
> ++					     bool error)
> ++{
> ++	struct spi_message *msg = drv_data->cur_msg;
> ++
> ++	/*
> ++	 * It is possible that one CPU is handling ROR interrupt and other
> ++	 * just gets DMA completion. Calling pump_transfers() twice for the
> ++	 * same transfer leads to problems thus we prevent concurrent calls
> ++	 * by using ->dma_running.
> ++	 */
> ++	if (atomic_dec_and_test(&drv_data->dma_running)) {
> ++		void __iomem *reg = drv_data->ioaddr;
> ++
> ++		/*
> ++		 * If the other CPU is still handling the ROR interrupt we
> ++		 * might not know about the error yet. So we re-check the
> ++		 * ROR bit here before we clear the status register.
> ++		 */
> ++		if (!error) {
> ++			u32 status = read_SSSR(reg) & drv_data->mask_sr;
> ++			error = status & SSSR_ROR;
> ++		}
> ++
> ++		/* Clear status & disable interrupts */
> ++		write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
> ++		write_SSSR_CS(drv_data, drv_data->clear_sr);
> ++		if (!pxa25x_ssp_comp(drv_data))
> ++			write_SSTO(0, reg);
> ++
> ++		if (!error) {
> ++			pxa2xx_spi_unmap_dma_buffers(drv_data);
> ++
> ++			/* Handle the last bytes of unaligned transfer */
> ++			drv_data->tx += drv_data->tx_map_len;
> ++			drv_data->write(drv_data);
> ++
> ++			drv_data->rx += drv_data->rx_map_len;
> ++			drv_data->read(drv_data);
> ++
> ++			msg->actual_length += drv_data->len;
> ++			msg->state = pxa2xx_spi_next_transfer(drv_data);
> ++		} else {
> ++			/* In case we got an error we disable the SSP now */
> ++			write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
> ++
> ++			msg->state = ERROR_STATE;
> ++		}
> ++
> ++		tasklet_schedule(&drv_data->pump_transfers);
> ++	}
> ++}
> ++
> ++static void pxa2xx_spi_dma_callback(void *data)
> ++{
> ++	pxa2xx_spi_dma_transfer_complete(data, false);
> ++}
> ++
> ++static struct dma_async_tx_descriptor *
> ++pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
> ++			   enum dma_transfer_direction dir)
> ++{
> ++	struct pxa2xx_spi_master *pdata = drv_data->master_info;
> ++	struct chip_data *chip = drv_data->cur_chip;
> ++	enum dma_slave_buswidth width;
> ++	struct dma_slave_config cfg;
> ++	struct dma_chan *chan;
> ++	struct sg_table *sgt;
> ++	int nents, ret;
> ++
> ++	switch (drv_data->n_bytes) {
> ++	case 1:
> ++		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
> ++		break;
> ++	case 2:
> ++		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
> ++		break;
> ++	default:
> ++		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
> ++		break;
> ++	}
> ++
> ++	memset(&cfg, 0, sizeof(cfg));
> ++	cfg.direction = dir;
> ++
> ++	if (dir == DMA_MEM_TO_DEV) {
> ++		cfg.dst_addr = drv_data->ssdr_physical;
> ++		cfg.dst_addr_width = width;
> ++		cfg.dst_maxburst = chip->dma_burst_size;
> ++		cfg.slave_id = pdata->tx_slave_id;
> ++
> ++		sgt = &drv_data->tx_sgt;
> ++		nents = drv_data->tx_nents;
> ++		chan = drv_data->tx_chan;
> ++	} else {
> ++		cfg.src_addr = drv_data->ssdr_physical;
> ++		cfg.src_addr_width = width;
> ++		cfg.src_maxburst = chip->dma_burst_size;
> ++		cfg.slave_id = pdata->rx_slave_id;
> ++
> ++		sgt = &drv_data->rx_sgt;
> ++		nents = drv_data->rx_nents;
> ++		chan = drv_data->rx_chan;
> ++	}
> ++
> ++	ret = dmaengine_slave_config(chan, &cfg);
> ++	if (ret) {
> ++		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
> ++		return NULL;
> ++	}
> ++
> ++	return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
> ++				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
> ++}
> ++
> ++static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param)
> ++{
> ++	const struct pxa2xx_spi_master *pdata = param;
> ++
> ++	return chan->chan_id == pdata->tx_chan_id ||
> ++	       chan->chan_id == pdata->rx_chan_id;
> ++}
> ++
> ++bool pxa2xx_spi_dma_is_possible(size_t len)
> ++{
> ++	return len <= MAX_DMA_LEN;
> ++}
> ++
> ++int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
> ++{
> ++	const struct chip_data *chip = drv_data->cur_chip;
> ++	int ret;
> ++
> ++	if (!chip->enable_dma)
> ++		return 0;
> ++
> ++	/* Don't bother with DMA if we can't do even a single burst */
> ++	if (drv_data->len < chip->dma_burst_size)
> ++		return 0;
> ++
> ++	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
> ++	if (ret <= 0) {
> ++		dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
> ++		return 0;
> ++	}
> ++
> ++	drv_data->tx_nents = ret;
> ++
> ++	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
> ++	if (ret <= 0) {
> ++		pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
> ++		dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
> ++		return 0;
> ++	}
> ++
> ++	drv_data->rx_nents = ret;
> ++	return 1;
> ++}
> ++
> ++irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
> ++{
> ++	u32 status;
> ++
> ++	status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr;
> ++	if (status & SSSR_ROR) {
> ++		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
> ++
> ++		dmaengine_terminate_all(drv_data->rx_chan);
> ++		dmaengine_terminate_all(drv_data->tx_chan);
> ++
> ++		pxa2xx_spi_dma_transfer_complete(drv_data, true);
> ++		return IRQ_HANDLED;
> ++	}
> ++
> ++	return IRQ_NONE;
> ++}
> ++
> ++int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
> ++{
> ++	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
> ++
> ++	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
> ++	if (!tx_desc) {
> ++		dev_err(&drv_data->pdev->dev,
> ++			"failed to get DMA TX descriptor\n");
> ++		return -EBUSY;
> ++	}
> ++
> ++	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
> ++	if (!rx_desc) {
> ++		dev_err(&drv_data->pdev->dev,
> ++			"failed to get DMA RX descriptor\n");
> ++		return -EBUSY;
> ++	}
> ++
> ++	/* We are ready when RX completes */
> ++	rx_desc->callback = pxa2xx_spi_dma_callback;
> ++	rx_desc->callback_param = drv_data;
> ++
> ++	dmaengine_submit(rx_desc);
> ++	dmaengine_submit(tx_desc);
> ++	return 0;
> ++}
> ++
> ++void pxa2xx_spi_dma_start(struct driver_data *drv_data)
> ++{
> ++	dma_async_issue_pending(drv_data->rx_chan);
> ++	dma_async_issue_pending(drv_data->tx_chan);
> ++
> ++	atomic_set(&drv_data->dma_running, 1);
> ++}
> ++
> ++int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
> ++{
> ++	struct pxa2xx_spi_master *pdata = drv_data->master_info;
> ++	dma_cap_mask_t mask;
> ++
> ++	dma_cap_zero(mask);
> ++	dma_cap_set(DMA_SLAVE, mask);
> ++
> ++	drv_data->dummy = devm_kzalloc(&drv_data->pdev->dev, SZ_2K, GFP_KERNEL);
> ++	if (!drv_data->dummy)
> ++		return -ENOMEM;
> ++
> ++	drv_data->tx_chan = dma_request_channel(mask, pxa2xx_spi_dma_filter,
> ++						pdata);
> ++	if (!drv_data->tx_chan)
> ++		return -ENODEV;
> ++
> ++	drv_data->rx_chan = dma_request_channel(mask, pxa2xx_spi_dma_filter,
> ++						pdata);
> ++	if (!drv_data->rx_chan) {
> ++		dma_release_channel(drv_data->tx_chan);
> ++		drv_data->tx_chan = NULL;
> ++		return -ENODEV;
> ++	}
> ++
> ++	return 0;
> ++}
> ++
> ++void pxa2xx_spi_dma_release(struct driver_data *drv_data)
> ++{
> ++	if (drv_data->rx_chan) {
> ++		dmaengine_terminate_all(drv_data->rx_chan);
> ++		dma_release_channel(drv_data->rx_chan);
> ++		sg_free_table(&drv_data->rx_sgt);
> ++		drv_data->rx_chan = NULL;
> ++	}
> ++	if (drv_data->tx_chan) {
> ++		dmaengine_terminate_all(drv_data->tx_chan);
> ++		dma_release_channel(drv_data->tx_chan);
> ++		sg_free_table(&drv_data->tx_sgt);
> ++		drv_data->tx_chan = NULL;
> ++	}
> ++}
> ++
> ++void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
> ++{
> ++}
> ++
> ++int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
> ++					   struct spi_device *spi,
> ++					   u8 bits_per_word, u32 *burst_code,
> ++					   u32 *threshold)
> ++{
> ++	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
> ++
> ++	/*
> ++	 * If the DMA burst size is given in chip_info we use that,
> ++	 * otherwise we use the default. Also we use the default FIFO
> ++	 * thresholds for now.
> ++	 */
> ++	*burst_code = chip_info ? chip_info->dma_burst_size : 32;
> ++	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
> ++		   | SSCR1_TxTresh(TX_THRESH_DFLT);
> ++
> ++	return 0;
> ++}
> +diff --git a/drivers/spi/spi-pxa2xx-pci.c b/drivers/spi/spi-pxa2xx-pci.c
> +index cf95587..a64d54e 100644
> +--- a/drivers/spi/spi-pxa2xx-pci.c
> ++++ b/drivers/spi/spi-pxa2xx-pci.c
> +@@ -7,165 +7,131 @@
> + #include <linux/of_device.h>
> + #include <linux/module.h>
> + #include <linux/spi/pxa2xx_spi.h>
> ++#include <linux/clk.h>
> +
> +-struct ce4100_info {
> +-	struct ssp_device ssp;
> +-	struct platform_device *spi_pdev;
> +-};
> +-
> +-static DEFINE_MUTEX(ssp_lock);
> +-static LIST_HEAD(ssp_list);
> +-
> +-struct ssp_device *pxa_ssp_request(int port, const char *label)
> +-{
> +-	struct ssp_device *ssp = NULL;
> +-
> +-	mutex_lock(&ssp_lock);
> +-
> +-	list_for_each_entry(ssp, &ssp_list, node) {
> +-		if (ssp->port_id == port && ssp->use_count == 0) {
> +-			ssp->use_count++;
> +-			ssp->label = label;
> +-			break;
> +-		}
> +-	}
> ++static bool use_dma = 1;
> ++module_param(use_dma, bool, 0);
> ++MODULE_PARM_DESC(use_dma, "use_dma=1 (enable DMA)/use_dma=0(disable DMA)");
> +
> +-	mutex_unlock(&ssp_lock);
> +-
> +-	if (&ssp->node == &ssp_list)
> +-		return NULL;
> ++enum {
> ++        PORT_CE4100,
> ++        PORT_BYT,
> ++};
> +
> +-	return ssp;
> +-}
> +-EXPORT_SYMBOL_GPL(pxa_ssp_request);
> ++struct pxa2xx_spi_pci_config {
> ++        enum pxa_ssp_type type;
> ++        int num_cs;
> ++        int bus_num;
> ++        int tx_slave_id;
> ++        int tx_chan_id;
> ++        int rx_slave_id;
> ++        int rx_chan_id;
> ++};
> +
> +-void pxa_ssp_free(struct ssp_device *ssp)
> +-{
> +-	mutex_lock(&ssp_lock);
> +-	if (ssp->use_count) {
> +-		ssp->use_count--;
> +-		ssp->label = NULL;
> +-	} else
> +-		dev_err(&ssp->pdev->dev, "device already free\n");
> +-	mutex_unlock(&ssp_lock);
> +-}
> +-EXPORT_SYMBOL_GPL(pxa_ssp_free);
> ++static struct pxa2xx_spi_pci_config spi_pci_configs[] = {
> ++        [PORT_CE4100] = {
> ++                .type = PXA25x_SSP,
> ++                .num_cs =  -1,
> ++                .bus_num = -1,
> ++		.tx_slave_id = -1,
> ++		.tx_chan_id = -1,
> ++		.rx_slave_id = -1,
> ++		.rx_chan_id = -1,
> ++        },
> ++        [PORT_BYT] = {
> ++                .type = LPSS_SSP,
> ++                .num_cs = 1,
> ++		.bus_num = 0,
> ++		.tx_slave_id = 0,
> ++		.tx_chan_id = 0,
> ++		.rx_slave_id = 1,
> ++		.rx_chan_id = 1,
> ++        },
> ++};
> +
> +-static int ce4100_spi_probe(struct pci_dev *dev,
> ++static int pxa2xx_spi_probe(struct pci_dev *dev,
> + 		const struct pci_device_id *ent)
> + {
> ++	struct pxa2xx_spi_pci_config *c;
> ++	struct platform_device_info pi;
> + 	int ret;
> +-	resource_size_t phys_beg;
> +-	resource_size_t phys_len;
> +-	struct ce4100_info *spi_info;
> + 	struct platform_device *pdev;
> + 	struct pxa2xx_spi_master spi_pdata;
> + 	struct ssp_device *ssp;
> +
> +-	ret = pci_enable_device(dev);
> ++	ret = pcim_enable_device(dev);
> + 	if (ret)
> + 		return ret;
> +
> +-	phys_beg = pci_resource_start(dev, 0);
> +-	phys_len = pci_resource_len(dev, 0);
> +-
> +-	if (!request_mem_region(phys_beg, phys_len,
> +-				"CE4100 SPI")) {
> +-		dev_err(&dev->dev, "Can't request register space.\n");
> +-		ret = -EBUSY;
> ++	ret = pcim_iomap_regions(dev, 1 << 0, "PXA2xx SPI");
> ++	if (ret)
> + 		return ret;
> +-	}
> +
> +-	pdev = platform_device_alloc("pxa2xx-spi", dev->devfn);
> +-	spi_info = kzalloc(sizeof(*spi_info), GFP_KERNEL);
> +-	if (!pdev || !spi_info ) {
> +-		ret = -ENOMEM;
> +-		goto err_nomem;
> +-	}
> +-	memset(&spi_pdata, 0, sizeof(spi_pdata));
> +-	spi_pdata.num_chipselect = dev->devfn;
> +
> +-	ret = platform_device_add_data(pdev, &spi_pdata, sizeof(spi_pdata));
> +-	if (ret)
> +-		goto err_nomem;
> ++	c = &spi_pci_configs[ent->driver_data];
> +
> +-	pdev->dev.parent = &dev->dev;
> +-	pdev->dev.of_node = dev->dev.of_node;
> +-	ssp = &spi_info->ssp;
> ++	memset(&spi_pdata, 0, sizeof(spi_pdata));
> ++	spi_pdata.num_chipselect = (c->num_cs >= 0) ? c->num_cs : dev->devfn;
> ++	spi_pdata.tx_slave_id = c->tx_slave_id;
> ++	spi_pdata.tx_chan_id = c->tx_chan_id;
> ++	spi_pdata.rx_slave_id = c->rx_slave_id;
> ++	spi_pdata.rx_chan_id = c->rx_chan_id;
> ++	if (use_dma)
> ++		spi_pdata.enable_dma = c->rx_slave_id >= 0 && c->tx_slave_id >= 0;
> ++
> ++	ssp = &spi_pdata.ssp;
> + 	ssp->phys_base = pci_resource_start(dev, 0);
> +-	ssp->mmio_base = ioremap(phys_beg, phys_len);
> ++	ssp->mmio_base = pcim_iomap_table(dev)[0];
> + 	if (!ssp->mmio_base) {
> +-		dev_err(&pdev->dev, "failed to ioremap() registers\n");
> +-		ret = -EIO;
> +-		goto err_nomem;
> ++		dev_err(&dev->dev, "failed to ioremap() registers\n");
> ++		return -EIO;
> + 	}
> ++	ssp->clk =  devm_clk_get(&dev->dev, NULL);
> + 	ssp->irq = dev->irq;
> +-	ssp->port_id = pdev->id;
> +-	ssp->type = PXA25x_SSP;
> ++	ssp->port_id = (c->bus_num >= 0) ? c->bus_num : dev->devfn;
> ++	ssp->type = c->type;
> +
> +-	mutex_lock(&ssp_lock);
> +-	list_add(&ssp->node, &ssp_list);
> +-	mutex_unlock(&ssp_lock);
> ++	memset(&pi, 0, sizeof(pi));
> ++	pi.parent = &dev->dev;
> ++	pi.name = "pxa2xx-spi";
> ++	pi.id = ssp->port_id;
> ++	pi.data = &spi_pdata;
> ++	pi.size_data = sizeof(spi_pdata);
> +
> +-	pci_set_drvdata(dev, spi_info);
> ++	pdev = platform_device_register_full(&pi);
> ++	if (!pdev)
> ++		return -ENOMEM;
> +
> +-	ret = platform_device_add(pdev);
> +-	if (ret)
> +-		goto err_dev_add;
> +-
> +-	return ret;
> +-
> +-err_dev_add:
> +-	pci_set_drvdata(dev, NULL);
> +-	mutex_lock(&ssp_lock);
> +-	list_del(&ssp->node);
> +-	mutex_unlock(&ssp_lock);
> +-	iounmap(ssp->mmio_base);
> +-
> +-err_nomem:
> +-	release_mem_region(phys_beg, phys_len);
> +-	platform_device_put(pdev);
> +-	kfree(spi_info);
> +-	return ret;
> ++	pci_set_drvdata(dev, pdev);
> ++
> ++	return 0;
> + }
> +
> +-static void ce4100_spi_remove(struct pci_dev *dev)
> ++static void pxa2xx_spi_remove(struct pci_dev *dev)
> + {
> +-	struct ce4100_info *spi_info;
> +-	struct ssp_device *ssp;
> +-
> +-	spi_info = pci_get_drvdata(dev);
> +-	ssp = &spi_info->ssp;
> +-	platform_device_unregister(spi_info->spi_pdev);
> +-
> +-	iounmap(ssp->mmio_base);
> +-	release_mem_region(pci_resource_start(dev, 0),
> +-			pci_resource_len(dev, 0));
> +-
> +-	mutex_lock(&ssp_lock);
> +-	list_del(&ssp->node);
> +-	mutex_unlock(&ssp_lock);
> ++	struct platform_device *pdev = pci_get_drvdata(dev);
> +
> +-	pci_set_drvdata(dev, NULL);
> +-	pci_disable_device(dev);
> +-	kfree(spi_info);
> ++	platform_device_unregister(pdev);
> + }
> +
> +-static DEFINE_PCI_DEVICE_TABLE(ce4100_spi_devices) = {
> +-	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x2e6a) },
> ++static DEFINE_PCI_DEVICE_TABLE(pxa2xx_spi_devices) = {
> ++	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x2e6a),
> ++	  .driver_data =  PORT_CE4100 },
> ++	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f0e),
> ++	  .driver_data = PORT_BYT },
> + 	{ },
> + };
> +-MODULE_DEVICE_TABLE(pci, ce4100_spi_devices);
> ++MODULE_DEVICE_TABLE(pci, pxa2xx_spi_devices);
> +
> +-static struct pci_driver ce4100_spi_driver = {
> +-	.name           = "ce4100_spi",
> +-	.id_table       = ce4100_spi_devices,
> +-	.probe          = ce4100_spi_probe,
> +-	.remove         = ce4100_spi_remove,
> ++static struct pci_driver pxa2xx_spi_driver = {
> ++	.name           = "pxa2xx_spi",
> ++	.id_table       = pxa2xx_spi_devices,
> ++	.probe          = pxa2xx_spi_probe,
> ++	.remove         = pxa2xx_spi_remove,
> + };
> +
> +-module_pci_driver(ce4100_spi_driver);
> ++module_pci_driver(pxa2xx_spi_driver);
> +
> +-MODULE_DESCRIPTION("CE4100 PCI-SPI glue code for PXA's driver");
> ++MODULE_DESCRIPTION("PCI-SPI glue code for PXA's driver");
> + MODULE_LICENSE("GPL v2");
> + MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy at linutronix.de>");
> +diff --git a/drivers/spi/spi-pxa2xx-pxadma.c b/drivers/spi/spi-pxa2xx-pxadma.c
> +new file mode 100644
> +index 0000000..2916efc
> +--- /dev/null
> ++++ b/drivers/spi/spi-pxa2xx-pxadma.c
> +@@ -0,0 +1,490 @@
> ++/*
> ++ * PXA2xx SPI private DMA support.
> ++ *
> ++ * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
> ++ *
> ++ * This program is free software; you can redistribute it and/or modify
> ++ * it under the terms of the GNU General Public License as published by
> ++ * the Free Software Foundation; either version 2 of the License, or
> ++ * (at your option) any later version.
> ++ *
> ++ * This program is distributed in the hope that it will be useful,
> ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
> ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
> ++ * GNU General Public License for more details.
> ++ *
> ++ * You should have received a copy of the GNU General Public License
> ++ * along with this program; if not, write to the Free Software
> ++ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
> ++ */
> ++
> ++#include <linux/init.h>
> ++#include <linux/delay.h>
> ++#include <linux/device.h>
> ++#include <linux/dma-mapping.h>
> ++#include <linux/pxa2xx_ssp.h>
> ++#include <linux/spi/spi.h>
> ++#include <linux/spi/pxa2xx_spi.h>
> ++
> ++#include "spi-pxa2xx.h"
> ++
> ++#define DMA_INT_MASK		(DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
> ++#define RESET_DMA_CHANNEL	(DCSR_NODESC | DMA_INT_MASK)
> ++
> ++bool pxa2xx_spi_dma_is_possible(size_t len)
> ++{
> ++	/* Try to map dma buffer and do a dma transfer if successful, but
> ++	 * only if the length is non-zero and less than MAX_DMA_LEN.
> ++	 *
> ++	 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
> ++	 * of PIO instead.  Care is needed above because the transfer may
> ++	 * have have been passed with buffers that are already dma mapped.
> ++	 * A zero-length transfer in PIO mode will not try to write/read
> ++	 * to/from the buffers
> ++	 *
> ++	 * REVISIT large transfers are exactly where we most want to be
> ++	 * using DMA.  If this happens much, split those transfers into
> ++	 * multiple DMA segments rather than forcing PIO.
> ++	 */
> ++	return len > 0 && len <= MAX_DMA_LEN;
> ++}
> ++
> ++int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
> ++{
> ++	struct spi_message *msg = drv_data->cur_msg;
> ++	struct device *dev = &msg->spi->dev;
> ++
> ++	if (!drv_data->cur_chip->enable_dma)
> ++		return 0;
> ++
> ++	if (msg->is_dma_mapped)
> ++		return  drv_data->rx_dma && drv_data->tx_dma;
> ++
> ++	if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
> ++		return 0;
> ++
> ++	/* Modify setup if rx buffer is null */
> ++	if (drv_data->rx == NULL) {
> ++		*drv_data->null_dma_buf = 0;
> ++		drv_data->rx = drv_data->null_dma_buf;
> ++		drv_data->rx_map_len = 4;
> ++	} else
> ++		drv_data->rx_map_len = drv_data->len;
> ++
> ++
> ++	/* Modify setup if tx buffer is null */
> ++	if (drv_data->tx == NULL) {
> ++		*drv_data->null_dma_buf = 0;
> ++		drv_data->tx = drv_data->null_dma_buf;
> ++		drv_data->tx_map_len = 4;
> ++	} else
> ++		drv_data->tx_map_len = drv_data->len;
> ++
> ++	/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
> ++	 * so we flush the cache *before* invalidating it, in case
> ++	 * the tx and rx buffers overlap.
> ++	 */
> ++	drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
> ++					drv_data->tx_map_len, DMA_TO_DEVICE);
> ++	if (dma_mapping_error(dev, drv_data->tx_dma))
> ++		return 0;
> ++
> ++	/* Stream map the rx buffer */
> ++	drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
> ++					drv_data->rx_map_len, DMA_FROM_DEVICE);
> ++	if (dma_mapping_error(dev, drv_data->rx_dma)) {
> ++		dma_unmap_single(dev, drv_data->tx_dma,
> ++					drv_data->tx_map_len, DMA_TO_DEVICE);
> ++		return 0;
> ++	}
> ++
> ++	return 1;
> ++}
> ++
> ++static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
> ++{
> ++	struct device *dev;
> ++
> ++	if (!drv_data->dma_mapped)
> ++		return;
> ++
> ++	if (!drv_data->cur_msg->is_dma_mapped) {
> ++		dev = &drv_data->cur_msg->spi->dev;
> ++		dma_unmap_single(dev, drv_data->rx_dma,
> ++					drv_data->rx_map_len, DMA_FROM_DEVICE);
> ++		dma_unmap_single(dev, drv_data->tx_dma,
> ++					drv_data->tx_map_len, DMA_TO_DEVICE);
> ++	}
> ++
> ++	drv_data->dma_mapped = 0;
> ++}
> ++
> ++static int wait_ssp_rx_stall(void const __iomem *ioaddr)
> ++{
> ++	unsigned long limit = loops_per_jiffy << 1;
> ++
> ++	while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
> ++		cpu_relax();
> ++
> ++	return limit;
> ++}
> ++
> ++static int wait_dma_channel_stop(int channel)
> ++{
> ++	unsigned long limit = loops_per_jiffy << 1;
> ++
> ++	while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
> ++		cpu_relax();
> ++
> ++	return limit;
> ++}
> ++
> ++static void pxa2xx_spi_dma_error_stop(struct driver_data *drv_data,
> ++				      const char *msg)
> ++{
> ++	void __iomem *reg = drv_data->ioaddr;
> ++
> ++	/* Stop and reset */
> ++	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
> ++	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
> ++	write_SSSR_CS(drv_data, drv_data->clear_sr);
> ++	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
> ++	if (!pxa25x_ssp_comp(drv_data))
> ++		write_SSTO(0, reg);
> ++	pxa2xx_spi_flush(drv_data);
> ++	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
> ++
> ++	pxa2xx_spi_unmap_dma_buffers(drv_data);
> ++
> ++	dev_err(&drv_data->pdev->dev, "%s\n", msg);
> ++
> ++	drv_data->cur_msg->state = ERROR_STATE;
> ++	tasklet_schedule(&drv_data->pump_transfers);
> ++}
> ++
> ++static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data)
> ++{
> ++	void __iomem *reg = drv_data->ioaddr;
> ++	struct spi_message *msg = drv_data->cur_msg;
> ++
> ++	/* Clear and disable interrupts on SSP and DMA channels*/
> ++	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
> ++	write_SSSR_CS(drv_data, drv_data->clear_sr);
> ++	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
> ++	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
> ++
> ++	if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
> ++		dev_err(&drv_data->pdev->dev,
> ++			"dma_handler: dma rx channel stop failed\n");
> ++
> ++	if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
> ++		dev_err(&drv_data->pdev->dev,
> ++			"dma_transfer: ssp rx stall failed\n");
> ++
> ++	pxa2xx_spi_unmap_dma_buffers(drv_data);
> ++
> ++	/* update the buffer pointer for the amount completed in dma */
> ++	drv_data->rx += drv_data->len -
> ++			(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
> ++
> ++	/* read trailing data from fifo, it does not matter how many
> ++	 * bytes are in the fifo just read until buffer is full
> ++	 * or fifo is empty, which ever occurs first */
> ++	drv_data->read(drv_data);
> ++
> ++	/* return count of what was actually read */
> ++	msg->actual_length += drv_data->len -
> ++				(drv_data->rx_end - drv_data->rx);
> ++
> ++	/* Transfer delays and chip select release are
> ++	 * handled in pump_transfers or giveback
> ++	 */
> ++
> ++	/* Move to next transfer */
> ++	msg->state = pxa2xx_spi_next_transfer(drv_data);
> ++
> ++	/* Schedule transfer tasklet */
> ++	tasklet_schedule(&drv_data->pump_transfers);
> ++}
> ++
> ++void pxa2xx_spi_dma_handler(int channel, void *data)
> ++{
> ++	struct driver_data *drv_data = data;
> ++	u32 irq_status = DCSR(channel) & DMA_INT_MASK;
> ++
> ++	if (irq_status & DCSR_BUSERR) {
> ++
> ++		if (channel == drv_data->tx_channel)
> ++			pxa2xx_spi_dma_error_stop(drv_data,
> ++				"dma_handler: bad bus address on tx channel");
> ++		else
> ++			pxa2xx_spi_dma_error_stop(drv_data,
> ++				"dma_handler: bad bus address on rx channel");
> ++		return;
> ++	}
> ++
> ++	/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
> ++	if ((channel == drv_data->tx_channel)
> ++		&& (irq_status & DCSR_ENDINTR)
> ++		&& (drv_data->ssp_type == PXA25x_SSP)) {
> ++
> ++		/* Wait for rx to stall */
> ++		if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
> ++			dev_err(&drv_data->pdev->dev,
> ++				"dma_handler: ssp rx stall failed\n");
> ++
> ++		/* finish this transfer, start the next */
> ++		pxa2xx_spi_dma_transfer_complete(drv_data);
> ++	}
> ++}
> ++
> ++irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
> ++{
> ++	u32 irq_status;
> ++	void __iomem *reg = drv_data->ioaddr;
> ++
> ++	irq_status = read_SSSR(reg) & drv_data->mask_sr;
> ++	if (irq_status & SSSR_ROR) {
> ++		pxa2xx_spi_dma_error_stop(drv_data,
> ++					  "dma_transfer: fifo overrun");
> ++		return IRQ_HANDLED;
> ++	}
> ++
> ++	/* Check for false positive timeout */
> ++	if ((irq_status & SSSR_TINT)
> ++		&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
> ++		write_SSSR(SSSR_TINT, reg);
> ++		return IRQ_HANDLED;
> ++	}
> ++
> ++	if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
> ++
> ++		/* Clear and disable timeout interrupt, do the rest in
> ++		 * dma_transfer_complete */
> ++		if (!pxa25x_ssp_comp(drv_data))
> ++			write_SSTO(0, reg);
> ++
> ++		/* finish this transfer, start the next */
> ++		pxa2xx_spi_dma_transfer_complete(drv_data);
> ++
> ++		return IRQ_HANDLED;
> ++	}
> ++
> ++	/* Opps problem detected */
> ++	return IRQ_NONE;
> ++}
> ++
> ++int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
> ++{
> ++	u32 dma_width;
> ++
> ++	switch (drv_data->n_bytes) {
> ++	case 1:
> ++		dma_width = DCMD_WIDTH1;
> ++		break;
> ++	case 2:
> ++		dma_width = DCMD_WIDTH2;
> ++		break;
> ++	default:
> ++		dma_width = DCMD_WIDTH4;
> ++		break;
> ++	}
> ++
> ++	/* Setup rx DMA Channel */
> ++	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
> ++	DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
> ++	DTADR(drv_data->rx_channel) = drv_data->rx_dma;
> ++	if (drv_data->rx == drv_data->null_dma_buf)
> ++		/* No target address increment */
> ++		DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
> ++						| dma_width
> ++						| dma_burst
> ++						| drv_data->len;
> ++	else
> ++		DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
> ++						| DCMD_FLOWSRC
> ++						| dma_width
> ++						| dma_burst
> ++						| drv_data->len;
> ++
> ++	/* Setup tx DMA Channel */
> ++	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
> ++	DSADR(drv_data->tx_channel) = drv_data->tx_dma;
> ++	DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
> ++	if (drv_data->tx == drv_data->null_dma_buf)
> ++		/* No source address increment */
> ++		DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
> ++						| dma_width
> ++						| dma_burst
> ++						| drv_data->len;
> ++	else
> ++		DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
> ++						| DCMD_FLOWTRG
> ++						| dma_width
> ++						| dma_burst
> ++						| drv_data->len;
> ++
> ++	/* Enable dma end irqs on SSP to detect end of transfer */
> ++	if (drv_data->ssp_type == PXA25x_SSP)
> ++		DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
> ++
> ++	return 0;
> ++}
> ++
> ++void pxa2xx_spi_dma_start(struct driver_data *drv_data)
> ++{
> ++	DCSR(drv_data->rx_channel) |= DCSR_RUN;
> ++	DCSR(drv_data->tx_channel) |= DCSR_RUN;
> ++}
> ++
> ++int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
> ++{
> ++	struct device *dev = &drv_data->pdev->dev;
> ++	struct ssp_device *ssp = drv_data->ssp;
> ++
> ++	/* Get two DMA channels	(rx and tx) */
> ++	drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
> ++						DMA_PRIO_HIGH,
> ++						pxa2xx_spi_dma_handler,
> ++						drv_data);
> ++	if (drv_data->rx_channel < 0) {
> ++		dev_err(dev, "problem (%d) requesting rx channel\n",
> ++			drv_data->rx_channel);
> ++		return -ENODEV;
> ++	}
> ++	drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
> ++						DMA_PRIO_MEDIUM,
> ++						pxa2xx_spi_dma_handler,
> ++						drv_data);
> ++	if (drv_data->tx_channel < 0) {
> ++		dev_err(dev, "problem (%d) requesting tx channel\n",
> ++			drv_data->tx_channel);
> ++		pxa_free_dma(drv_data->rx_channel);
> ++		return -ENODEV;
> ++	}
> ++
> ++	DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
> ++	DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
> ++
> ++	return 0;
> ++}
> ++
> ++void pxa2xx_spi_dma_release(struct driver_data *drv_data)
> ++{
> ++	struct ssp_device *ssp = drv_data->ssp;
> ++
> ++	DRCMR(ssp->drcmr_rx) = 0;
> ++	DRCMR(ssp->drcmr_tx) = 0;
> ++
> ++	if (drv_data->tx_channel != 0)
> ++		pxa_free_dma(drv_data->tx_channel);
> ++	if (drv_data->rx_channel != 0)
> ++		pxa_free_dma(drv_data->rx_channel);
> ++}
> ++
> ++void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
> ++{
> ++	if (drv_data->rx_channel != -1)
> ++		DRCMR(drv_data->ssp->drcmr_rx) =
> ++			DRCMR_MAPVLD | drv_data->rx_channel;
> ++	if (drv_data->tx_channel != -1)
> ++		DRCMR(drv_data->ssp->drcmr_tx) =
> ++			DRCMR_MAPVLD | drv_data->tx_channel;
> ++}
> ++
> ++int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
> ++					   struct spi_device *spi,
> ++					   u8 bits_per_word, u32 *burst_code,
> ++					   u32 *threshold)
> ++{
> ++	struct pxa2xx_spi_chip *chip_info =
> ++			(struct pxa2xx_spi_chip *)spi->controller_data;
> ++	int bytes_per_word;
> ++	int burst_bytes;
> ++	int thresh_words;
> ++	int req_burst_size;
> ++	int retval = 0;
> ++
> ++	/* Set the threshold (in registers) to equal the same amount of data
> ++	 * as represented by burst size (in bytes).  The computation below
> ++	 * is (burst_size rounded up to nearest 8 byte, word or long word)
> ++	 * divided by (bytes/register); the tx threshold is the inverse of
> ++	 * the rx, so that there will always be enough data in the rx fifo
> ++	 * to satisfy a burst, and there will always be enough space in the
> ++	 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
> ++	 * there is not enough space), there must always remain enough empty
> ++	 * space in the rx fifo for any data loaded to the tx fifo.
> ++	 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
> ++	 * will be 8, or half the fifo;
> ++	 * The threshold can only be set to 2, 4 or 8, but not 16, because
> ++	 * to burst 16 to the tx fifo, the fifo would have to be empty;
> ++	 * however, the minimum fifo trigger level is 1, and the tx will
> ++	 * request service when the fifo is at this level, with only 15 spaces.
> ++	 */
> ++
> ++	/* find bytes/word */
> ++	if (bits_per_word <= 8)
> ++		bytes_per_word = 1;
> ++	else if (bits_per_word <= 16)
> ++		bytes_per_word = 2;
> ++	else
> ++		bytes_per_word = 4;
> ++
> ++	/* use struct pxa2xx_spi_chip->dma_burst_size if available */
> ++	if (chip_info)
> ++		req_burst_size = chip_info->dma_burst_size;
> ++	else {
> ++		switch (chip->dma_burst_size) {
> ++		default:
> ++			/* if the default burst size is not set,
> ++			 * do it now */
> ++			chip->dma_burst_size = DCMD_BURST8;
> ++		case DCMD_BURST8:
> ++			req_burst_size = 8;
> ++			break;
> ++		case DCMD_BURST16:
> ++			req_burst_size = 16;
> ++			break;
> ++		case DCMD_BURST32:
> ++			req_burst_size = 32;
> ++			break;
> ++		}
> ++	}
> ++	if (req_burst_size <= 8) {
> ++		*burst_code = DCMD_BURST8;
> ++		burst_bytes = 8;
> ++	} else if (req_burst_size <= 16) {
> ++		if (bytes_per_word == 1) {
> ++			/* don't burst more than 1/2 the fifo */
> ++			*burst_code = DCMD_BURST8;
> ++			burst_bytes = 8;
> ++			retval = 1;
> ++		} else {
> ++			*burst_code = DCMD_BURST16;
> ++			burst_bytes = 16;
> ++		}
> ++	} else {
> ++		if (bytes_per_word == 1) {
> ++			/* don't burst more than 1/2 the fifo */
> ++			*burst_code = DCMD_BURST8;
> ++			burst_bytes = 8;
> ++			retval = 1;
> ++		} else if (bytes_per_word == 2) {
> ++			/* don't burst more than 1/2 the fifo */
> ++			*burst_code = DCMD_BURST16;
> ++			burst_bytes = 16;
> ++			retval = 1;
> ++		} else {
> ++			*burst_code = DCMD_BURST32;
> ++			burst_bytes = 32;
> ++		}
> ++	}
> ++
> ++	thresh_words = burst_bytes / bytes_per_word;
> ++
> ++	/* thresh_words will be between 2 and 8 */
> ++	*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
> ++			| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
> ++
> ++	return retval;
> ++}
> +diff --git a/drivers/spi/spi-pxa2xx.c b/drivers/spi/spi-pxa2xx.c
> +index 5c8c4f5..b4651b8 100644
> +--- a/drivers/spi/spi-pxa2xx.c
> ++++ b/drivers/spi/spi-pxa2xx.c
> +@@ -1,5 +1,6 @@
> + /*
> +  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
> ++ * Copyright (C) 2013, Intel Corporation
> +  *
> +  * This program is free software; you can redistribute it and/or modify
> +  * it under the terms of the GNU General Public License as published by
> +@@ -24,17 +25,24 @@
> + #include <linux/interrupt.h>
> + #include <linux/platform_device.h>
> + #include <linux/spi/pxa2xx_spi.h>
> +-#include <linux/dma-mapping.h>
> + #include <linux/spi/spi.h>
> + #include <linux/workqueue.h>
> + #include <linux/delay.h>
> + #include <linux/gpio.h>
> + #include <linux/slab.h>
> ++#include <linux/clk.h>
> ++#include <linux/pm_runtime.h>
> ++#include <linux/acpi.h>
> +
> + #include <asm/io.h>
> + #include <asm/irq.h>
> + #include <asm/delay.h>
> +
> ++#include "spi-pxa2xx.h"
> ++
> ++static bool use_dma = 1;
> ++module_param(use_dma, bool, 0);
> ++MODULE_PARM_DESC(use_dma, "use_dma=1 (enable DMA)/use_dma=0(disable DMA)");
> +
> + MODULE_AUTHOR("Stephen Street");
> + MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
> +@@ -45,12 +53,6 @@ MODULE_ALIAS("platform:pxa2xx-spi");
> +
> + #define TIMOUT_DFLT		1000
> +
> +-#define DMA_INT_MASK		(DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
> +-#define RESET_DMA_CHANNEL	(DCSR_NODESC | DMA_INT_MASK)
> +-#define IS_DMA_ALIGNED(x)	((((u32)(x)) & 0x07) == 0)
> +-#define MAX_DMA_LEN		8191
> +-#define DMA_ALIGNMENT		8
> +-
> + /*
> +  * for testing SSCR1 changes that require SSP restart, basically
> +  * everything except the service and interrupt enables, the pxa270 developer
> +@@ -65,115 +67,107 @@ MODULE_ALIAS("platform:pxa2xx-spi");
> + 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
> + 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
> +
> +-#define DEFINE_SSP_REG(reg, off) \
> +-static inline u32 read_##reg(void const __iomem *p) \
> +-{ return __raw_readl(p + (off)); } \
> +-\
> +-static inline void write_##reg(u32 v, void __iomem *p) \
> +-{ __raw_writel(v, p + (off)); }
> +-
> +-DEFINE_SSP_REG(SSCR0, 0x00)
> +-DEFINE_SSP_REG(SSCR1, 0x04)
> +-DEFINE_SSP_REG(SSSR, 0x08)
> +-DEFINE_SSP_REG(SSITR, 0x0c)
> +-DEFINE_SSP_REG(SSDR, 0x10)
> +-DEFINE_SSP_REG(SSTO, 0x28)
> +-DEFINE_SSP_REG(SSPSP, 0x2c)
> +-
> +-#define START_STATE ((void*)0)
> +-#define RUNNING_STATE ((void*)1)
> +-#define DONE_STATE ((void*)2)
> +-#define ERROR_STATE ((void*)-1)
> +-
> +-#define QUEUE_RUNNING 0
> +-#define QUEUE_STOPPED 1
> +-
> +-struct driver_data {
> +-	/* Driver model hookup */
> +-	struct platform_device *pdev;
> +-
> +-	/* SSP Info */
> +-	struct ssp_device *ssp;
> ++#define LPSS_RX_THRESH_DFLT	64
> ++#define LPSS_TX_LOTHRESH_DFLT	160
> ++#define LPSS_TX_HITHRESH_DFLT	224
> +
> +-	/* SPI framework hookup */
> +-	enum pxa_ssp_type ssp_type;
> +-	struct spi_master *master;
> ++/* Offset from drv_data->lpss_base */
> ++#define SSP_REG			0x0c
> ++#define GENERAL_REG		0x08
> ++#define SPI_CS_CONTROL		0x18
> ++#define SPI_CS_CONTROL_SW_MODE	BIT(0)
> ++#define SPI_CS_CONTROL_CS_HIGH	BIT(1)
> +
> +-	/* PXA hookup */
> +-	struct pxa2xx_spi_master *master_info;
> +-
> +-	/* DMA setup stuff */
> +-	int rx_channel;
> +-	int tx_channel;
> +-	u32 *null_dma_buf;
> +-
> +-	/* SSP register addresses */
> +-	void __iomem *ioaddr;
> +-	u32 ssdr_physical;
> +-
> +-	/* SSP masks*/
> +-	u32 dma_cr1;
> +-	u32 int_cr1;
> +-	u32 clear_sr;
> +-	u32 mask_sr;
> +-
> +-	/* Driver message queue */
> +-	struct workqueue_struct	*workqueue;
> +-	struct work_struct pump_messages;
> +-	spinlock_t lock;
> +-	struct list_head queue;
> +-	int busy;
> +-	int run;
> +-
> +-	/* Message Transfer pump */
> +-	struct tasklet_struct pump_transfers;
> +-
> +-	/* Current message transfer state info */
> +-	struct spi_message* cur_msg;
> +-	struct spi_transfer* cur_transfer;
> +-	struct chip_data *cur_chip;
> +-	size_t len;
> +-	void *tx;
> +-	void *tx_end;
> +-	void *rx;
> +-	void *rx_end;
> +-	int dma_mapped;
> +-	dma_addr_t rx_dma;
> +-	dma_addr_t tx_dma;
> +-	size_t rx_map_len;
> +-	size_t tx_map_len;
> +-	u8 n_bytes;
> +-	u32 dma_width;
> +-	int (*write)(struct driver_data *drv_data);
> +-	int (*read)(struct driver_data *drv_data);
> +-	irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
> +-	void (*cs_control)(u32 command);
> +-};
> ++static bool is_lpss_ssp(const struct driver_data *drv_data)
> ++{
> ++	return drv_data->ssp_type == LPSS_SSP;
> ++}
> +
> +-struct chip_data {
> +-	u32 cr0;
> +-	u32 cr1;
> +-	u32 psp;
> +-	u32 timeout;
> +-	u8 n_bytes;
> +-	u32 dma_width;
> +-	u32 dma_burst_size;
> +-	u32 threshold;
> +-	u32 dma_threshold;
> +-	u8 enable_dma;
> +-	u8 bits_per_word;
> +-	u32 speed_hz;
> +-	union {
> +-		int gpio_cs;
> +-		unsigned int frm;
> +-	};
> +-	int gpio_cs_inverted;
> +-	int (*write)(struct driver_data *drv_data);
> +-	int (*read)(struct driver_data *drv_data);
> +-	void (*cs_control)(u32 command);
> +-};
> ++/*
> ++ * Read and write LPSS SSP private registers. Caller must first check that
> ++ * is_lpss_ssp() returns true before these can be called.
> ++ */
> ++static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
> ++{
> ++	WARN_ON(!drv_data->lpss_base);
> ++	return readl(drv_data->lpss_base + offset);
> ++}
> ++
> ++static void __lpss_ssp_write_priv(struct driver_data *drv_data,
> ++				  unsigned offset, u32 value)
> ++{
> ++	WARN_ON(!drv_data->lpss_base);
> ++	writel(value, drv_data->lpss_base + offset);
> ++}
> ++
> ++/*
> ++ * lpss_ssp_setup - perform LPSS SSP specific setup
> ++ * @drv_data: pointer to the driver private data
> ++ *
> ++ * Perform LPSS SSP specific setup. This function must be called first if
> ++ * one is going to use LPSS SSP private registers.
> ++ */
> ++static void lpss_ssp_setup(struct driver_data *drv_data)
> ++{
> ++	unsigned offset = 0x400;
> ++	u32 value, orig;
> ++
> ++	if (!is_lpss_ssp(drv_data))
> ++		return;
> ++
> ++	/*
> ++	 * Perform auto-detection of the LPSS SSP private registers. They
> ++	 * can be either at 1k or 2k offset from the base address.
> ++	 */
> ++	orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
> ++
> ++	value = orig | SPI_CS_CONTROL_SW_MODE;
> ++	writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
> ++	value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
> ++	if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
> ++		offset = 0x800;
> ++		goto detection_done;
> ++	}
> ++
> ++	value &= ~SPI_CS_CONTROL_SW_MODE;
> ++	writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
> ++	value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
> ++	if (value != orig) {
> ++		offset = 0x800;
> ++		goto detection_done;
> ++	}
> ++
> ++detection_done:
> ++	/* Now set the LPSS base */
> ++	drv_data->lpss_base = drv_data->ioaddr + offset;
> ++
> ++	/* Enable software chip select control */
> ++	value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
> ++	__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
> ++
> ++	/* Enable multiblock DMA transfers */
> ++	if (drv_data->master_info->enable_dma){
> ++		__lpss_ssp_write_priv(drv_data, SSP_REG, 1);
> ++		value = readl(drv_data->ioaddr + offset + GENERAL_REG);
> ++		value |= BIT(24);
> ++		__lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
> ++	}
> ++}
> ++
> ++static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
> ++{
> ++	u32 value;
> ++
> ++	if (!is_lpss_ssp(drv_data))
> ++		return;
> +
> +-static void pump_messages(struct work_struct *work);
> ++	value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
> ++	if (enable)
> ++		value &= ~SPI_CS_CONTROL_CS_HIGH;
> ++	else
> ++		value |= SPI_CS_CONTROL_CS_HIGH;
> ++	__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
> ++}
> +
> + static void cs_assert(struct driver_data *drv_data)
> + {
> +@@ -189,8 +183,12 @@ static void cs_assert(struct driver_data *drv_data)
> + 		return;
> + 	}
> +
> +-	if (gpio_is_valid(chip->gpio_cs))
> ++	if (gpio_is_valid(chip->gpio_cs)) {
> + 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
> ++		return;
> ++	}
> ++
> ++	lpss_ssp_cs_control(drv_data, true);
> + }
> +
> + static void cs_deassert(struct driver_data *drv_data)
> +@@ -205,30 +203,15 @@ static void cs_deassert(struct driver_data *drv_data)
> + 		return;
> + 	}
> +
> +-	if (gpio_is_valid(chip->gpio_cs))
> ++	if (gpio_is_valid(chip->gpio_cs)) {
> + 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
> +-}
> +-
> +-static void write_SSSR_CS(struct driver_data *drv_data, u32 val)
> +-{
> +-	void __iomem *reg = drv_data->ioaddr;
> +-
> +-	if (drv_data->ssp_type == CE4100_SSP)
> +-		val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
> ++		return;
> ++	}
> +
> +-	write_SSSR(val, reg);
> ++	lpss_ssp_cs_control(drv_data, false);
> + }
> +
> +-static int pxa25x_ssp_comp(struct driver_data *drv_data)
> +-{
> +-	if (drv_data->ssp_type == PXA25x_SSP)
> +-		return 1;
> +-	if (drv_data->ssp_type == CE4100_SSP)
> +-		return 1;
> +-	return 0;
> +-}
> +-
> +-static int flush(struct driver_data *drv_data)
> ++int pxa2xx_spi_flush(struct driver_data *drv_data)
> + {
> + 	unsigned long limit = loops_per_jiffy << 1;
> +
> +@@ -354,7 +337,7 @@ static int u32_reader(struct driver_data *drv_data)
> + 	return drv_data->rx == drv_data->rx_end;
> + }
> +
> +-static void *next_transfer(struct driver_data *drv_data)
> ++void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
> + {
> + 	struct spi_message *msg = drv_data->cur_msg;
> + 	struct spi_transfer *trans = drv_data->cur_transfer;
> +@@ -370,89 +353,15 @@ static void *next_transfer(struct driver_data *drv_data)
> + 		return DONE_STATE;
> + }
> +
> +-static int map_dma_buffers(struct driver_data *drv_data)
> +-{
> +-	struct spi_message *msg = drv_data->cur_msg;
> +-	struct device *dev = &msg->spi->dev;
> +-
> +-	if (!drv_data->cur_chip->enable_dma)
> +-		return 0;
> +-
> +-	if (msg->is_dma_mapped)
> +-		return  drv_data->rx_dma && drv_data->tx_dma;
> +-
> +-	if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
> +-		return 0;
> +-
> +-	/* Modify setup if rx buffer is null */
> +-	if (drv_data->rx == NULL) {
> +-		*drv_data->null_dma_buf = 0;
> +-		drv_data->rx = drv_data->null_dma_buf;
> +-		drv_data->rx_map_len = 4;
> +-	} else
> +-		drv_data->rx_map_len = drv_data->len;
> +-
> +-
> +-	/* Modify setup if tx buffer is null */
> +-	if (drv_data->tx == NULL) {
> +-		*drv_data->null_dma_buf = 0;
> +-		drv_data->tx = drv_data->null_dma_buf;
> +-		drv_data->tx_map_len = 4;
> +-	} else
> +-		drv_data->tx_map_len = drv_data->len;
> +-
> +-	/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
> +-	 * so we flush the cache *before* invalidating it, in case
> +-	 * the tx and rx buffers overlap.
> +-	 */
> +-	drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
> +-					drv_data->tx_map_len, DMA_TO_DEVICE);
> +-	if (dma_mapping_error(dev, drv_data->tx_dma))
> +-		return 0;
> +-
> +-	/* Stream map the rx buffer */
> +-	drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
> +-					drv_data->rx_map_len, DMA_FROM_DEVICE);
> +-	if (dma_mapping_error(dev, drv_data->rx_dma)) {
> +-		dma_unmap_single(dev, drv_data->tx_dma,
> +-					drv_data->tx_map_len, DMA_TO_DEVICE);
> +-		return 0;
> +-	}
> +-
> +-	return 1;
> +-}
> +-
> +-static void unmap_dma_buffers(struct driver_data *drv_data)
> +-{
> +-	struct device *dev;
> +-
> +-	if (!drv_data->dma_mapped)
> +-		return;
> +-
> +-	if (!drv_data->cur_msg->is_dma_mapped) {
> +-		dev = &drv_data->cur_msg->spi->dev;
> +-		dma_unmap_single(dev, drv_data->rx_dma,
> +-					drv_data->rx_map_len, DMA_FROM_DEVICE);
> +-		dma_unmap_single(dev, drv_data->tx_dma,
> +-					drv_data->tx_map_len, DMA_TO_DEVICE);
> +-	}
> +-
> +-	drv_data->dma_mapped = 0;
> +-}
> +-
> + /* caller already set message->status; dma and pio irqs are blocked */
> + static void giveback(struct driver_data *drv_data)
> + {
> + 	struct spi_transfer* last_transfer;
> +-	unsigned long flags;
> + 	struct spi_message *msg;
> +
> +-	spin_lock_irqsave(&drv_data->lock, flags);
> + 	msg = drv_data->cur_msg;
> + 	drv_data->cur_msg = NULL;
> + 	drv_data->cur_transfer = NULL;
> +-	queue_work(drv_data->workqueue, &drv_data->pump_messages);
> +-	spin_unlock_irqrestore(&drv_data->lock, flags);
> +
> + 	last_transfer = list_entry(msg->transfers.prev,
> + 					struct spi_transfer,
> +@@ -481,13 +390,7 @@ static void giveback(struct driver_data *drv_data)
> + 		 */
> +
> + 		/* get a pointer to the next message, if any */
> +-		spin_lock_irqsave(&drv_data->lock, flags);
> +-		if (list_empty(&drv_data->queue))
> +-			next_msg = NULL;
> +-		else
> +-			next_msg = list_entry(drv_data->queue.next,
> +-					struct spi_message, queue);
> +-		spin_unlock_irqrestore(&drv_data->lock, flags);
> ++		next_msg = spi_get_next_queued_message(drv_data->master);
> +
> + 		/* see if the next and current messages point
> + 		 * to the same chip
> +@@ -498,168 +401,10 @@ static void giveback(struct driver_data *drv_data)
> + 			cs_deassert(drv_data);
> + 	}
> +
> +-	msg->state = NULL;
> +-	if (msg->complete)
> +-		msg->complete(msg->context);
> +-
> ++	spi_finalize_current_message(drv_data->master);
> + 	drv_data->cur_chip = NULL;
> + }
> +
> +-static int wait_ssp_rx_stall(void const __iomem *ioaddr)
> +-{
> +-	unsigned long limit = loops_per_jiffy << 1;
> +-
> +-	while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
> +-		cpu_relax();
> +-
> +-	return limit;
> +-}
> +-
> +-static int wait_dma_channel_stop(int channel)
> +-{
> +-	unsigned long limit = loops_per_jiffy << 1;
> +-
> +-	while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
> +-		cpu_relax();
> +-
> +-	return limit;
> +-}
> +-
> +-static void dma_error_stop(struct driver_data *drv_data, const char *msg)
> +-{
> +-	void __iomem *reg = drv_data->ioaddr;
> +-
> +-	/* Stop and reset */
> +-	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
> +-	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
> +-	write_SSSR_CS(drv_data, drv_data->clear_sr);
> +-	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
> +-	if (!pxa25x_ssp_comp(drv_data))
> +-		write_SSTO(0, reg);
> +-	flush(drv_data);
> +-	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
> +-
> +-	unmap_dma_buffers(drv_data);
> +-
> +-	dev_err(&drv_data->pdev->dev, "%s\n", msg);
> +-
> +-	drv_data->cur_msg->state = ERROR_STATE;
> +-	tasklet_schedule(&drv_data->pump_transfers);
> +-}
> +-
> +-static void dma_transfer_complete(struct driver_data *drv_data)
> +-{
> +-	void __iomem *reg = drv_data->ioaddr;
> +-	struct spi_message *msg = drv_data->cur_msg;
> +-
> +-	/* Clear and disable interrupts on SSP and DMA channels*/
> +-	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
> +-	write_SSSR_CS(drv_data, drv_data->clear_sr);
> +-	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
> +-	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
> +-
> +-	if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
> +-		dev_err(&drv_data->pdev->dev,
> +-			"dma_handler: dma rx channel stop failed\n");
> +-
> +-	if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
> +-		dev_err(&drv_data->pdev->dev,
> +-			"dma_transfer: ssp rx stall failed\n");
> +-
> +-	unmap_dma_buffers(drv_data);
> +-
> +-	/* update the buffer pointer for the amount completed in dma */
> +-	drv_data->rx += drv_data->len -
> +-			(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
> +-
> +-	/* read trailing data from fifo, it does not matter how many
> +-	 * bytes are in the fifo just read until buffer is full
> +-	 * or fifo is empty, which ever occurs first */
> +-	drv_data->read(drv_data);
> +-
> +-	/* return count of what was actually read */
> +-	msg->actual_length += drv_data->len -
> +-				(drv_data->rx_end - drv_data->rx);
> +-
> +-	/* Transfer delays and chip select release are
> +-	 * handled in pump_transfers or giveback
> +-	 */
> +-
> +-	/* Move to next transfer */
> +-	msg->state = next_transfer(drv_data);
> +-
> +-	/* Schedule transfer tasklet */
> +-	tasklet_schedule(&drv_data->pump_transfers);
> +-}
> +-
> +-static void dma_handler(int channel, void *data)
> +-{
> +-	struct driver_data *drv_data = data;
> +-	u32 irq_status = DCSR(channel) & DMA_INT_MASK;
> +-
> +-	if (irq_status & DCSR_BUSERR) {
> +-
> +-		if (channel == drv_data->tx_channel)
> +-			dma_error_stop(drv_data,
> +-					"dma_handler: "
> +-					"bad bus address on tx channel");
> +-		else
> +-			dma_error_stop(drv_data,
> +-					"dma_handler: "
> +-					"bad bus address on rx channel");
> +-		return;
> +-	}
> +-
> +-	/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
> +-	if ((channel == drv_data->tx_channel)
> +-		&& (irq_status & DCSR_ENDINTR)
> +-		&& (drv_data->ssp_type == PXA25x_SSP)) {
> +-
> +-		/* Wait for rx to stall */
> +-		if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
> +-			dev_err(&drv_data->pdev->dev,
> +-				"dma_handler: ssp rx stall failed\n");
> +-
> +-		/* finish this transfer, start the next */
> +-		dma_transfer_complete(drv_data);
> +-	}
> +-}
> +-
> +-static irqreturn_t dma_transfer(struct driver_data *drv_data)
> +-{
> +-	u32 irq_status;
> +-	void __iomem *reg = drv_data->ioaddr;
> +-
> +-	irq_status = read_SSSR(reg) & drv_data->mask_sr;
> +-	if (irq_status & SSSR_ROR) {
> +-		dma_error_stop(drv_data, "dma_transfer: fifo overrun");
> +-		return IRQ_HANDLED;
> +-	}
> +-
> +-	/* Check for false positive timeout */
> +-	if ((irq_status & SSSR_TINT)
> +-		&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
> +-		write_SSSR(SSSR_TINT, reg);
> +-		return IRQ_HANDLED;
> +-	}
> +-
> +-	if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
> +-
> +-		/* Clear and disable timeout interrupt, do the rest in
> +-		 * dma_transfer_complete */
> +-		if (!pxa25x_ssp_comp(drv_data))
> +-			write_SSTO(0, reg);
> +-
> +-		/* finish this transfer, start the next */
> +-		dma_transfer_complete(drv_data);
> +-
> +-		return IRQ_HANDLED;
> +-	}
> +-
> +-	/* Opps problem detected */
> +-	return IRQ_NONE;
> +-}
> +-
> + static void reset_sccr1(struct driver_data *drv_data)
> + {
> + 	void __iomem *reg = drv_data->ioaddr;
> +@@ -681,7 +426,7 @@ static void int_error_stop(struct driver_data *drv_data, const char* msg)
> + 	reset_sccr1(drv_data);
> + 	if (!pxa25x_ssp_comp(drv_data))
> + 		write_SSTO(0, reg);
> +-	flush(drv_data);
> ++	pxa2xx_spi_flush(drv_data);
> + 	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
> +
> + 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
> +@@ -709,7 +454,7 @@ static void int_transfer_complete(struct driver_data *drv_data)
> + 	 */
> +
> + 	/* Move to next transfer */
> +-	drv_data->cur_msg->state = next_transfer(drv_data);
> ++	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
> +
> + 	/* Schedule transfer tasklet */
> + 	tasklet_schedule(&drv_data->pump_transfers);
> +@@ -789,10 +534,20 @@ static irqreturn_t ssp_int(int irq, void *dev_id)
> + {
> + 	struct driver_data *drv_data = dev_id;
> + 	void __iomem *reg = drv_data->ioaddr;
> +-	u32 sccr1_reg = read_SSCR1(reg);
> ++	u32 sccr1_reg;
> + 	u32 mask = drv_data->mask_sr;
> + 	u32 status;
> +
> ++	/*
> ++	 * The IRQ might be shared with other peripherals so we must first
> ++	 * check that are we RPM suspended or not. If we are we assume that
> ++	 * the IRQ was not for us (we shouldn't be RPM suspended when the
> ++	 * interrupt is enabled).
> ++	 */
> ++	if (pm_runtime_suspended(&drv_data->pdev->dev))
> ++		return IRQ_NONE;
> ++
> ++	sccr1_reg = read_SSCR1(reg);
> + 	status = read_SSSR(reg);
> +
> + 	/* Ignore possible writes if we don't need to write */
> +@@ -820,106 +575,12 @@ static irqreturn_t ssp_int(int irq, void *dev_id)
> + 	return drv_data->transfer_handler(drv_data);
> + }
> +
> +-static int set_dma_burst_and_threshold(struct chip_data *chip,
> +-				struct spi_device *spi,
> +-				u8 bits_per_word, u32 *burst_code,
> +-				u32 *threshold)
> ++static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
> + {
> +-	struct pxa2xx_spi_chip *chip_info =
> +-			(struct pxa2xx_spi_chip *)spi->controller_data;
> +-	int bytes_per_word;
> +-	int burst_bytes;
> +-	int thresh_words;
> +-	int req_burst_size;
> +-	int retval = 0;
> +-
> +-	/* Set the threshold (in registers) to equal the same amount of data
> +-	 * as represented by burst size (in bytes).  The computation below
> +-	 * is (burst_size rounded up to nearest 8 byte, word or long word)
> +-	 * divided by (bytes/register); the tx threshold is the inverse of
> +-	 * the rx, so that there will always be enough data in the rx fifo
> +-	 * to satisfy a burst, and there will always be enough space in the
> +-	 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
> +-	 * there is not enough space), there must always remain enough empty
> +-	 * space in the rx fifo for any data loaded to the tx fifo.
> +-	 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
> +-	 * will be 8, or half the fifo;
> +-	 * The threshold can only be set to 2, 4 or 8, but not 16, because
> +-	 * to burst 16 to the tx fifo, the fifo would have to be empty;
> +-	 * however, the minimum fifo trigger level is 1, and the tx will
> +-	 * request service when the fifo is at this level, with only 15 spaces.
> +-	 */
> +-
> +-	/* find bytes/word */
> +-	if (bits_per_word <= 8)
> +-		bytes_per_word = 1;
> +-	else if (bits_per_word <= 16)
> +-		bytes_per_word = 2;
> +-	else
> +-		bytes_per_word = 4;
> +-
> +-	/* use struct pxa2xx_spi_chip->dma_burst_size if available */
> +-	if (chip_info)
> +-		req_burst_size = chip_info->dma_burst_size;
> +-	else {
> +-		switch (chip->dma_burst_size) {
> +-		default:
> +-			/* if the default burst size is not set,
> +-			 * do it now */
> +-			chip->dma_burst_size = DCMD_BURST8;
> +-		case DCMD_BURST8:
> +-			req_burst_size = 8;
> +-			break;
> +-		case DCMD_BURST16:
> +-			req_burst_size = 16;
> +-			break;
> +-		case DCMD_BURST32:
> +-			req_burst_size = 32;
> +-			break;
> +-		}
> +-	}
> +-	if (req_burst_size <= 8) {
> +-		*burst_code = DCMD_BURST8;
> +-		burst_bytes = 8;
> +-	} else if (req_burst_size <= 16) {
> +-		if (bytes_per_word == 1) {
> +-			/* don't burst more than 1/2 the fifo */
> +-			*burst_code = DCMD_BURST8;
> +-			burst_bytes = 8;
> +-			retval = 1;
> +-		} else {
> +-			*burst_code = DCMD_BURST16;
> +-			burst_bytes = 16;
> +-		}
> +-	} else {
> +-		if (bytes_per_word == 1) {
> +-			/* don't burst more than 1/2 the fifo */
> +-			*burst_code = DCMD_BURST8;
> +-			burst_bytes = 8;
> +-			retval = 1;
> +-		} else if (bytes_per_word == 2) {
> +-			/* don't burst more than 1/2 the fifo */
> +-			*burst_code = DCMD_BURST16;
> +-			burst_bytes = 16;
> +-			retval = 1;
> +-		} else {
> +-			*burst_code = DCMD_BURST32;
> +-			burst_bytes = 32;
> +-		}
> +-	}
> +-
> +-	thresh_words = burst_bytes / bytes_per_word;
> ++	unsigned long ssp_clk = drv_data->max_clk_rate;
> ++	const struct ssp_device *ssp = drv_data->ssp;
> +
> +-	/* thresh_words will be between 2 and 8 */
> +-	*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
> +-			| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
> +-
> +-	return retval;
> +-}
> +-
> +-static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
> +-{
> +-	unsigned long ssp_clk = clk_get_rate(ssp->clk);
> ++	rate = min_t(int, ssp_clk, rate);
> +
> + 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
> + 		return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
> +@@ -934,7 +595,6 @@ static void pump_transfers(unsigned long data)
> + 	struct spi_transfer *transfer = NULL;
> + 	struct spi_transfer *previous = NULL;
> + 	struct chip_data *chip = NULL;
> +-	struct ssp_device *ssp = drv_data->ssp;
> + 	void __iomem *reg = drv_data->ioaddr;
> + 	u32 clk_div = 0;
> + 	u8 bits = 0;
> +@@ -976,8 +636,8 @@ static void pump_transfers(unsigned long data)
> + 			cs_deassert(drv_data);
> + 	}
> +
> +-	/* Check for transfers that need multiple DMA segments */
> +-	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
> ++	/* Check if we can DMA this transfer */
> ++	if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
> +
> + 		/* reject already-mapped transfers; PIO won't always work */
> + 		if (message->is_dma_mapped
> +@@ -1000,21 +660,20 @@ static void pump_transfers(unsigned long data)
> + 	}
> +
> + 	/* Setup the transfer state based on the type of transfer */
> +-	if (flush(drv_data) == 0) {
> ++	if (pxa2xx_spi_flush(drv_data) == 0) {
> + 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
> + 		message->status = -EIO;
> + 		giveback(drv_data);
> + 		return;
> + 	}
> + 	drv_data->n_bytes = chip->n_bytes;
> +-	drv_data->dma_width = chip->dma_width;
> + 	drv_data->tx = (void *)transfer->tx_buf;
> + 	drv_data->tx_end = drv_data->tx + transfer->len;
> + 	drv_data->rx = transfer->rx_buf;
> + 	drv_data->rx_end = drv_data->rx + transfer->len;
> + 	drv_data->rx_dma = transfer->rx_dma;
> + 	drv_data->tx_dma = transfer->tx_dma;
> +-	drv_data->len = transfer->len & DCMD_LENGTH;
> ++	drv_data->len = transfer->len;
> + 	drv_data->write = drv_data->tx ? chip->write : null_writer;
> + 	drv_data->read = drv_data->rx ? chip->read : null_reader;
> +
> +@@ -1031,25 +690,22 @@ static void pump_transfers(unsigned long data)
> + 		if (transfer->bits_per_word)
> + 			bits = transfer->bits_per_word;
> +
> +-		clk_div = ssp_get_clk_div(ssp, speed);
> ++		clk_div = ssp_get_clk_div(drv_data, speed);
> +
> + 		if (bits <= 8) {
> + 			drv_data->n_bytes = 1;
> +-			drv_data->dma_width = DCMD_WIDTH1;
> + 			drv_data->read = drv_data->read != null_reader ?
> + 						u8_reader : null_reader;
> + 			drv_data->write = drv_data->write != null_writer ?
> + 						u8_writer : null_writer;
> + 		} else if (bits <= 16) {
> + 			drv_data->n_bytes = 2;
> +-			drv_data->dma_width = DCMD_WIDTH2;
> + 			drv_data->read = drv_data->read != null_reader ?
> + 						u16_reader : null_reader;
> + 			drv_data->write = drv_data->write != null_writer ?
> + 						u16_writer : null_writer;
> + 		} else if (bits <= 32) {
> + 			drv_data->n_bytes = 4;
> +-			drv_data->dma_width = DCMD_WIDTH4;
> + 			drv_data->read = drv_data->read != null_reader ?
> + 						u32_reader : null_reader;
> + 			drv_data->write = drv_data->write != null_writer ?
> +@@ -1058,7 +714,8 @@ static void pump_transfers(unsigned long data)
> + 		/* if bits/word is changed in dma mode, then must check the
> + 		 * thresholds and burst also */
> + 		if (chip->enable_dma) {
> +-			if (set_dma_burst_and_threshold(chip, message->spi,
> ++			if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
> ++							message->spi,
> + 							bits, &dma_burst,
> + 							&dma_thresh))
> + 				if (printk_ratelimit())
> +@@ -1077,70 +734,21 @@ static void pump_transfers(unsigned long data)
> +
> + 	message->state = RUNNING_STATE;
> +
> +-	/* Try to map dma buffer and do a dma transfer if successful, but
> +-	 * only if the length is non-zero and less than MAX_DMA_LEN.
> +-	 *
> +-	 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
> +-	 * of PIO instead.  Care is needed above because the transfer may
> +-	 * have have been passed with buffers that are already dma mapped.
> +-	 * A zero-length transfer in PIO mode will not try to write/read
> +-	 * to/from the buffers
> +-	 *
> +-	 * REVISIT large transfers are exactly where we most want to be
> +-	 * using DMA.  If this happens much, split those transfers into
> +-	 * multiple DMA segments rather than forcing PIO.
> +-	 */
> + 	drv_data->dma_mapped = 0;
> +-	if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
> +-		drv_data->dma_mapped = map_dma_buffers(drv_data);
> ++	if (pxa2xx_spi_dma_is_possible(drv_data->len))
> ++		drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
> + 	if (drv_data->dma_mapped) {
> +
> + 		/* Ensure we have the correct interrupt handler */
> +-		drv_data->transfer_handler = dma_transfer;
> +-
> +-		/* Setup rx DMA Channel */
> +-		DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
> +-		DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
> +-		DTADR(drv_data->rx_channel) = drv_data->rx_dma;
> +-		if (drv_data->rx == drv_data->null_dma_buf)
> +-			/* No target address increment */
> +-			DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
> +-							| drv_data->dma_width
> +-							| dma_burst
> +-							| drv_data->len;
> +-		else
> +-			DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
> +-							| DCMD_FLOWSRC
> +-							| drv_data->dma_width
> +-							| dma_burst
> +-							| drv_data->len;
> +-
> +-		/* Setup tx DMA Channel */
> +-		DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
> +-		DSADR(drv_data->tx_channel) = drv_data->tx_dma;
> +-		DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
> +-		if (drv_data->tx == drv_data->null_dma_buf)
> +-			/* No source address increment */
> +-			DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
> +-							| drv_data->dma_width
> +-							| dma_burst
> +-							| drv_data->len;
> +-		else
> +-			DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
> +-							| DCMD_FLOWTRG
> +-							| drv_data->dma_width
> +-							| dma_burst
> +-							| drv_data->len;
> +-
> +-		/* Enable dma end irqs on SSP to detect end of transfer */
> +-		if (drv_data->ssp_type == PXA25x_SSP)
> +-			DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
> ++		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
> ++
> ++		pxa2xx_spi_dma_prepare(drv_data, dma_burst);
> +
> + 		/* Clear status and start DMA engine */
> + 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
> + 		write_SSSR(drv_data->clear_sr, reg);
> +-		DCSR(drv_data->rx_channel) |= DCSR_RUN;
> +-		DCSR(drv_data->tx_channel) |= DCSR_RUN;
> ++
> ++		pxa2xx_spi_dma_start(drv_data);
> + 	} else {
> + 		/* Ensure we have the correct interrupt handler	*/
> + 		drv_data->transfer_handler = interrupt_transfer;
> +@@ -1150,6 +758,13 @@ static void pump_transfers(unsigned long data)
> + 		write_SSSR_CS(drv_data, drv_data->clear_sr);
> + 	}
> +
> ++	if (is_lpss_ssp(drv_data)) {
> ++		if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
> ++			write_SSIRF(chip->lpss_rx_threshold, reg);
> ++		if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
> ++			write_SSITF(chip->lpss_tx_threshold, reg);
> ++	}
> ++
> + 	/* see if we need to reload the config registers */
> + 	if ((read_SSCR0(reg) != cr0)
> + 		|| (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
> +@@ -1176,31 +791,12 @@ static void pump_transfers(unsigned long data)
> + 	write_SSCR1(cr1, reg);
> + }
> +
> +-static void pump_messages(struct work_struct *work)
> ++static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
> ++					   struct spi_message *msg)
> + {
> +-	struct driver_data *drv_data =
> +-		container_of(work, struct driver_data, pump_messages);
> +-	unsigned long flags;
> +-
> +-	/* Lock queue and check for queue work */
> +-	spin_lock_irqsave(&drv_data->lock, flags);
> +-	if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
> +-		drv_data->busy = 0;
> +-		spin_unlock_irqrestore(&drv_data->lock, flags);
> +-		return;
> +-	}
> +-
> +-	/* Make sure we are not already running a message */
> +-	if (drv_data->cur_msg) {
> +-		spin_unlock_irqrestore(&drv_data->lock, flags);
> +-		return;
> +-	}
> +-
> +-	/* Extract head of queue */
> +-	drv_data->cur_msg = list_entry(drv_data->queue.next,
> +-					struct spi_message, queue);
> +-	list_del_init(&drv_data->cur_msg->queue);
> ++	struct driver_data *drv_data = spi_master_get_devdata(master);
> +
> ++	drv_data->cur_msg = msg;
> + 	/* Initial message state*/
> + 	drv_data->cur_msg->state = START_STATE;
> + 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
> +@@ -1213,34 +809,27 @@ static void pump_messages(struct work_struct *work)
> +
> + 	/* Mark as busy and launch transfers */
> + 	tasklet_schedule(&drv_data->pump_transfers);
> +-
> +-	drv_data->busy = 1;
> +-	spin_unlock_irqrestore(&drv_data->lock, flags);
> ++	return 0;
> + }
> +
> +-static int transfer(struct spi_device *spi, struct spi_message *msg)
> ++static int pxa2xx_spi_prepare_transfer(struct spi_master *master)
> + {
> +-	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
> +-	unsigned long flags;
> +-
> +-	spin_lock_irqsave(&drv_data->lock, flags);
> +-
> +-	if (drv_data->run == QUEUE_STOPPED) {
> +-		spin_unlock_irqrestore(&drv_data->lock, flags);
> +-		return -ESHUTDOWN;
> +-	}
> +-
> +-	msg->actual_length = 0;
> +-	msg->status = -EINPROGRESS;
> +-	msg->state = START_STATE;
> ++	struct driver_data *drv_data = spi_master_get_devdata(master);
> +
> +-	list_add_tail(&msg->queue, &drv_data->queue);
> ++	pm_runtime_get_sync(&drv_data->pdev->dev);
> ++	return 0;
> ++}
> +
> +-	if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
> +-		queue_work(drv_data->workqueue, &drv_data->pump_messages);
> ++static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
> ++{
> ++	struct driver_data *drv_data = spi_master_get_devdata(master);
> +
> +-	spin_unlock_irqrestore(&drv_data->lock, flags);
> ++	/* Disable the SSP now */
> ++	write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
> ++		    drv_data->ioaddr);
> +
> ++	pm_runtime_mark_last_busy(&drv_data->pdev->dev);
> ++	pm_runtime_put_autosuspend(&drv_data->pdev->dev);
> + 	return 0;
> + }
> +
> +@@ -1287,10 +876,18 @@ static int setup(struct spi_device *spi)
> + 	struct pxa2xx_spi_chip *chip_info = NULL;
> + 	struct chip_data *chip;
> + 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
> +-	struct ssp_device *ssp = drv_data->ssp;
> + 	unsigned int clk_div;
> +-	uint tx_thres = TX_THRESH_DFLT;
> +-	uint rx_thres = RX_THRESH_DFLT;
> ++	uint tx_thres, tx_hi_thres, rx_thres;
> ++
> ++	if (is_lpss_ssp(drv_data)) {
> ++		tx_thres = LPSS_TX_LOTHRESH_DFLT;
> ++		tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
> ++		rx_thres = LPSS_RX_THRESH_DFLT;
> ++	} else {
> ++		tx_thres = TX_THRESH_DFLT;
> ++		tx_hi_thres = 0;
> ++		rx_thres = RX_THRESH_DFLT;
> ++	}
> +
> + 	if (!pxa25x_ssp_comp(drv_data)
> + 		&& (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
> +@@ -1330,8 +927,6 @@ static int setup(struct spi_device *spi)
> + 			chip->gpio_cs = -1;
> + 		chip->enable_dma = 0;
> + 		chip->timeout = TIMOUT_DFLT;
> +-		chip->dma_burst_size = drv_data->master_info->enable_dma ?
> +-					DCMD_BURST8 : 0;
> + 	}
> +
> + 	/* protocol drivers may change the chip settings, so...
> +@@ -1345,23 +940,37 @@ static int setup(struct spi_device *spi)
> + 			chip->timeout = chip_info->timeout;
> + 		if (chip_info->tx_threshold)
> + 			tx_thres = chip_info->tx_threshold;
> ++		if (chip_info->tx_hi_threshold)
> ++			tx_hi_thres = chip_info->tx_hi_threshold;
> + 		if (chip_info->rx_threshold)
> + 			rx_thres = chip_info->rx_threshold;
> + 		chip->enable_dma = drv_data->master_info->enable_dma;
> + 		chip->dma_threshold = 0;
> + 		if (chip_info->enable_loopback)
> + 			chip->cr1 = SSCR1_LBM;
> ++	} else if (ACPI_HANDLE(&spi->dev)) {
> ++		/*
> ++		 * Slave devices enumerated from ACPI namespace don't
> ++		 * usually have chip_info but we still might want to use
> ++		 * DMA with them.
> ++		 */
> ++		chip->enable_dma = drv_data->master_info->enable_dma;
> + 	}
> +
> + 	chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
> + 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
> +
> ++	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
> ++	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
> ++				| SSITF_TxHiThresh(tx_hi_thres);
> ++
> + 	/* set dma burst and threshold outside of chip_info path so that if
> + 	 * chip_info goes away after setting chip->enable_dma, the
> + 	 * burst and threshold can still respond to changes in bits_per_word */
> + 	if (chip->enable_dma) {
> + 		/* set up legal burst and threshold for dma */
> +-		if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
> ++		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
> ++						spi->bits_per_word,
> + 						&chip->dma_burst_size,
> + 						&chip->dma_threshold)) {
> + 			dev_warn(&spi->dev, "in setup: DMA burst size reduced "
> +@@ -1369,7 +978,7 @@ static int setup(struct spi_device *spi)
> + 		}
> + 	}
> +
> +-	clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
> ++	clk_div = ssp_get_clk_div(drv_data, spi->max_speed_hz);
> + 	chip->speed_hz = spi->max_speed_hz;
> +
> + 	chip->cr0 = clk_div
> +@@ -1382,32 +991,32 @@ static int setup(struct spi_device *spi)
> + 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
> + 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
> +
> ++	if (spi->mode & SPI_LOOP)
> ++		chip->cr1 |= SSCR1_LBM;
> ++
> + 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
> + 	if (!pxa25x_ssp_comp(drv_data))
> + 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
> +-			clk_get_rate(ssp->clk)
> ++			drv_data->max_clk_rate
> + 				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
> + 			chip->enable_dma ? "DMA" : "PIO");
> + 	else
> + 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
> +-			clk_get_rate(ssp->clk) / 2
> ++			drv_data->max_clk_rate / 2
> + 				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
> + 			chip->enable_dma ? "DMA" : "PIO");
> +
> + 	if (spi->bits_per_word <= 8) {
> + 		chip->n_bytes = 1;
> +-		chip->dma_width = DCMD_WIDTH1;
> + 		chip->read = u8_reader;
> + 		chip->write = u8_writer;
> + 	} else if (spi->bits_per_word <= 16) {
> + 		chip->n_bytes = 2;
> +-		chip->dma_width = DCMD_WIDTH2;
> + 		chip->read = u16_reader;
> + 		chip->write = u16_writer;
> + 	} else if (spi->bits_per_word <= 32) {
> + 		chip->cr0 |= SSCR0_EDSS;
> + 		chip->n_bytes = 4;
> +-		chip->dma_width = DCMD_WIDTH4;
> + 		chip->read = u32_reader;
> + 		chip->write = u32_writer;
> + 	} else {
> +@@ -1438,93 +1047,100 @@ static void cleanup(struct spi_device *spi)
> + 	kfree(chip);
> + }
> +
> +-static int init_queue(struct driver_data *drv_data)
> ++#ifdef CONFIG_ACPI
> ++static int pxa2xx_spi_acpi_add_dma(struct acpi_resource *res, void *data)
> + {
> +-	INIT_LIST_HEAD(&drv_data->queue);
> +-	spin_lock_init(&drv_data->lock);
> +-
> +-	drv_data->run = QUEUE_STOPPED;
> +-	drv_data->busy = 0;
> +-
> +-	tasklet_init(&drv_data->pump_transfers,
> +-			pump_transfers,	(unsigned long)drv_data);
> +-
> +-	INIT_WORK(&drv_data->pump_messages, pump_messages);
> +-	drv_data->workqueue = create_singlethread_workqueue(
> +-				dev_name(drv_data->master->dev.parent));
> +-	if (drv_data->workqueue == NULL)
> +-		return -EBUSY;
> ++	struct pxa2xx_spi_master *pdata = data;
> ++
> ++	if (res->type == ACPI_RESOURCE_TYPE_FIXED_DMA) {
> ++		const struct acpi_resource_fixed_dma *dma;
> ++
> ++		dma = &res->data.fixed_dma;
> ++		if (pdata->tx_slave_id < 0) {
> ++			pdata->tx_slave_id = dma->request_lines;
> ++			pdata->tx_chan_id = dma->channels;
> ++		} else if (pdata->rx_slave_id < 0) {
> ++			pdata->rx_slave_id = dma->request_lines;
> ++			pdata->rx_chan_id = dma->channels;
> ++		}
> ++	}
> +
> +-	return 0;
> ++	/* Tell the ACPI core to skip this resource */
> ++	return 1;
> + }
> +
> +-static int start_queue(struct driver_data *drv_data)
> ++static struct pxa2xx_spi_master *
> ++pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
> + {
> +-	unsigned long flags;
> +-
> +-	spin_lock_irqsave(&drv_data->lock, flags);
> +-
> +-	if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
> +-		spin_unlock_irqrestore(&drv_data->lock, flags);
> +-		return -EBUSY;
> ++	struct pxa2xx_spi_master *pdata;
> ++	struct list_head resource_list;
> ++	struct acpi_device *adev;
> ++	struct ssp_device *ssp;
> ++	struct resource *res;
> ++	int devid;
> ++
> ++	if (!ACPI_HANDLE(&pdev->dev) ||
> ++	    acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
> ++		return NULL;
> ++
> ++	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
> ++	if (!pdata) {
> ++		dev_err(&pdev->dev,
> ++			"failed to allocate memory for platform data\n");
> ++		return NULL;
> + 	}
> +
> +-	drv_data->run = QUEUE_RUNNING;
> +-	drv_data->cur_msg = NULL;
> +-	drv_data->cur_transfer = NULL;
> +-	drv_data->cur_chip = NULL;
> +-	spin_unlock_irqrestore(&drv_data->lock, flags);
> +-
> +-	queue_work(drv_data->workqueue, &drv_data->pump_messages);
> ++	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> ++	if (!res)
> ++		return NULL;
> +
> +-	return 0;
> +-}
> ++	ssp = &pdata->ssp;
> +
> +-static int stop_queue(struct driver_data *drv_data)
> +-{
> +-	unsigned long flags;
> +-	unsigned limit = 500;
> +-	int status = 0;
> +-
> +-	spin_lock_irqsave(&drv_data->lock, flags);
> +-
> +-	/* This is a bit lame, but is optimized for the common execution path.
> +-	 * A wait_queue on the drv_data->busy could be used, but then the common
> +-	 * execution path (pump_messages) would be required to call wake_up or
> +-	 * friends on every SPI message. Do this instead */
> +-	drv_data->run = QUEUE_STOPPED;
> +-	while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) {
> +-		spin_unlock_irqrestore(&drv_data->lock, flags);
> +-		msleep(10);
> +-		spin_lock_irqsave(&drv_data->lock, flags);
> ++	ssp->phys_base = res->start;
> ++	ssp->mmio_base = devm_request_and_ioremap(&pdev->dev, res);
> ++	if (!ssp->mmio_base) {
> ++		dev_err(&pdev->dev, "failed to ioremap mmio_base\n");
> ++		return NULL;
> + 	}
> +
> +-	if (!list_empty(&drv_data->queue) || drv_data->busy)
> +-		status = -EBUSY;
> ++	ssp->clk = devm_clk_get(&pdev->dev, NULL);
> ++	ssp->irq = platform_get_irq(pdev, 0);
> ++	ssp->type = LPSS_SSP;
> ++	ssp->pdev = pdev;
> +
> +-	spin_unlock_irqrestore(&drv_data->lock, flags);
> ++	ssp->port_id = -1;
> ++	if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
> ++		ssp->port_id = devid;
> +
> +-	return status;
> +-}
> ++	pdata->num_chipselect = 1;
> ++	pdata->rx_slave_id = -1;
> ++	pdata->tx_slave_id = -1;
> +
> +-static int destroy_queue(struct driver_data *drv_data)
> +-{
> +-	int status;
> ++	INIT_LIST_HEAD(&resource_list);
> ++	acpi_dev_get_resources(adev, &resource_list, pxa2xx_spi_acpi_add_dma,
> ++			       pdata);
> ++	acpi_dev_free_resource_list(&resource_list);
> +
> +-	status = stop_queue(drv_data);
> +-	/* we are unloading the module or failing to load (only two calls
> +-	 * to this routine), and neither call can handle a return value.
> +-	 * However, destroy_workqueue calls flush_workqueue, and that will
> +-	 * block until all work is done.  If the reason that stop_queue
> +-	 * timed out is that the work will never finish, then it does no
> +-	 * good to call destroy_workqueue, so return anyway. */
> +-	if (status != 0)
> +-		return status;
> ++	if (use_dma)
> ++		pdata->enable_dma = pdata->rx_slave_id >= 0 && pdata->tx_slave_id >= 0;
> +
> +-	destroy_workqueue(drv_data->workqueue);
> ++	return pdata;
> ++}
> +
> +-	return 0;
> ++static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
> ++	{ "INT33C0", 0 },
> ++	{ "INT33C1", 0 },
> ++	{ "80860F0E", 0 },
> ++	{ },
> ++};
> ++MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
> ++#else
> ++static inline struct pxa2xx_spi_master *
> ++pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
> ++{
> ++	return NULL;
> + }
> ++#endif
> +
> + static int pxa2xx_spi_probe(struct platform_device *pdev)
> + {
> +@@ -1535,11 +1151,21 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
> + 	struct ssp_device *ssp;
> + 	int status;
> +
> +-	platform_info = dev->platform_data;
> ++	platform_info = dev_get_platdata(dev);
> ++	if (!platform_info) {
> ++		platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
> ++		if (!platform_info) {
> ++			dev_err(&pdev->dev, "missing platform data\n");
> ++			return -ENODEV;
> ++		}
> ++	}
> +
> + 	ssp = pxa_ssp_request(pdev->id, pdev->name);
> +-	if (ssp == NULL) {
> +-		dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
> ++	if (!ssp)
> ++		ssp = &platform_info->ssp;
> ++
> ++	if (!ssp->mmio_base) {
> ++		dev_err(&pdev->dev, "failed to get ssp\n");
> + 		return -ENODEV;
> + 	}
> +
> +@@ -1558,19 +1184,21 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
> +
> + 	master->dev.parent = &pdev->dev;
> + 	master->dev.of_node = pdev->dev.of_node;
> ++	ACPI_HANDLE_SET(&master->dev, ACPI_HANDLE(&pdev->dev));
> + 	/* the spi->mode bits understood by this driver: */
> +-	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
> ++	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
> +
> +-	master->bus_num = pdev->id;
> ++	master->bus_num = ssp->port_id;
> + 	master->num_chipselect = platform_info->num_chipselect;
> + 	master->dma_alignment = DMA_ALIGNMENT;
> + 	master->cleanup = cleanup;
> + 	master->setup = setup;
> +-	master->transfer = transfer;
> ++	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
> ++	master->prepare_transfer_hardware = pxa2xx_spi_prepare_transfer;
> ++	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
> +
> + 	drv_data->ssp_type = ssp->type;
> +-	drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
> +-						sizeof(struct driver_data)), 8);
> ++	drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
> +
> + 	drv_data->ioaddr = ssp->mmio_base;
> + 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
> +@@ -1581,7 +1209,7 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
> + 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
> + 	} else {
> + 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
> +-		drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
> ++		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
> + 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
> + 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
> + 	}
> +@@ -1597,35 +1225,17 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
> + 	drv_data->tx_channel = -1;
> + 	drv_data->rx_channel = -1;
> + 	if (platform_info->enable_dma) {
> +-
> +-		/* Get two DMA channels	(rx and tx) */
> +-		drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
> +-							DMA_PRIO_HIGH,
> +-							dma_handler,
> +-							drv_data);
> +-		if (drv_data->rx_channel < 0) {
> +-			dev_err(dev, "problem (%d) requesting rx channel\n",
> +-				drv_data->rx_channel);
> +-			status = -ENODEV;
> +-			goto out_error_irq_alloc;
> ++		status = pxa2xx_spi_dma_setup(drv_data);
> ++		if (status) {
> ++			dev_warn(dev, "failed to setup DMA, using PIO\n");
> ++			platform_info->enable_dma = false;
> + 		}
> +-		drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
> +-							DMA_PRIO_MEDIUM,
> +-							dma_handler,
> +-							drv_data);
> +-		if (drv_data->tx_channel < 0) {
> +-			dev_err(dev, "problem (%d) requesting tx channel\n",
> +-				drv_data->tx_channel);
> +-			status = -ENODEV;
> +-			goto out_error_dma_alloc;
> +-		}
> +-
> +-		DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
> +-		DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
> + 	}
> +
> + 	/* Enable SOC clock */
> +-	clk_enable(ssp->clk);
> ++	clk_prepare_enable(ssp->clk);
> ++
> ++	drv_data->max_clk_rate = clk_get_rate(ssp->clk);
> +
> + 	/* Load default SSP configuration */
> + 	write_SSCR0(0, drv_data->ioaddr);
> +@@ -1640,41 +1250,26 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
> + 		write_SSTO(0, drv_data->ioaddr);
> + 	write_SSPSP(0, drv_data->ioaddr);
> +
> +-	/* Initial and start queue */
> +-	status = init_queue(drv_data);
> +-	if (status != 0) {
> +-		dev_err(&pdev->dev, "problem initializing queue\n");
> +-		goto out_error_clock_enabled;
> +-	}
> +-	status = start_queue(drv_data);
> +-	if (status != 0) {
> +-		dev_err(&pdev->dev, "problem starting queue\n");
> +-		goto out_error_clock_enabled;
> +-	}
> ++	lpss_ssp_setup(drv_data);
> ++
> ++	tasklet_init(&drv_data->pump_transfers, pump_transfers,
> ++		     (unsigned long)drv_data);
> +
> + 	/* Register with the SPI framework */
> + 	platform_set_drvdata(pdev, drv_data);
> + 	status = spi_register_master(master);
> + 	if (status != 0) {
> + 		dev_err(&pdev->dev, "problem registering spi master\n");
> +-		goto out_error_queue_alloc;
> ++		goto out_error_clock_enabled;
> + 	}
> +
> +-	return status;
> ++	pm_runtime_forbid(&pdev->dev);
> +
> +-out_error_queue_alloc:
> +-	destroy_queue(drv_data);
> ++	return status;
> +
> + out_error_clock_enabled:
> +-	clk_disable(ssp->clk);
> +-
> +-out_error_dma_alloc:
> +-	if (drv_data->tx_channel != -1)
> +-		pxa_free_dma(drv_data->tx_channel);
> +-	if (drv_data->rx_channel != -1)
> +-		pxa_free_dma(drv_data->rx_channel);
> +-
> +-out_error_irq_alloc:
> ++	clk_disable_unprepare(ssp->clk);
> ++	pxa2xx_spi_dma_release(drv_data);
> + 	free_irq(ssp->irq, drv_data);
> +
> + out_error_master_alloc:
> +@@ -1687,37 +1282,23 @@ static int pxa2xx_spi_remove(struct platform_device *pdev)
> + {
> + 	struct driver_data *drv_data = platform_get_drvdata(pdev);
> + 	struct ssp_device *ssp;
> +-	int status = 0;
> +
> + 	if (!drv_data)
> + 		return 0;
> + 	ssp = drv_data->ssp;
> +
> +-	/* Remove the queue */
> +-	status = destroy_queue(drv_data);
> +-	if (status != 0)
> +-		/* the kernel does not check the return status of this
> +-		 * this routine (mod->exit, within the kernel).  Therefore
> +-		 * nothing is gained by returning from here, the module is
> +-		 * going away regardless, and we should not leave any more
> +-		 * resources allocated than necessary.  We cannot free the
> +-		 * message memory in drv_data->queue, but we can release the
> +-		 * resources below.  I think the kernel should honor -EBUSY
> +-		 * returns but... */
> +-		dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
> +-			"complete, message memory not freed\n");
> ++	pm_runtime_get_sync(&pdev->dev);
> +
> + 	/* Disable the SSP at the peripheral and SOC level */
> + 	write_SSCR0(0, drv_data->ioaddr);
> +-	clk_disable(ssp->clk);
> ++	clk_disable_unprepare(ssp->clk);
> +
> + 	/* Release DMA */
> +-	if (drv_data->master_info->enable_dma) {
> +-		DRCMR(ssp->drcmr_rx) = 0;
> +-		DRCMR(ssp->drcmr_tx) = 0;
> +-		pxa_free_dma(drv_data->tx_channel);
> +-		pxa_free_dma(drv_data->rx_channel);
> +-	}
> ++	if (drv_data->master_info->enable_dma)
> ++		pxa2xx_spi_dma_release(drv_data);
> ++
> ++	pm_runtime_put_noidle(&pdev->dev);
> ++	pm_runtime_disable(&pdev->dev);
> +
> + 	/* Release IRQ */
> + 	free_irq(ssp->irq, drv_data);
> +@@ -1749,11 +1330,11 @@ static int pxa2xx_spi_suspend(struct device *dev)
> + 	struct ssp_device *ssp = drv_data->ssp;
> + 	int status = 0;
> +
> +-	status = stop_queue(drv_data);
> ++	status = spi_master_suspend(drv_data->master);
> + 	if (status != 0)
> + 		return status;
> + 	write_SSCR0(0, drv_data->ioaddr);
> +-	clk_disable(ssp->clk);
> ++	clk_disable_unprepare(ssp->clk);
> +
> + 	return 0;
> + }
> +@@ -1764,18 +1345,15 @@ static int pxa2xx_spi_resume(struct device *dev)
> + 	struct ssp_device *ssp = drv_data->ssp;
> + 	int status = 0;
> +
> +-	if (drv_data->rx_channel != -1)
> +-		DRCMR(drv_data->ssp->drcmr_rx) =
> +-			DRCMR_MAPVLD | drv_data->rx_channel;
> +-	if (drv_data->tx_channel != -1)
> +-		DRCMR(drv_data->ssp->drcmr_tx) =
> +-			DRCMR_MAPVLD | drv_data->tx_channel;
> ++	pxa2xx_spi_dma_resume(drv_data);
> +
> + 	/* Enable the SSP clock */
> +-	clk_enable(ssp->clk);
> ++	clk_prepare_enable(ssp->clk);
> ++
> ++	lpss_ssp_setup(drv_data);
> +
> + 	/* Start the queue running */
> +-	status = start_queue(drv_data);
> ++	status = spi_master_resume(drv_data->master);
> + 	if (status != 0) {
> + 		dev_err(dev, "problem starting queue (%d)\n", status);
> + 		return status;
> +@@ -1783,20 +1361,38 @@ static int pxa2xx_spi_resume(struct device *dev)
> +
> + 	return 0;
> + }
> ++#endif
> ++
> ++#ifdef CONFIG_PM_RUNTIME
> ++static int pxa2xx_spi_runtime_suspend(struct device *dev)
> ++{
> ++	struct driver_data *drv_data = dev_get_drvdata(dev);
> ++
> ++	clk_disable_unprepare(drv_data->ssp->clk);
> ++	return 0;
> ++}
> ++
> ++static int pxa2xx_spi_runtime_resume(struct device *dev)
> ++{
> ++	struct driver_data *drv_data = dev_get_drvdata(dev);
> ++
> ++	clk_prepare_enable(drv_data->ssp->clk);
> ++	return 0;
> ++}
> ++#endif
> +
> + static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
> +-	.suspend	= pxa2xx_spi_suspend,
> +-	.resume		= pxa2xx_spi_resume,
> ++	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
> ++	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
> ++			   pxa2xx_spi_runtime_resume, NULL)
> + };
> +-#endif
> +
> + static struct platform_driver driver = {
> + 	.driver = {
> + 		.name	= "pxa2xx-spi",
> + 		.owner	= THIS_MODULE,
> +-#ifdef CONFIG_PM
> + 		.pm	= &pxa2xx_spi_pm_ops,
> +-#endif
> ++		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
> + 	},
> + 	.probe = pxa2xx_spi_probe,
> + 	.remove = pxa2xx_spi_remove,
> +diff --git a/drivers/spi/spi-pxa2xx.h b/drivers/spi/spi-pxa2xx.h
> +new file mode 100644
> +index 0000000..5adc2a1
> +--- /dev/null
> ++++ b/drivers/spi/spi-pxa2xx.h
> +@@ -0,0 +1,221 @@
> ++/*
> ++ * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
> ++ * Copyright (C) 2013, Intel Corporation
> ++ *
> ++ * This program is free software; you can redistribute it and/or modify
> ++ * it under the terms of the GNU General Public License version 2 as
> ++ * published by the Free Software Foundation.
> ++ */
> ++
> ++#ifndef SPI_PXA2XX_H
> ++#define SPI_PXA2XX_H
> ++
> ++#include <linux/atomic.h>
> ++#include <linux/dmaengine.h>
> ++#include <linux/errno.h>
> ++#include <linux/io.h>
> ++#include <linux/interrupt.h>
> ++#include <linux/platform_device.h>
> ++#include <linux/pxa2xx_ssp.h>
> ++#include <linux/scatterlist.h>
> ++#include <linux/sizes.h>
> ++#include <linux/spi/spi.h>
> ++#include <linux/spi/pxa2xx_spi.h>
> ++
> ++struct driver_data {
> ++	/* Driver model hookup */
> ++	struct platform_device *pdev;
> ++
> ++	/* SSP Info */
> ++	struct ssp_device *ssp;
> ++
> ++	/* SPI framework hookup */
> ++	enum pxa_ssp_type ssp_type;
> ++	struct spi_master *master;
> ++
> ++	/* PXA hookup */
> ++	struct pxa2xx_spi_master *master_info;
> ++
> ++	/* PXA private DMA setup stuff */
> ++	int rx_channel;
> ++	int tx_channel;
> ++	u32 *null_dma_buf;
> ++
> ++	/* SSP register addresses */
> ++	void __iomem *ioaddr;
> ++	u32 ssdr_physical;
> ++
> ++	/* SSP masks*/
> ++	u32 dma_cr1;
> ++	u32 int_cr1;
> ++	u32 clear_sr;
> ++	u32 mask_sr;
> ++
> ++	/* Maximun clock rate */
> ++	unsigned long max_clk_rate;
> ++
> ++	/* Message Transfer pump */
> ++	struct tasklet_struct pump_transfers;
> ++
> ++	/* DMA engine support */
> ++	struct dma_chan *rx_chan;
> ++	struct dma_chan *tx_chan;
> ++	struct sg_table rx_sgt;
> ++	struct sg_table tx_sgt;
> ++	int rx_nents;
> ++	int tx_nents;
> ++	void *dummy;
> ++	atomic_t dma_running;
> ++
> ++	/* Current message transfer state info */
> ++	struct spi_message *cur_msg;
> ++	struct spi_transfer *cur_transfer;
> ++	struct chip_data *cur_chip;
> ++	size_t len;
> ++	void *tx;
> ++	void *tx_end;
> ++	void *rx;
> ++	void *rx_end;
> ++	int dma_mapped;
> ++	dma_addr_t rx_dma;
> ++	dma_addr_t tx_dma;
> ++	size_t rx_map_len;
> ++	size_t tx_map_len;
> ++	u8 n_bytes;
> ++	int (*write)(struct driver_data *drv_data);
> ++	int (*read)(struct driver_data *drv_data);
> ++	irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
> ++	void (*cs_control)(u32 command);
> ++
> ++	void __iomem *lpss_base;
> ++};
> ++
> ++struct chip_data {
> ++	u32 cr0;
> ++	u32 cr1;
> ++	u32 psp;
> ++	u32 timeout;
> ++	u8 n_bytes;
> ++	u32 dma_burst_size;
> ++	u32 threshold;
> ++	u32 dma_threshold;
> ++	u16 lpss_rx_threshold;
> ++	u16 lpss_tx_threshold;
> ++	u8 enable_dma;
> ++	u8 bits_per_word;
> ++	u32 speed_hz;
> ++	union {
> ++		int gpio_cs;
> ++		unsigned int frm;
> ++	};
> ++	int gpio_cs_inverted;
> ++	int (*write)(struct driver_data *drv_data);
> ++	int (*read)(struct driver_data *drv_data);
> ++	void (*cs_control)(u32 command);
> ++};
> ++
> ++#define DEFINE_SSP_REG(reg, off) \
> ++static inline u32 read_##reg(void const __iomem *p) \
> ++{ return __raw_readl(p + (off)); } \
> ++\
> ++static inline void write_##reg(u32 v, void __iomem *p) \
> ++{ __raw_writel(v, p + (off)); }
> ++
> ++DEFINE_SSP_REG(SSCR0, 0x00)
> ++DEFINE_SSP_REG(SSCR1, 0x04)
> ++DEFINE_SSP_REG(SSSR, 0x08)
> ++DEFINE_SSP_REG(SSITR, 0x0c)
> ++DEFINE_SSP_REG(SSDR, 0x10)
> ++DEFINE_SSP_REG(SSTO, 0x28)
> ++DEFINE_SSP_REG(SSPSP, 0x2c)
> ++DEFINE_SSP_REG(SSITF, SSITF)
> ++DEFINE_SSP_REG(SSIRF, SSIRF)
> ++
> ++#define START_STATE ((void *)0)
> ++#define RUNNING_STATE ((void *)1)
> ++#define DONE_STATE ((void *)2)
> ++#define ERROR_STATE ((void *)-1)
> ++
> ++#define IS_DMA_ALIGNED(x)	IS_ALIGNED((unsigned long)(x), DMA_ALIGNMENT)
> ++#define DMA_ALIGNMENT		8
> ++
> ++static inline int pxa25x_ssp_comp(struct driver_data *drv_data)
> ++{
> ++	if (drv_data->ssp_type == PXA25x_SSP)
> ++		return 1;
> ++	if (drv_data->ssp_type == CE4100_SSP)
> ++		return 1;
> ++	return 0;
> ++}
> ++
> ++static inline void write_SSSR_CS(struct driver_data *drv_data, u32 val)
> ++{
> ++	void __iomem *reg = drv_data->ioaddr;
> ++
> ++	if (drv_data->ssp_type == CE4100_SSP)
> ++		val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
> ++
> ++	write_SSSR(val, reg);
> ++}
> ++
> ++extern int pxa2xx_spi_flush(struct driver_data *drv_data);
> ++extern void *pxa2xx_spi_next_transfer(struct driver_data *drv_data);
> ++
> ++/*
> ++ * Select the right DMA implementation.
> ++ */
> ++#if defined(CONFIG_SPI_PXA2XX_PXADMA)
> ++#define SPI_PXA2XX_USE_DMA	1
> ++#define MAX_DMA_LEN		8191
> ++#define DEFAULT_DMA_CR1		(SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE)
> ++#elif defined(CONFIG_SPI_PXA2XX_DMA)
> ++#define SPI_PXA2XX_USE_DMA	1
> ++#define MAX_DMA_LEN		SZ_64K
> ++#define DEFAULT_DMA_CR1		(SSCR1_TSRE | SSCR1_RSRE | SSCR1_TRAIL)
> ++#else
> ++#undef SPI_PXA2XX_USE_DMA
> ++#define MAX_DMA_LEN		0
> ++#define DEFAULT_DMA_CR1		0
> ++#endif
> ++
> ++#ifdef SPI_PXA2XX_USE_DMA
> ++extern bool pxa2xx_spi_dma_is_possible(size_t len);
> ++extern int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data);
> ++extern irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data);
> ++extern int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst);
> ++extern void pxa2xx_spi_dma_start(struct driver_data *drv_data);
> ++extern int pxa2xx_spi_dma_setup(struct driver_data *drv_data);
> ++extern void pxa2xx_spi_dma_release(struct driver_data *drv_data);
> ++extern void pxa2xx_spi_dma_resume(struct driver_data *drv_data);
> ++extern int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
> ++						  struct spi_device *spi,
> ++						  u8 bits_per_word,
> ++						  u32 *burst_code,
> ++						  u32 *threshold);
> ++#else
> ++static inline bool pxa2xx_spi_dma_is_possible(size_t len) { return false; }
> ++static inline int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
> ++{
> ++	return 0;
> ++}
> ++#define pxa2xx_spi_dma_transfer NULL
> ++static inline void pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
> ++					  u32 dma_burst) {}
> ++static inline void pxa2xx_spi_dma_start(struct driver_data *drv_data) {}
> ++static inline int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
> ++{
> ++	return 0;
> ++}
> ++static inline void pxa2xx_spi_dma_release(struct driver_data *drv_data) {}
> ++static inline void pxa2xx_spi_dma_resume(struct driver_data *drv_data) {}
> ++static inline int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
> ++							 struct spi_device *spi,
> ++							 u8 bits_per_word,
> ++							 u32 *burst_code,
> ++							 u32 *threshold)
> ++{
> ++	return -ENODEV;
> ++}
> ++#endif
> ++
> ++#endif /* SPI_PXA2XX_H */
> +diff --git a/include/linux/pxa2xx_ssp.h b/include/linux/pxa2xx_ssp.h
> +index f366320..467cc63 100644
> +--- a/include/linux/pxa2xx_ssp.h
> ++++ b/include/linux/pxa2xx_ssp.h
> +@@ -155,6 +155,14 @@
> + #define SSACD_ACDS(x)		((x) << 0)	/* Audio clock divider select */
> + #define SSACD_SCDX8		(1 << 7)	/* SYSCLK division ratio select */
> +
> ++/* LPSS SSP */
> ++#define SSITF			0x44		/* TX FIFO trigger level */
> ++#define SSITF_TxLoThresh(x)	(((x) - 1) << 8)
> ++#define SSITF_TxHiThresh(x)	((x) - 1)
> ++
> ++#define SSIRF			0x48		/* RX FIFO trigger level */
> ++#define SSIRF_RxThresh(x)	((x) - 1)
> ++
> + enum pxa_ssp_type {
> + 	SSP_UNDEFINED = 0,
> + 	PXA25x_SSP,  /* pxa 210, 250, 255, 26x */
> +@@ -164,6 +172,7 @@ enum pxa_ssp_type {
> + 	PXA168_SSP,
> + 	PXA910_SSP,
> + 	CE4100_SSP,
> ++	LPSS_SSP,
> + };
> +
> + struct ssp_device {
> +@@ -206,6 +215,15 @@ static inline u32 pxa_ssp_read_reg(struct ssp_device *dev, u32 reg)
> + 	return __raw_readl(dev->mmio_base + reg);
> + }
> +
> ++#ifdef CONFIG_ARCH_PXA
> + struct ssp_device *pxa_ssp_request(int port, const char *label);
> + void pxa_ssp_free(struct ssp_device *);
> ++#else
> ++static inline struct ssp_device *pxa_ssp_request(int port, const char *label)
> ++{
> ++	return NULL;
> ++}
> ++static inline void pxa_ssp_free(struct ssp_device *ssp) {}
> ++#endif
> ++
> + #endif
> +diff --git a/include/linux/spi/pxa2xx_spi.h b/include/linux/spi/pxa2xx_spi.h
> +index c73d144..82d5111 100644
> +--- a/include/linux/spi/pxa2xx_spi.h
> ++++ b/include/linux/spi/pxa2xx_spi.h
> +@@ -28,6 +28,15 @@ struct pxa2xx_spi_master {
> + 	u32 clock_enable;
> + 	u16 num_chipselect;
> + 	u8 enable_dma;
> ++
> ++	/* DMA engine specific config */
> ++	int rx_chan_id;
> ++	int tx_chan_id;
> ++	int rx_slave_id;
> ++	int tx_slave_id;
> ++
> ++	/* For non-PXA arches */
> ++	struct ssp_device ssp;
> + };
> +
> + /* spi_board_info.controller_data for SPI slave devices,
> +@@ -35,6 +44,7 @@ struct pxa2xx_spi_master {
> +  */
> + struct pxa2xx_spi_chip {
> + 	u8 tx_threshold;
> ++	u8 tx_hi_threshold;
> + 	u8 rx_threshold;
> + 	u8 dma_burst_size;
> + 	u32 timeout;
> +@@ -50,103 +60,5 @@ struct pxa2xx_spi_chip {
> +
> + extern void pxa2xx_set_spi_info(unsigned id, struct pxa2xx_spi_master *info);
> +
> +-#else
> +-/*
> +- * This is the implemtation for CE4100 on x86. ARM defines them in mach/ or
> +- * plat/ include path.
> +- * The CE4100 does not provide DMA support. This bits are here to let the driver
> +- * compile and will never be used. Maybe we get DMA support at a later point in
> +- * time.
> +- */
> +-
> +-#define DCSR(n)         (n)
> +-#define DSADR(n)        (n)
> +-#define DTADR(n)        (n)
> +-#define DCMD(n)         (n)
> +-#define DRCMR(n)        (n)
> +-
> +-#define DCSR_RUN	(1 << 31)	/* Run Bit */
> +-#define DCSR_NODESC	(1 << 30)	/* No-Descriptor Fetch */
> +-#define DCSR_STOPIRQEN	(1 << 29)	/* Stop Interrupt Enable */
> +-#define DCSR_REQPEND	(1 << 8)	/* Request Pending (read-only) */
> +-#define DCSR_STOPSTATE	(1 << 3)	/* Stop State (read-only) */
> +-#define DCSR_ENDINTR	(1 << 2)	/* End Interrupt */
> +-#define DCSR_STARTINTR	(1 << 1)	/* Start Interrupt */
> +-#define DCSR_BUSERR	(1 << 0)	/* Bus Error Interrupt */
> +-
> +-#define DCSR_EORIRQEN	(1 << 28)	/* End of Receive Interrupt Enable */
> +-#define DCSR_EORJMPEN	(1 << 27)	/* Jump to next descriptor on EOR */
> +-#define DCSR_EORSTOPEN	(1 << 26)	/* STOP on an EOR */
> +-#define DCSR_SETCMPST	(1 << 25)	/* Set Descriptor Compare Status */
> +-#define DCSR_CLRCMPST	(1 << 24)	/* Clear Descriptor Compare Status */
> +-#define DCSR_CMPST	(1 << 10)	/* The Descriptor Compare Status */
> +-#define DCSR_EORINTR	(1 << 9)	/* The end of Receive */
> +-
> +-#define DRCMR_MAPVLD	(1 << 7)	/* Map Valid */
> +-#define DRCMR_CHLNUM	0x1f		/* mask for Channel Number */
> +-
> +-#define DDADR_DESCADDR	0xfffffff0	/* Address of next descriptor */
> +-#define DDADR_STOP	(1 << 0)	/* Stop */
> +-
> +-#define DCMD_INCSRCADDR	(1 << 31)	/* Source Address Increment Setting. */
> +-#define DCMD_INCTRGADDR	(1 << 30)	/* Target Address Increment Setting. */
> +-#define DCMD_FLOWSRC	(1 << 29)	/* Flow Control by the source. */
> +-#define DCMD_FLOWTRG	(1 << 28)	/* Flow Control by the target. */
> +-#define DCMD_STARTIRQEN	(1 << 22)	/* Start Interrupt Enable */
> +-#define DCMD_ENDIRQEN	(1 << 21)	/* End Interrupt Enable */
> +-#define DCMD_ENDIAN	(1 << 18)	/* Device Endian-ness. */
> +-#define DCMD_BURST8	(1 << 16)	/* 8 byte burst */
> +-#define DCMD_BURST16	(2 << 16)	/* 16 byte burst */
> +-#define DCMD_BURST32	(3 << 16)	/* 32 byte burst */
> +-#define DCMD_WIDTH1	(1 << 14)	/* 1 byte width */
> +-#define DCMD_WIDTH2	(2 << 14)	/* 2 byte width (HalfWord) */
> +-#define DCMD_WIDTH4	(3 << 14)	/* 4 byte width (Word) */
> +-#define DCMD_LENGTH	0x01fff		/* length mask (max = 8K - 1) */
> +-
> +-/*
> +- * Descriptor structure for PXA's DMA engine
> +- * Note: this structure must always be aligned to a 16-byte boundary.
> +- */
> +-
> +-typedef enum {
> +-	DMA_PRIO_HIGH = 0,
> +-	DMA_PRIO_MEDIUM = 1,
> +-	DMA_PRIO_LOW = 2
> +-} pxa_dma_prio;
> +-
> +-/*
> +- * DMA registration
> +- */
> +-
> +-static inline int pxa_request_dma(char *name,
> +-		pxa_dma_prio prio,
> +-		void (*irq_handler)(int, void *),
> +-		void *data)
> +-{
> +-	return -ENODEV;
> +-}
> +-
> +-static inline void pxa_free_dma(int dma_ch)
> +-{
> +-}
> +-
> +-/*
> +- * The CE4100 does not have the clk framework implemented and SPI clock can
> +- * not be switched on/off or the divider changed.
> +- */
> +-static inline void clk_disable(struct clk *clk)
> +-{
> +-}
> +-
> +-static inline int clk_enable(struct clk *clk)
> +-{
> +-	return 0;
> +-}
> +-
> +-static inline unsigned long clk_get_rate(struct clk *clk)
> +-{
> +-	return 3686400;
> +-}
> +-
> + #endif
> + #endif
> +--
> +1.7.10.4
> +
>



More information about the linux-yocto mailing list