[linux-yocto] [PATCHv2 3/4] valleyisland-io: add patch for Baytrail SPI controller support

rebecca.swee.fun.chang at intel.com rebecca.swee.fun.chang at intel.com
Tue Dec 10 20:19:15 PST 2013


From: "Chang, Rebecca Swee Fun" <rebecca.swee.fun.chang at intel.com>

spi-pxa2xx: Baytrail has 1 SPI controller which can be PCI and ACPI
enumerated.

Signed-off-by: Chang, Rebecca Swee Fun <rebecca.swee.fun.chang at intel.com>
---
 ...x-add-support-for-Baytrail-SPI-controller.patch | 3205 ++++++++++++++++++++
 1 file changed, 3205 insertions(+)
 create mode 100644 meta/cfg/kernel-cache/features/valleyisland-io/0007-spi-pxa2xx-add-support-for-Baytrail-SPI-controller.patch

diff --git a/meta/cfg/kernel-cache/features/valleyisland-io/0007-spi-pxa2xx-add-support-for-Baytrail-SPI-controller.patch b/meta/cfg/kernel-cache/features/valleyisland-io/0007-spi-pxa2xx-add-support-for-Baytrail-SPI-controller.patch
new file mode 100644
index 0000000..ac8f38b
--- /dev/null
+++ b/meta/cfg/kernel-cache/features/valleyisland-io/0007-spi-pxa2xx-add-support-for-Baytrail-SPI-controller.patch
@@ -0,0 +1,3205 @@
+spi-pxa2xx: add support for Baytrail SPI controller
+
+Intel Baytrail has 1 SPI controller which can be PCI or ACPI enumerated.
+
+Signed-off-by: Chang, Rebecca Swee Fun <rebecca.swee.fun.chang at intel.com>
+---
+ drivers/spi/Kconfig             |   18 +-
+ drivers/spi/Makefile            |    5 +-
+ drivers/spi/spi-pxa2xx-dma.c    |  392 ++++++++++++++
+ drivers/spi/spi-pxa2xx-pci.c    |  210 +++-----
+ drivers/spi/spi-pxa2xx-pxadma.c |  490 +++++++++++++++++
+ drivers/spi/spi-pxa2xx.c        | 1118 +++++++++++++--------------------------
+ drivers/spi/spi-pxa2xx.h        |  221 ++++++++
+ include/linux/pxa2xx_ssp.h      |   18 +
+ include/linux/spi/pxa2xx_spi.h  |  108 +---
+ 9 files changed, 1596 insertions(+), 984 deletions(-)
+ create mode 100644 drivers/spi/spi-pxa2xx-dma.c
+ create mode 100644 drivers/spi/spi-pxa2xx-pxadma.c
+ create mode 100644 drivers/spi/spi-pxa2xx.h
+
+diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig
+index 3105ea2..bc1445e 100644
+--- a/drivers/spi/Kconfig
++++ b/drivers/spi/Kconfig
+@@ -297,9 +297,20 @@ config SPI_PPC4xx
+ 	help
+ 	  This selects a driver for the PPC4xx SPI Controller.
+
++config SPI_PXA2XX_PXADMA
++	bool "PXA2xx SSP legacy PXA DMA API support"
++	depends on SPI_PXA2XX && ARCH_PXA
++	help
++	  Enable PXA private legacy DMA API support. Note that this is
++	  deprecated in favor of generic DMA engine API.
++
++config SPI_PXA2XX_DMA
++	def_bool y
++	depends on SPI_PXA2XX && !SPI_PXA2XX_PXADMA
++
+ config SPI_PXA2XX
+ 	tristate "PXA2xx SSP SPI master"
+-	depends on (ARCH_PXA || (X86_32 && PCI))
++	depends on ARCH_PXA || PCI || ACPI
+ 	select PXA_SSP if ARCH_PXA
+ 	help
+ 	  This enables using a PXA2xx or Sodaville SSP port as a SPI master
+@@ -307,7 +318,10 @@ config SPI_PXA2XX
+ 	  additional documentation can be found a Documentation/spi/pxa2xx.
+
+ config SPI_PXA2XX_PCI
+-	def_bool SPI_PXA2XX && X86_32 && PCI
++	tristate "PCI glue for PXA2xx SSP SPI master"
++	depends on SPI_PXA2XX && PCI
++	help
++	  This enables using PXA2xx SPI controller via PCI interface.
+
+ config SPI_RSPI
+ 	tristate "Renesas RSPI controller"
+diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile
+index 64e970b..e53c309 100644
+--- a/drivers/spi/Makefile
++++ b/drivers/spi/Makefile
+@@ -47,7 +47,10 @@ obj-$(CONFIG_SPI_OMAP24XX)		+= spi-omap2-mcspi.o
+ obj-$(CONFIG_SPI_ORION)			+= spi-orion.o
+ obj-$(CONFIG_SPI_PL022)			+= spi-pl022.o
+ obj-$(CONFIG_SPI_PPC4xx)		+= spi-ppc4xx.o
+-obj-$(CONFIG_SPI_PXA2XX)		+= spi-pxa2xx.o
++spi-pxa2xx-platform-objs		:= spi-pxa2xx.o
++spi-pxa2xx-platform-$(CONFIG_SPI_PXA2XX_PXADMA)	+= spi-pxa2xx-pxadma.o
++spi-pxa2xx-platform-$(CONFIG_SPI_PXA2XX_DMA)	+= spi-pxa2xx-dma.o
++obj-$(CONFIG_SPI_PXA2XX)		+= spi-pxa2xx-platform.o
+ obj-$(CONFIG_SPI_PXA2XX_PCI)		+= spi-pxa2xx-pci.o
+ obj-$(CONFIG_SPI_RSPI)			+= spi-rspi.o
+ obj-$(CONFIG_SPI_S3C24XX)		+= spi-s3c24xx-hw.o
+diff --git a/drivers/spi/spi-pxa2xx-dma.c b/drivers/spi/spi-pxa2xx-dma.c
+new file mode 100644
+index 0000000..03478c2
+--- /dev/null
++++ b/drivers/spi/spi-pxa2xx-dma.c
+@@ -0,0 +1,392 @@
++/*
++ * PXA2xx SPI DMA engine support.
++ *
++ * Copyright (C) 2013, Intel Corporation
++ * Author: Mika Westerberg <mika.westerberg at linux.intel.com>
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ */
++
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/dma-mapping.h>
++#include <linux/dmaengine.h>
++#include <linux/pxa2xx_ssp.h>
++#include <linux/scatterlist.h>
++#include <linux/sizes.h>
++#include <linux/spi/spi.h>
++#include <linux/spi/pxa2xx_spi.h>
++
++#include "spi-pxa2xx.h"
++
++static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
++				     enum dma_data_direction dir)
++{
++	int i, nents, len = drv_data->len;
++	struct scatterlist *sg;
++	struct device *dmadev;
++	struct sg_table *sgt;
++	void *buf, *pbuf;
++
++	/*
++	 * Some DMA controllers have problems transferring buffers that are
++	 * not multiple of 4 bytes. So we truncate the transfer so that it
++	 * is suitable for such controllers, and handle the trailing bytes
++	 * manually after the DMA completes.
++	 *
++	 * REVISIT: It would be better if this information could be
++	 * retrieved directly from the DMA device in a similar way than
++	 * ->copy_align etc. is done.
++	 */
++	len = ALIGN(drv_data->len, 4);
++
++	if (dir == DMA_TO_DEVICE) {
++		dmadev = drv_data->tx_chan->device->dev;
++		sgt = &drv_data->tx_sgt;
++		buf = drv_data->tx;
++		drv_data->tx_map_len = len;
++	} else {
++		dmadev = drv_data->rx_chan->device->dev;
++		sgt = &drv_data->rx_sgt;
++		buf = drv_data->rx;
++		drv_data->rx_map_len = len;
++	}
++
++	nents = DIV_ROUND_UP(len, SZ_2K);
++	if (nents != sgt->nents) {
++		int ret;
++
++		sg_free_table(sgt);
++		ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
++		if (ret)
++			return ret;
++	}
++
++	pbuf = buf;
++	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
++		size_t bytes = min_t(size_t, len, SZ_2K);
++
++		if (buf)
++			sg_set_buf(sg, pbuf, bytes);
++		else
++			sg_set_buf(sg, drv_data->dummy, bytes);
++
++		pbuf += bytes;
++		len -= bytes;
++	}
++
++	nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
++	if (!nents)
++		return -ENOMEM;
++
++	return nents;
++}
++
++static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
++					enum dma_data_direction dir)
++{
++	struct device *dmadev;
++	struct sg_table *sgt;
++
++	if (dir == DMA_TO_DEVICE) {
++		dmadev = drv_data->tx_chan->device->dev;
++		sgt = &drv_data->tx_sgt;
++	} else {
++		dmadev = drv_data->rx_chan->device->dev;
++		sgt = &drv_data->rx_sgt;
++	}
++
++	dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
++}
++
++static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
++{
++	if (!drv_data->dma_mapped)
++		return;
++
++	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
++	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
++
++	drv_data->dma_mapped = 0;
++}
++
++static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
++					     bool error)
++{
++	struct spi_message *msg = drv_data->cur_msg;
++
++	/*
++	 * It is possible that one CPU is handling ROR interrupt and other
++	 * just gets DMA completion. Calling pump_transfers() twice for the
++	 * same transfer leads to problems thus we prevent concurrent calls
++	 * by using ->dma_running.
++	 */
++	if (atomic_dec_and_test(&drv_data->dma_running)) {
++		void __iomem *reg = drv_data->ioaddr;
++
++		/*
++		 * If the other CPU is still handling the ROR interrupt we
++		 * might not know about the error yet. So we re-check the
++		 * ROR bit here before we clear the status register.
++		 */
++		if (!error) {
++			u32 status = read_SSSR(reg) & drv_data->mask_sr;
++			error = status & SSSR_ROR;
++		}
++
++		/* Clear status & disable interrupts */
++		write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
++		write_SSSR_CS(drv_data, drv_data->clear_sr);
++		if (!pxa25x_ssp_comp(drv_data))
++			write_SSTO(0, reg);
++
++		if (!error) {
++			pxa2xx_spi_unmap_dma_buffers(drv_data);
++
++			/* Handle the last bytes of unaligned transfer */
++			drv_data->tx += drv_data->tx_map_len;
++			drv_data->write(drv_data);
++
++			drv_data->rx += drv_data->rx_map_len;
++			drv_data->read(drv_data);
++
++			msg->actual_length += drv_data->len;
++			msg->state = pxa2xx_spi_next_transfer(drv_data);
++		} else {
++			/* In case we got an error we disable the SSP now */
++			write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
++
++			msg->state = ERROR_STATE;
++		}
++
++		tasklet_schedule(&drv_data->pump_transfers);
++	}
++}
++
++static void pxa2xx_spi_dma_callback(void *data)
++{
++	pxa2xx_spi_dma_transfer_complete(data, false);
++}
++
++static struct dma_async_tx_descriptor *
++pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
++			   enum dma_transfer_direction dir)
++{
++	struct pxa2xx_spi_master *pdata = drv_data->master_info;
++	struct chip_data *chip = drv_data->cur_chip;
++	enum dma_slave_buswidth width;
++	struct dma_slave_config cfg;
++	struct dma_chan *chan;
++	struct sg_table *sgt;
++	int nents, ret;
++
++	switch (drv_data->n_bytes) {
++	case 1:
++		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
++		break;
++	case 2:
++		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
++		break;
++	default:
++		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
++		break;
++	}
++
++	memset(&cfg, 0, sizeof(cfg));
++	cfg.direction = dir;
++
++	if (dir == DMA_MEM_TO_DEV) {
++		cfg.dst_addr = drv_data->ssdr_physical;
++		cfg.dst_addr_width = width;
++		cfg.dst_maxburst = chip->dma_burst_size;
++		cfg.slave_id = pdata->tx_slave_id;
++
++		sgt = &drv_data->tx_sgt;
++		nents = drv_data->tx_nents;
++		chan = drv_data->tx_chan;
++	} else {
++		cfg.src_addr = drv_data->ssdr_physical;
++		cfg.src_addr_width = width;
++		cfg.src_maxburst = chip->dma_burst_size;
++		cfg.slave_id = pdata->rx_slave_id;
++
++		sgt = &drv_data->rx_sgt;
++		nents = drv_data->rx_nents;
++		chan = drv_data->rx_chan;
++	}
++
++	ret = dmaengine_slave_config(chan, &cfg);
++	if (ret) {
++		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
++		return NULL;
++	}
++
++	return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
++				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
++}
++
++static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param)
++{
++	const struct pxa2xx_spi_master *pdata = param;
++
++	return chan->chan_id == pdata->tx_chan_id ||
++	       chan->chan_id == pdata->rx_chan_id;
++}
++
++bool pxa2xx_spi_dma_is_possible(size_t len)
++{
++	return len <= MAX_DMA_LEN;
++}
++
++int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
++{
++	const struct chip_data *chip = drv_data->cur_chip;
++	int ret;
++
++	if (!chip->enable_dma)
++		return 0;
++
++	/* Don't bother with DMA if we can't do even a single burst */
++	if (drv_data->len < chip->dma_burst_size)
++		return 0;
++
++	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
++	if (ret <= 0) {
++		dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
++		return 0;
++	}
++
++	drv_data->tx_nents = ret;
++
++	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
++	if (ret <= 0) {
++		pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
++		dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
++		return 0;
++	}
++
++	drv_data->rx_nents = ret;
++	return 1;
++}
++
++irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
++{
++	u32 status;
++
++	status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr;
++	if (status & SSSR_ROR) {
++		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
++
++		dmaengine_terminate_all(drv_data->rx_chan);
++		dmaengine_terminate_all(drv_data->tx_chan);
++
++		pxa2xx_spi_dma_transfer_complete(drv_data, true);
++		return IRQ_HANDLED;
++	}
++
++	return IRQ_NONE;
++}
++
++int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
++{
++	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
++
++	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
++	if (!tx_desc) {
++		dev_err(&drv_data->pdev->dev,
++			"failed to get DMA TX descriptor\n");
++		return -EBUSY;
++	}
++
++	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
++	if (!rx_desc) {
++		dev_err(&drv_data->pdev->dev,
++			"failed to get DMA RX descriptor\n");
++		return -EBUSY;
++	}
++
++	/* We are ready when RX completes */
++	rx_desc->callback = pxa2xx_spi_dma_callback;
++	rx_desc->callback_param = drv_data;
++
++	dmaengine_submit(rx_desc);
++	dmaengine_submit(tx_desc);
++	return 0;
++}
++
++void pxa2xx_spi_dma_start(struct driver_data *drv_data)
++{
++	dma_async_issue_pending(drv_data->rx_chan);
++	dma_async_issue_pending(drv_data->tx_chan);
++
++	atomic_set(&drv_data->dma_running, 1);
++}
++
++int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
++{
++	struct pxa2xx_spi_master *pdata = drv_data->master_info;
++	dma_cap_mask_t mask;
++
++	dma_cap_zero(mask);
++	dma_cap_set(DMA_SLAVE, mask);
++
++	drv_data->dummy = devm_kzalloc(&drv_data->pdev->dev, SZ_2K, GFP_KERNEL);
++	if (!drv_data->dummy)
++		return -ENOMEM;
++
++	drv_data->tx_chan = dma_request_channel(mask, pxa2xx_spi_dma_filter,
++						pdata);
++	if (!drv_data->tx_chan)
++		return -ENODEV;
++
++	drv_data->rx_chan = dma_request_channel(mask, pxa2xx_spi_dma_filter,
++						pdata);
++	if (!drv_data->rx_chan) {
++		dma_release_channel(drv_data->tx_chan);
++		drv_data->tx_chan = NULL;
++		return -ENODEV;
++	}
++
++	return 0;
++}
++
++void pxa2xx_spi_dma_release(struct driver_data *drv_data)
++{
++	if (drv_data->rx_chan) {
++		dmaengine_terminate_all(drv_data->rx_chan);
++		dma_release_channel(drv_data->rx_chan);
++		sg_free_table(&drv_data->rx_sgt);
++		drv_data->rx_chan = NULL;
++	}
++	if (drv_data->tx_chan) {
++		dmaengine_terminate_all(drv_data->tx_chan);
++		dma_release_channel(drv_data->tx_chan);
++		sg_free_table(&drv_data->tx_sgt);
++		drv_data->tx_chan = NULL;
++	}
++}
++
++void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
++{
++}
++
++int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
++					   struct spi_device *spi,
++					   u8 bits_per_word, u32 *burst_code,
++					   u32 *threshold)
++{
++	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
++
++	/*
++	 * If the DMA burst size is given in chip_info we use that,
++	 * otherwise we use the default. Also we use the default FIFO
++	 * thresholds for now.
++	 */
++	*burst_code = chip_info ? chip_info->dma_burst_size : 32;
++	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
++		   | SSCR1_TxTresh(TX_THRESH_DFLT);
++
++	return 0;
++}
+diff --git a/drivers/spi/spi-pxa2xx-pci.c b/drivers/spi/spi-pxa2xx-pci.c
+index cf95587..a64d54e 100644
+--- a/drivers/spi/spi-pxa2xx-pci.c
++++ b/drivers/spi/spi-pxa2xx-pci.c
+@@ -7,165 +7,131 @@
+ #include <linux/of_device.h>
+ #include <linux/module.h>
+ #include <linux/spi/pxa2xx_spi.h>
++#include <linux/clk.h>
+
+-struct ce4100_info {
+-	struct ssp_device ssp;
+-	struct platform_device *spi_pdev;
+-};
+-
+-static DEFINE_MUTEX(ssp_lock);
+-static LIST_HEAD(ssp_list);
+-
+-struct ssp_device *pxa_ssp_request(int port, const char *label)
+-{
+-	struct ssp_device *ssp = NULL;
+-
+-	mutex_lock(&ssp_lock);
+-
+-	list_for_each_entry(ssp, &ssp_list, node) {
+-		if (ssp->port_id == port && ssp->use_count == 0) {
+-			ssp->use_count++;
+-			ssp->label = label;
+-			break;
+-		}
+-	}
++static bool use_dma = 1;
++module_param(use_dma, bool, 0);
++MODULE_PARM_DESC(use_dma, "use_dma=1 (enable DMA)/use_dma=0(disable DMA)");
+
+-	mutex_unlock(&ssp_lock);
+-
+-	if (&ssp->node == &ssp_list)
+-		return NULL;
++enum {
++        PORT_CE4100,
++        PORT_BYT,
++};
+
+-	return ssp;
+-}
+-EXPORT_SYMBOL_GPL(pxa_ssp_request);
++struct pxa2xx_spi_pci_config {
++        enum pxa_ssp_type type;
++        int num_cs;
++        int bus_num;
++        int tx_slave_id;
++        int tx_chan_id;
++        int rx_slave_id;
++        int rx_chan_id;
++};
+
+-void pxa_ssp_free(struct ssp_device *ssp)
+-{
+-	mutex_lock(&ssp_lock);
+-	if (ssp->use_count) {
+-		ssp->use_count--;
+-		ssp->label = NULL;
+-	} else
+-		dev_err(&ssp->pdev->dev, "device already free\n");
+-	mutex_unlock(&ssp_lock);
+-}
+-EXPORT_SYMBOL_GPL(pxa_ssp_free);
++static struct pxa2xx_spi_pci_config spi_pci_configs[] = {
++        [PORT_CE4100] = {
++                .type = PXA25x_SSP,
++                .num_cs =  -1,
++                .bus_num = -1,
++		.tx_slave_id = -1,
++		.tx_chan_id = -1,
++		.rx_slave_id = -1,
++		.rx_chan_id = -1,
++        },
++        [PORT_BYT] = {
++                .type = LPSS_SSP,
++                .num_cs = 1,
++		.bus_num = 0,
++		.tx_slave_id = 0,
++		.tx_chan_id = 0,
++		.rx_slave_id = 1,
++		.rx_chan_id = 1,
++        },
++};
+
+-static int ce4100_spi_probe(struct pci_dev *dev,
++static int pxa2xx_spi_probe(struct pci_dev *dev,
+ 		const struct pci_device_id *ent)
+ {
++	struct pxa2xx_spi_pci_config *c;
++	struct platform_device_info pi;
+ 	int ret;
+-	resource_size_t phys_beg;
+-	resource_size_t phys_len;
+-	struct ce4100_info *spi_info;
+ 	struct platform_device *pdev;
+ 	struct pxa2xx_spi_master spi_pdata;
+ 	struct ssp_device *ssp;
+
+-	ret = pci_enable_device(dev);
++	ret = pcim_enable_device(dev);
+ 	if (ret)
+ 		return ret;
+
+-	phys_beg = pci_resource_start(dev, 0);
+-	phys_len = pci_resource_len(dev, 0);
+-
+-	if (!request_mem_region(phys_beg, phys_len,
+-				"CE4100 SPI")) {
+-		dev_err(&dev->dev, "Can't request register space.\n");
+-		ret = -EBUSY;
++	ret = pcim_iomap_regions(dev, 1 << 0, "PXA2xx SPI");
++	if (ret)
+ 		return ret;
+-	}
+
+-	pdev = platform_device_alloc("pxa2xx-spi", dev->devfn);
+-	spi_info = kzalloc(sizeof(*spi_info), GFP_KERNEL);
+-	if (!pdev || !spi_info ) {
+-		ret = -ENOMEM;
+-		goto err_nomem;
+-	}
+-	memset(&spi_pdata, 0, sizeof(spi_pdata));
+-	spi_pdata.num_chipselect = dev->devfn;
+
+-	ret = platform_device_add_data(pdev, &spi_pdata, sizeof(spi_pdata));
+-	if (ret)
+-		goto err_nomem;
++	c = &spi_pci_configs[ent->driver_data];
+
+-	pdev->dev.parent = &dev->dev;
+-	pdev->dev.of_node = dev->dev.of_node;
+-	ssp = &spi_info->ssp;
++	memset(&spi_pdata, 0, sizeof(spi_pdata));
++	spi_pdata.num_chipselect = (c->num_cs >= 0) ? c->num_cs : dev->devfn;
++	spi_pdata.tx_slave_id = c->tx_slave_id;
++	spi_pdata.tx_chan_id = c->tx_chan_id;
++	spi_pdata.rx_slave_id = c->rx_slave_id;
++	spi_pdata.rx_chan_id = c->rx_chan_id;
++	if (use_dma)
++		spi_pdata.enable_dma = c->rx_slave_id >= 0 && c->tx_slave_id >= 0;
++
++	ssp = &spi_pdata.ssp;
+ 	ssp->phys_base = pci_resource_start(dev, 0);
+-	ssp->mmio_base = ioremap(phys_beg, phys_len);
++	ssp->mmio_base = pcim_iomap_table(dev)[0];
+ 	if (!ssp->mmio_base) {
+-		dev_err(&pdev->dev, "failed to ioremap() registers\n");
+-		ret = -EIO;
+-		goto err_nomem;
++		dev_err(&dev->dev, "failed to ioremap() registers\n");
++		return -EIO;
+ 	}
++	ssp->clk =  devm_clk_get(&dev->dev, NULL);
+ 	ssp->irq = dev->irq;
+-	ssp->port_id = pdev->id;
+-	ssp->type = PXA25x_SSP;
++	ssp->port_id = (c->bus_num >= 0) ? c->bus_num : dev->devfn;
++	ssp->type = c->type;
+
+-	mutex_lock(&ssp_lock);
+-	list_add(&ssp->node, &ssp_list);
+-	mutex_unlock(&ssp_lock);
++	memset(&pi, 0, sizeof(pi));
++	pi.parent = &dev->dev;
++	pi.name = "pxa2xx-spi";
++	pi.id = ssp->port_id;
++	pi.data = &spi_pdata;
++	pi.size_data = sizeof(spi_pdata);
+
+-	pci_set_drvdata(dev, spi_info);
++	pdev = platform_device_register_full(&pi);
++	if (!pdev)
++		return -ENOMEM;
+
+-	ret = platform_device_add(pdev);
+-	if (ret)
+-		goto err_dev_add;
+-
+-	return ret;
+-
+-err_dev_add:
+-	pci_set_drvdata(dev, NULL);
+-	mutex_lock(&ssp_lock);
+-	list_del(&ssp->node);
+-	mutex_unlock(&ssp_lock);
+-	iounmap(ssp->mmio_base);
+-
+-err_nomem:
+-	release_mem_region(phys_beg, phys_len);
+-	platform_device_put(pdev);
+-	kfree(spi_info);
+-	return ret;
++	pci_set_drvdata(dev, pdev);
++
++	return 0;
+ }
+
+-static void ce4100_spi_remove(struct pci_dev *dev)
++static void pxa2xx_spi_remove(struct pci_dev *dev)
+ {
+-	struct ce4100_info *spi_info;
+-	struct ssp_device *ssp;
+-
+-	spi_info = pci_get_drvdata(dev);
+-	ssp = &spi_info->ssp;
+-	platform_device_unregister(spi_info->spi_pdev);
+-
+-	iounmap(ssp->mmio_base);
+-	release_mem_region(pci_resource_start(dev, 0),
+-			pci_resource_len(dev, 0));
+-
+-	mutex_lock(&ssp_lock);
+-	list_del(&ssp->node);
+-	mutex_unlock(&ssp_lock);
++	struct platform_device *pdev = pci_get_drvdata(dev);
+
+-	pci_set_drvdata(dev, NULL);
+-	pci_disable_device(dev);
+-	kfree(spi_info);
++	platform_device_unregister(pdev);
+ }
+
+-static DEFINE_PCI_DEVICE_TABLE(ce4100_spi_devices) = {
+-	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x2e6a) },
++static DEFINE_PCI_DEVICE_TABLE(pxa2xx_spi_devices) = {
++	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x2e6a),
++	  .driver_data =  PORT_CE4100 },
++	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f0e),
++	  .driver_data = PORT_BYT },
+ 	{ },
+ };
+-MODULE_DEVICE_TABLE(pci, ce4100_spi_devices);
++MODULE_DEVICE_TABLE(pci, pxa2xx_spi_devices);
+
+-static struct pci_driver ce4100_spi_driver = {
+-	.name           = "ce4100_spi",
+-	.id_table       = ce4100_spi_devices,
+-	.probe          = ce4100_spi_probe,
+-	.remove         = ce4100_spi_remove,
++static struct pci_driver pxa2xx_spi_driver = {
++	.name           = "pxa2xx_spi",
++	.id_table       = pxa2xx_spi_devices,
++	.probe          = pxa2xx_spi_probe,
++	.remove         = pxa2xx_spi_remove,
+ };
+
+-module_pci_driver(ce4100_spi_driver);
++module_pci_driver(pxa2xx_spi_driver);
+
+-MODULE_DESCRIPTION("CE4100 PCI-SPI glue code for PXA's driver");
++MODULE_DESCRIPTION("PCI-SPI glue code for PXA's driver");
+ MODULE_LICENSE("GPL v2");
+ MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy at linutronix.de>");
+diff --git a/drivers/spi/spi-pxa2xx-pxadma.c b/drivers/spi/spi-pxa2xx-pxadma.c
+new file mode 100644
+index 0000000..2916efc
+--- /dev/null
++++ b/drivers/spi/spi-pxa2xx-pxadma.c
+@@ -0,0 +1,490 @@
++/*
++ * PXA2xx SPI private DMA support.
++ *
++ * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
++ */
++
++#include <linux/init.h>
++#include <linux/delay.h>
++#include <linux/device.h>
++#include <linux/dma-mapping.h>
++#include <linux/pxa2xx_ssp.h>
++#include <linux/spi/spi.h>
++#include <linux/spi/pxa2xx_spi.h>
++
++#include "spi-pxa2xx.h"
++
++#define DMA_INT_MASK		(DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
++#define RESET_DMA_CHANNEL	(DCSR_NODESC | DMA_INT_MASK)
++
++bool pxa2xx_spi_dma_is_possible(size_t len)
++{
++	/* Try to map dma buffer and do a dma transfer if successful, but
++	 * only if the length is non-zero and less than MAX_DMA_LEN.
++	 *
++	 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
++	 * of PIO instead.  Care is needed above because the transfer may
++	 * have have been passed with buffers that are already dma mapped.
++	 * A zero-length transfer in PIO mode will not try to write/read
++	 * to/from the buffers
++	 *
++	 * REVISIT large transfers are exactly where we most want to be
++	 * using DMA.  If this happens much, split those transfers into
++	 * multiple DMA segments rather than forcing PIO.
++	 */
++	return len > 0 && len <= MAX_DMA_LEN;
++}
++
++int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
++{
++	struct spi_message *msg = drv_data->cur_msg;
++	struct device *dev = &msg->spi->dev;
++
++	if (!drv_data->cur_chip->enable_dma)
++		return 0;
++
++	if (msg->is_dma_mapped)
++		return  drv_data->rx_dma && drv_data->tx_dma;
++
++	if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
++		return 0;
++
++	/* Modify setup if rx buffer is null */
++	if (drv_data->rx == NULL) {
++		*drv_data->null_dma_buf = 0;
++		drv_data->rx = drv_data->null_dma_buf;
++		drv_data->rx_map_len = 4;
++	} else
++		drv_data->rx_map_len = drv_data->len;
++
++
++	/* Modify setup if tx buffer is null */
++	if (drv_data->tx == NULL) {
++		*drv_data->null_dma_buf = 0;
++		drv_data->tx = drv_data->null_dma_buf;
++		drv_data->tx_map_len = 4;
++	} else
++		drv_data->tx_map_len = drv_data->len;
++
++	/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
++	 * so we flush the cache *before* invalidating it, in case
++	 * the tx and rx buffers overlap.
++	 */
++	drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
++					drv_data->tx_map_len, DMA_TO_DEVICE);
++	if (dma_mapping_error(dev, drv_data->tx_dma))
++		return 0;
++
++	/* Stream map the rx buffer */
++	drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
++					drv_data->rx_map_len, DMA_FROM_DEVICE);
++	if (dma_mapping_error(dev, drv_data->rx_dma)) {
++		dma_unmap_single(dev, drv_data->tx_dma,
++					drv_data->tx_map_len, DMA_TO_DEVICE);
++		return 0;
++	}
++
++	return 1;
++}
++
++static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
++{
++	struct device *dev;
++
++	if (!drv_data->dma_mapped)
++		return;
++
++	if (!drv_data->cur_msg->is_dma_mapped) {
++		dev = &drv_data->cur_msg->spi->dev;
++		dma_unmap_single(dev, drv_data->rx_dma,
++					drv_data->rx_map_len, DMA_FROM_DEVICE);
++		dma_unmap_single(dev, drv_data->tx_dma,
++					drv_data->tx_map_len, DMA_TO_DEVICE);
++	}
++
++	drv_data->dma_mapped = 0;
++}
++
++static int wait_ssp_rx_stall(void const __iomem *ioaddr)
++{
++	unsigned long limit = loops_per_jiffy << 1;
++
++	while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
++		cpu_relax();
++
++	return limit;
++}
++
++static int wait_dma_channel_stop(int channel)
++{
++	unsigned long limit = loops_per_jiffy << 1;
++
++	while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
++		cpu_relax();
++
++	return limit;
++}
++
++static void pxa2xx_spi_dma_error_stop(struct driver_data *drv_data,
++				      const char *msg)
++{
++	void __iomem *reg = drv_data->ioaddr;
++
++	/* Stop and reset */
++	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
++	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
++	write_SSSR_CS(drv_data, drv_data->clear_sr);
++	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
++	if (!pxa25x_ssp_comp(drv_data))
++		write_SSTO(0, reg);
++	pxa2xx_spi_flush(drv_data);
++	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
++
++	pxa2xx_spi_unmap_dma_buffers(drv_data);
++
++	dev_err(&drv_data->pdev->dev, "%s\n", msg);
++
++	drv_data->cur_msg->state = ERROR_STATE;
++	tasklet_schedule(&drv_data->pump_transfers);
++}
++
++static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data)
++{
++	void __iomem *reg = drv_data->ioaddr;
++	struct spi_message *msg = drv_data->cur_msg;
++
++	/* Clear and disable interrupts on SSP and DMA channels*/
++	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
++	write_SSSR_CS(drv_data, drv_data->clear_sr);
++	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
++	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
++
++	if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
++		dev_err(&drv_data->pdev->dev,
++			"dma_handler: dma rx channel stop failed\n");
++
++	if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
++		dev_err(&drv_data->pdev->dev,
++			"dma_transfer: ssp rx stall failed\n");
++
++	pxa2xx_spi_unmap_dma_buffers(drv_data);
++
++	/* update the buffer pointer for the amount completed in dma */
++	drv_data->rx += drv_data->len -
++			(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
++
++	/* read trailing data from fifo, it does not matter how many
++	 * bytes are in the fifo just read until buffer is full
++	 * or fifo is empty, which ever occurs first */
++	drv_data->read(drv_data);
++
++	/* return count of what was actually read */
++	msg->actual_length += drv_data->len -
++				(drv_data->rx_end - drv_data->rx);
++
++	/* Transfer delays and chip select release are
++	 * handled in pump_transfers or giveback
++	 */
++
++	/* Move to next transfer */
++	msg->state = pxa2xx_spi_next_transfer(drv_data);
++
++	/* Schedule transfer tasklet */
++	tasklet_schedule(&drv_data->pump_transfers);
++}
++
++void pxa2xx_spi_dma_handler(int channel, void *data)
++{
++	struct driver_data *drv_data = data;
++	u32 irq_status = DCSR(channel) & DMA_INT_MASK;
++
++	if (irq_status & DCSR_BUSERR) {
++
++		if (channel == drv_data->tx_channel)
++			pxa2xx_spi_dma_error_stop(drv_data,
++				"dma_handler: bad bus address on tx channel");
++		else
++			pxa2xx_spi_dma_error_stop(drv_data,
++				"dma_handler: bad bus address on rx channel");
++		return;
++	}
++
++	/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
++	if ((channel == drv_data->tx_channel)
++		&& (irq_status & DCSR_ENDINTR)
++		&& (drv_data->ssp_type == PXA25x_SSP)) {
++
++		/* Wait for rx to stall */
++		if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
++			dev_err(&drv_data->pdev->dev,
++				"dma_handler: ssp rx stall failed\n");
++
++		/* finish this transfer, start the next */
++		pxa2xx_spi_dma_transfer_complete(drv_data);
++	}
++}
++
++irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
++{
++	u32 irq_status;
++	void __iomem *reg = drv_data->ioaddr;
++
++	irq_status = read_SSSR(reg) & drv_data->mask_sr;
++	if (irq_status & SSSR_ROR) {
++		pxa2xx_spi_dma_error_stop(drv_data,
++					  "dma_transfer: fifo overrun");
++		return IRQ_HANDLED;
++	}
++
++	/* Check for false positive timeout */
++	if ((irq_status & SSSR_TINT)
++		&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
++		write_SSSR(SSSR_TINT, reg);
++		return IRQ_HANDLED;
++	}
++
++	if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
++
++		/* Clear and disable timeout interrupt, do the rest in
++		 * dma_transfer_complete */
++		if (!pxa25x_ssp_comp(drv_data))
++			write_SSTO(0, reg);
++
++		/* finish this transfer, start the next */
++		pxa2xx_spi_dma_transfer_complete(drv_data);
++
++		return IRQ_HANDLED;
++	}
++
++	/* Opps problem detected */
++	return IRQ_NONE;
++}
++
++int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
++{
++	u32 dma_width;
++
++	switch (drv_data->n_bytes) {
++	case 1:
++		dma_width = DCMD_WIDTH1;
++		break;
++	case 2:
++		dma_width = DCMD_WIDTH2;
++		break;
++	default:
++		dma_width = DCMD_WIDTH4;
++		break;
++	}
++
++	/* Setup rx DMA Channel */
++	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
++	DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
++	DTADR(drv_data->rx_channel) = drv_data->rx_dma;
++	if (drv_data->rx == drv_data->null_dma_buf)
++		/* No target address increment */
++		DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
++						| dma_width
++						| dma_burst
++						| drv_data->len;
++	else
++		DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
++						| DCMD_FLOWSRC
++						| dma_width
++						| dma_burst
++						| drv_data->len;
++
++	/* Setup tx DMA Channel */
++	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
++	DSADR(drv_data->tx_channel) = drv_data->tx_dma;
++	DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
++	if (drv_data->tx == drv_data->null_dma_buf)
++		/* No source address increment */
++		DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
++						| dma_width
++						| dma_burst
++						| drv_data->len;
++	else
++		DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
++						| DCMD_FLOWTRG
++						| dma_width
++						| dma_burst
++						| drv_data->len;
++
++	/* Enable dma end irqs on SSP to detect end of transfer */
++	if (drv_data->ssp_type == PXA25x_SSP)
++		DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
++
++	return 0;
++}
++
++void pxa2xx_spi_dma_start(struct driver_data *drv_data)
++{
++	DCSR(drv_data->rx_channel) |= DCSR_RUN;
++	DCSR(drv_data->tx_channel) |= DCSR_RUN;
++}
++
++int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
++{
++	struct device *dev = &drv_data->pdev->dev;
++	struct ssp_device *ssp = drv_data->ssp;
++
++	/* Get two DMA channels	(rx and tx) */
++	drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
++						DMA_PRIO_HIGH,
++						pxa2xx_spi_dma_handler,
++						drv_data);
++	if (drv_data->rx_channel < 0) {
++		dev_err(dev, "problem (%d) requesting rx channel\n",
++			drv_data->rx_channel);
++		return -ENODEV;
++	}
++	drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
++						DMA_PRIO_MEDIUM,
++						pxa2xx_spi_dma_handler,
++						drv_data);
++	if (drv_data->tx_channel < 0) {
++		dev_err(dev, "problem (%d) requesting tx channel\n",
++			drv_data->tx_channel);
++		pxa_free_dma(drv_data->rx_channel);
++		return -ENODEV;
++	}
++
++	DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
++	DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
++
++	return 0;
++}
++
++void pxa2xx_spi_dma_release(struct driver_data *drv_data)
++{
++	struct ssp_device *ssp = drv_data->ssp;
++
++	DRCMR(ssp->drcmr_rx) = 0;
++	DRCMR(ssp->drcmr_tx) = 0;
++
++	if (drv_data->tx_channel != 0)
++		pxa_free_dma(drv_data->tx_channel);
++	if (drv_data->rx_channel != 0)
++		pxa_free_dma(drv_data->rx_channel);
++}
++
++void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
++{
++	if (drv_data->rx_channel != -1)
++		DRCMR(drv_data->ssp->drcmr_rx) =
++			DRCMR_MAPVLD | drv_data->rx_channel;
++	if (drv_data->tx_channel != -1)
++		DRCMR(drv_data->ssp->drcmr_tx) =
++			DRCMR_MAPVLD | drv_data->tx_channel;
++}
++
++int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
++					   struct spi_device *spi,
++					   u8 bits_per_word, u32 *burst_code,
++					   u32 *threshold)
++{
++	struct pxa2xx_spi_chip *chip_info =
++			(struct pxa2xx_spi_chip *)spi->controller_data;
++	int bytes_per_word;
++	int burst_bytes;
++	int thresh_words;
++	int req_burst_size;
++	int retval = 0;
++
++	/* Set the threshold (in registers) to equal the same amount of data
++	 * as represented by burst size (in bytes).  The computation below
++	 * is (burst_size rounded up to nearest 8 byte, word or long word)
++	 * divided by (bytes/register); the tx threshold is the inverse of
++	 * the rx, so that there will always be enough data in the rx fifo
++	 * to satisfy a burst, and there will always be enough space in the
++	 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
++	 * there is not enough space), there must always remain enough empty
++	 * space in the rx fifo for any data loaded to the tx fifo.
++	 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
++	 * will be 8, or half the fifo;
++	 * The threshold can only be set to 2, 4 or 8, but not 16, because
++	 * to burst 16 to the tx fifo, the fifo would have to be empty;
++	 * however, the minimum fifo trigger level is 1, and the tx will
++	 * request service when the fifo is at this level, with only 15 spaces.
++	 */
++
++	/* find bytes/word */
++	if (bits_per_word <= 8)
++		bytes_per_word = 1;
++	else if (bits_per_word <= 16)
++		bytes_per_word = 2;
++	else
++		bytes_per_word = 4;
++
++	/* use struct pxa2xx_spi_chip->dma_burst_size if available */
++	if (chip_info)
++		req_burst_size = chip_info->dma_burst_size;
++	else {
++		switch (chip->dma_burst_size) {
++		default:
++			/* if the default burst size is not set,
++			 * do it now */
++			chip->dma_burst_size = DCMD_BURST8;
++		case DCMD_BURST8:
++			req_burst_size = 8;
++			break;
++		case DCMD_BURST16:
++			req_burst_size = 16;
++			break;
++		case DCMD_BURST32:
++			req_burst_size = 32;
++			break;
++		}
++	}
++	if (req_burst_size <= 8) {
++		*burst_code = DCMD_BURST8;
++		burst_bytes = 8;
++	} else if (req_burst_size <= 16) {
++		if (bytes_per_word == 1) {
++			/* don't burst more than 1/2 the fifo */
++			*burst_code = DCMD_BURST8;
++			burst_bytes = 8;
++			retval = 1;
++		} else {
++			*burst_code = DCMD_BURST16;
++			burst_bytes = 16;
++		}
++	} else {
++		if (bytes_per_word == 1) {
++			/* don't burst more than 1/2 the fifo */
++			*burst_code = DCMD_BURST8;
++			burst_bytes = 8;
++			retval = 1;
++		} else if (bytes_per_word == 2) {
++			/* don't burst more than 1/2 the fifo */
++			*burst_code = DCMD_BURST16;
++			burst_bytes = 16;
++			retval = 1;
++		} else {
++			*burst_code = DCMD_BURST32;
++			burst_bytes = 32;
++		}
++	}
++
++	thresh_words = burst_bytes / bytes_per_word;
++
++	/* thresh_words will be between 2 and 8 */
++	*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
++			| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
++
++	return retval;
++}
+diff --git a/drivers/spi/spi-pxa2xx.c b/drivers/spi/spi-pxa2xx.c
+index 5c8c4f5..b4651b8 100644
+--- a/drivers/spi/spi-pxa2xx.c
++++ b/drivers/spi/spi-pxa2xx.c
+@@ -1,5 +1,6 @@
+ /*
+  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
++ * Copyright (C) 2013, Intel Corporation
+  *
+  * This program is free software; you can redistribute it and/or modify
+  * it under the terms of the GNU General Public License as published by
+@@ -24,17 +25,24 @@
+ #include <linux/interrupt.h>
+ #include <linux/platform_device.h>
+ #include <linux/spi/pxa2xx_spi.h>
+-#include <linux/dma-mapping.h>
+ #include <linux/spi/spi.h>
+ #include <linux/workqueue.h>
+ #include <linux/delay.h>
+ #include <linux/gpio.h>
+ #include <linux/slab.h>
++#include <linux/clk.h>
++#include <linux/pm_runtime.h>
++#include <linux/acpi.h>
+
+ #include <asm/io.h>
+ #include <asm/irq.h>
+ #include <asm/delay.h>
+
++#include "spi-pxa2xx.h"
++
++static bool use_dma = 1;
++module_param(use_dma, bool, 0);
++MODULE_PARM_DESC(use_dma, "use_dma=1 (enable DMA)/use_dma=0(disable DMA)");
+
+ MODULE_AUTHOR("Stephen Street");
+ MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
+@@ -45,12 +53,6 @@ MODULE_ALIAS("platform:pxa2xx-spi");
+
+ #define TIMOUT_DFLT		1000
+
+-#define DMA_INT_MASK		(DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
+-#define RESET_DMA_CHANNEL	(DCSR_NODESC | DMA_INT_MASK)
+-#define IS_DMA_ALIGNED(x)	((((u32)(x)) & 0x07) == 0)
+-#define MAX_DMA_LEN		8191
+-#define DMA_ALIGNMENT		8
+-
+ /*
+  * for testing SSCR1 changes that require SSP restart, basically
+  * everything except the service and interrupt enables, the pxa270 developer
+@@ -65,115 +67,107 @@ MODULE_ALIAS("platform:pxa2xx-spi");
+ 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
+ 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
+
+-#define DEFINE_SSP_REG(reg, off) \
+-static inline u32 read_##reg(void const __iomem *p) \
+-{ return __raw_readl(p + (off)); } \
+-\
+-static inline void write_##reg(u32 v, void __iomem *p) \
+-{ __raw_writel(v, p + (off)); }
+-
+-DEFINE_SSP_REG(SSCR0, 0x00)
+-DEFINE_SSP_REG(SSCR1, 0x04)
+-DEFINE_SSP_REG(SSSR, 0x08)
+-DEFINE_SSP_REG(SSITR, 0x0c)
+-DEFINE_SSP_REG(SSDR, 0x10)
+-DEFINE_SSP_REG(SSTO, 0x28)
+-DEFINE_SSP_REG(SSPSP, 0x2c)
+-
+-#define START_STATE ((void*)0)
+-#define RUNNING_STATE ((void*)1)
+-#define DONE_STATE ((void*)2)
+-#define ERROR_STATE ((void*)-1)
+-
+-#define QUEUE_RUNNING 0
+-#define QUEUE_STOPPED 1
+-
+-struct driver_data {
+-	/* Driver model hookup */
+-	struct platform_device *pdev;
+-
+-	/* SSP Info */
+-	struct ssp_device *ssp;
++#define LPSS_RX_THRESH_DFLT	64
++#define LPSS_TX_LOTHRESH_DFLT	160
++#define LPSS_TX_HITHRESH_DFLT	224
+
+-	/* SPI framework hookup */
+-	enum pxa_ssp_type ssp_type;
+-	struct spi_master *master;
++/* Offset from drv_data->lpss_base */
++#define SSP_REG			0x0c
++#define GENERAL_REG		0x08
++#define SPI_CS_CONTROL		0x18
++#define SPI_CS_CONTROL_SW_MODE	BIT(0)
++#define SPI_CS_CONTROL_CS_HIGH	BIT(1)
+
+-	/* PXA hookup */
+-	struct pxa2xx_spi_master *master_info;
+-
+-	/* DMA setup stuff */
+-	int rx_channel;
+-	int tx_channel;
+-	u32 *null_dma_buf;
+-
+-	/* SSP register addresses */
+-	void __iomem *ioaddr;
+-	u32 ssdr_physical;
+-
+-	/* SSP masks*/
+-	u32 dma_cr1;
+-	u32 int_cr1;
+-	u32 clear_sr;
+-	u32 mask_sr;
+-
+-	/* Driver message queue */
+-	struct workqueue_struct	*workqueue;
+-	struct work_struct pump_messages;
+-	spinlock_t lock;
+-	struct list_head queue;
+-	int busy;
+-	int run;
+-
+-	/* Message Transfer pump */
+-	struct tasklet_struct pump_transfers;
+-
+-	/* Current message transfer state info */
+-	struct spi_message* cur_msg;
+-	struct spi_transfer* cur_transfer;
+-	struct chip_data *cur_chip;
+-	size_t len;
+-	void *tx;
+-	void *tx_end;
+-	void *rx;
+-	void *rx_end;
+-	int dma_mapped;
+-	dma_addr_t rx_dma;
+-	dma_addr_t tx_dma;
+-	size_t rx_map_len;
+-	size_t tx_map_len;
+-	u8 n_bytes;
+-	u32 dma_width;
+-	int (*write)(struct driver_data *drv_data);
+-	int (*read)(struct driver_data *drv_data);
+-	irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
+-	void (*cs_control)(u32 command);
+-};
++static bool is_lpss_ssp(const struct driver_data *drv_data)
++{
++	return drv_data->ssp_type == LPSS_SSP;
++}
+
+-struct chip_data {
+-	u32 cr0;
+-	u32 cr1;
+-	u32 psp;
+-	u32 timeout;
+-	u8 n_bytes;
+-	u32 dma_width;
+-	u32 dma_burst_size;
+-	u32 threshold;
+-	u32 dma_threshold;
+-	u8 enable_dma;
+-	u8 bits_per_word;
+-	u32 speed_hz;
+-	union {
+-		int gpio_cs;
+-		unsigned int frm;
+-	};
+-	int gpio_cs_inverted;
+-	int (*write)(struct driver_data *drv_data);
+-	int (*read)(struct driver_data *drv_data);
+-	void (*cs_control)(u32 command);
+-};
++/*
++ * Read and write LPSS SSP private registers. Caller must first check that
++ * is_lpss_ssp() returns true before these can be called.
++ */
++static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
++{
++	WARN_ON(!drv_data->lpss_base);
++	return readl(drv_data->lpss_base + offset);
++}
++
++static void __lpss_ssp_write_priv(struct driver_data *drv_data,
++				  unsigned offset, u32 value)
++{
++	WARN_ON(!drv_data->lpss_base);
++	writel(value, drv_data->lpss_base + offset);
++}
++
++/*
++ * lpss_ssp_setup - perform LPSS SSP specific setup
++ * @drv_data: pointer to the driver private data
++ *
++ * Perform LPSS SSP specific setup. This function must be called first if
++ * one is going to use LPSS SSP private registers.
++ */
++static void lpss_ssp_setup(struct driver_data *drv_data)
++{
++	unsigned offset = 0x400;
++	u32 value, orig;
++
++	if (!is_lpss_ssp(drv_data))
++		return;
++
++	/*
++	 * Perform auto-detection of the LPSS SSP private registers. They
++	 * can be either at 1k or 2k offset from the base address.
++	 */
++	orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
++
++	value = orig | SPI_CS_CONTROL_SW_MODE;
++	writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
++	value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
++	if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
++		offset = 0x800;
++		goto detection_done;
++	}
++
++	value &= ~SPI_CS_CONTROL_SW_MODE;
++	writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
++	value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
++	if (value != orig) {
++		offset = 0x800;
++		goto detection_done;
++	}
++
++detection_done:
++	/* Now set the LPSS base */
++	drv_data->lpss_base = drv_data->ioaddr + offset;
++
++	/* Enable software chip select control */
++	value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
++	__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
++
++	/* Enable multiblock DMA transfers */
++	if (drv_data->master_info->enable_dma){
++		__lpss_ssp_write_priv(drv_data, SSP_REG, 1);
++		value = readl(drv_data->ioaddr + offset + GENERAL_REG);
++		value |= BIT(24);
++		__lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
++	}
++}
++
++static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
++{
++	u32 value;
++
++	if (!is_lpss_ssp(drv_data))
++		return;
+
+-static void pump_messages(struct work_struct *work);
++	value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
++	if (enable)
++		value &= ~SPI_CS_CONTROL_CS_HIGH;
++	else
++		value |= SPI_CS_CONTROL_CS_HIGH;
++	__lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
++}
+
+ static void cs_assert(struct driver_data *drv_data)
+ {
+@@ -189,8 +183,12 @@ static void cs_assert(struct driver_data *drv_data)
+ 		return;
+ 	}
+
+-	if (gpio_is_valid(chip->gpio_cs))
++	if (gpio_is_valid(chip->gpio_cs)) {
+ 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
++		return;
++	}
++
++	lpss_ssp_cs_control(drv_data, true);
+ }
+
+ static void cs_deassert(struct driver_data *drv_data)
+@@ -205,30 +203,15 @@ static void cs_deassert(struct driver_data *drv_data)
+ 		return;
+ 	}
+
+-	if (gpio_is_valid(chip->gpio_cs))
++	if (gpio_is_valid(chip->gpio_cs)) {
+ 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
+-}
+-
+-static void write_SSSR_CS(struct driver_data *drv_data, u32 val)
+-{
+-	void __iomem *reg = drv_data->ioaddr;
+-
+-	if (drv_data->ssp_type == CE4100_SSP)
+-		val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
++		return;
++	}
+
+-	write_SSSR(val, reg);
++	lpss_ssp_cs_control(drv_data, false);
+ }
+
+-static int pxa25x_ssp_comp(struct driver_data *drv_data)
+-{
+-	if (drv_data->ssp_type == PXA25x_SSP)
+-		return 1;
+-	if (drv_data->ssp_type == CE4100_SSP)
+-		return 1;
+-	return 0;
+-}
+-
+-static int flush(struct driver_data *drv_data)
++int pxa2xx_spi_flush(struct driver_data *drv_data)
+ {
+ 	unsigned long limit = loops_per_jiffy << 1;
+
+@@ -354,7 +337,7 @@ static int u32_reader(struct driver_data *drv_data)
+ 	return drv_data->rx == drv_data->rx_end;
+ }
+
+-static void *next_transfer(struct driver_data *drv_data)
++void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
+ {
+ 	struct spi_message *msg = drv_data->cur_msg;
+ 	struct spi_transfer *trans = drv_data->cur_transfer;
+@@ -370,89 +353,15 @@ static void *next_transfer(struct driver_data *drv_data)
+ 		return DONE_STATE;
+ }
+
+-static int map_dma_buffers(struct driver_data *drv_data)
+-{
+-	struct spi_message *msg = drv_data->cur_msg;
+-	struct device *dev = &msg->spi->dev;
+-
+-	if (!drv_data->cur_chip->enable_dma)
+-		return 0;
+-
+-	if (msg->is_dma_mapped)
+-		return  drv_data->rx_dma && drv_data->tx_dma;
+-
+-	if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
+-		return 0;
+-
+-	/* Modify setup if rx buffer is null */
+-	if (drv_data->rx == NULL) {
+-		*drv_data->null_dma_buf = 0;
+-		drv_data->rx = drv_data->null_dma_buf;
+-		drv_data->rx_map_len = 4;
+-	} else
+-		drv_data->rx_map_len = drv_data->len;
+-
+-
+-	/* Modify setup if tx buffer is null */
+-	if (drv_data->tx == NULL) {
+-		*drv_data->null_dma_buf = 0;
+-		drv_data->tx = drv_data->null_dma_buf;
+-		drv_data->tx_map_len = 4;
+-	} else
+-		drv_data->tx_map_len = drv_data->len;
+-
+-	/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
+-	 * so we flush the cache *before* invalidating it, in case
+-	 * the tx and rx buffers overlap.
+-	 */
+-	drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
+-					drv_data->tx_map_len, DMA_TO_DEVICE);
+-	if (dma_mapping_error(dev, drv_data->tx_dma))
+-		return 0;
+-
+-	/* Stream map the rx buffer */
+-	drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
+-					drv_data->rx_map_len, DMA_FROM_DEVICE);
+-	if (dma_mapping_error(dev, drv_data->rx_dma)) {
+-		dma_unmap_single(dev, drv_data->tx_dma,
+-					drv_data->tx_map_len, DMA_TO_DEVICE);
+-		return 0;
+-	}
+-
+-	return 1;
+-}
+-
+-static void unmap_dma_buffers(struct driver_data *drv_data)
+-{
+-	struct device *dev;
+-
+-	if (!drv_data->dma_mapped)
+-		return;
+-
+-	if (!drv_data->cur_msg->is_dma_mapped) {
+-		dev = &drv_data->cur_msg->spi->dev;
+-		dma_unmap_single(dev, drv_data->rx_dma,
+-					drv_data->rx_map_len, DMA_FROM_DEVICE);
+-		dma_unmap_single(dev, drv_data->tx_dma,
+-					drv_data->tx_map_len, DMA_TO_DEVICE);
+-	}
+-
+-	drv_data->dma_mapped = 0;
+-}
+-
+ /* caller already set message->status; dma and pio irqs are blocked */
+ static void giveback(struct driver_data *drv_data)
+ {
+ 	struct spi_transfer* last_transfer;
+-	unsigned long flags;
+ 	struct spi_message *msg;
+
+-	spin_lock_irqsave(&drv_data->lock, flags);
+ 	msg = drv_data->cur_msg;
+ 	drv_data->cur_msg = NULL;
+ 	drv_data->cur_transfer = NULL;
+-	queue_work(drv_data->workqueue, &drv_data->pump_messages);
+-	spin_unlock_irqrestore(&drv_data->lock, flags);
+
+ 	last_transfer = list_entry(msg->transfers.prev,
+ 					struct spi_transfer,
+@@ -481,13 +390,7 @@ static void giveback(struct driver_data *drv_data)
+ 		 */
+
+ 		/* get a pointer to the next message, if any */
+-		spin_lock_irqsave(&drv_data->lock, flags);
+-		if (list_empty(&drv_data->queue))
+-			next_msg = NULL;
+-		else
+-			next_msg = list_entry(drv_data->queue.next,
+-					struct spi_message, queue);
+-		spin_unlock_irqrestore(&drv_data->lock, flags);
++		next_msg = spi_get_next_queued_message(drv_data->master);
+
+ 		/* see if the next and current messages point
+ 		 * to the same chip
+@@ -498,168 +401,10 @@ static void giveback(struct driver_data *drv_data)
+ 			cs_deassert(drv_data);
+ 	}
+
+-	msg->state = NULL;
+-	if (msg->complete)
+-		msg->complete(msg->context);
+-
++	spi_finalize_current_message(drv_data->master);
+ 	drv_data->cur_chip = NULL;
+ }
+
+-static int wait_ssp_rx_stall(void const __iomem *ioaddr)
+-{
+-	unsigned long limit = loops_per_jiffy << 1;
+-
+-	while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
+-		cpu_relax();
+-
+-	return limit;
+-}
+-
+-static int wait_dma_channel_stop(int channel)
+-{
+-	unsigned long limit = loops_per_jiffy << 1;
+-
+-	while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
+-		cpu_relax();
+-
+-	return limit;
+-}
+-
+-static void dma_error_stop(struct driver_data *drv_data, const char *msg)
+-{
+-	void __iomem *reg = drv_data->ioaddr;
+-
+-	/* Stop and reset */
+-	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
+-	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
+-	write_SSSR_CS(drv_data, drv_data->clear_sr);
+-	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
+-	if (!pxa25x_ssp_comp(drv_data))
+-		write_SSTO(0, reg);
+-	flush(drv_data);
+-	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
+-
+-	unmap_dma_buffers(drv_data);
+-
+-	dev_err(&drv_data->pdev->dev, "%s\n", msg);
+-
+-	drv_data->cur_msg->state = ERROR_STATE;
+-	tasklet_schedule(&drv_data->pump_transfers);
+-}
+-
+-static void dma_transfer_complete(struct driver_data *drv_data)
+-{
+-	void __iomem *reg = drv_data->ioaddr;
+-	struct spi_message *msg = drv_data->cur_msg;
+-
+-	/* Clear and disable interrupts on SSP and DMA channels*/
+-	write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
+-	write_SSSR_CS(drv_data, drv_data->clear_sr);
+-	DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
+-	DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
+-
+-	if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
+-		dev_err(&drv_data->pdev->dev,
+-			"dma_handler: dma rx channel stop failed\n");
+-
+-	if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
+-		dev_err(&drv_data->pdev->dev,
+-			"dma_transfer: ssp rx stall failed\n");
+-
+-	unmap_dma_buffers(drv_data);
+-
+-	/* update the buffer pointer for the amount completed in dma */
+-	drv_data->rx += drv_data->len -
+-			(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
+-
+-	/* read trailing data from fifo, it does not matter how many
+-	 * bytes are in the fifo just read until buffer is full
+-	 * or fifo is empty, which ever occurs first */
+-	drv_data->read(drv_data);
+-
+-	/* return count of what was actually read */
+-	msg->actual_length += drv_data->len -
+-				(drv_data->rx_end - drv_data->rx);
+-
+-	/* Transfer delays and chip select release are
+-	 * handled in pump_transfers or giveback
+-	 */
+-
+-	/* Move to next transfer */
+-	msg->state = next_transfer(drv_data);
+-
+-	/* Schedule transfer tasklet */
+-	tasklet_schedule(&drv_data->pump_transfers);
+-}
+-
+-static void dma_handler(int channel, void *data)
+-{
+-	struct driver_data *drv_data = data;
+-	u32 irq_status = DCSR(channel) & DMA_INT_MASK;
+-
+-	if (irq_status & DCSR_BUSERR) {
+-
+-		if (channel == drv_data->tx_channel)
+-			dma_error_stop(drv_data,
+-					"dma_handler: "
+-					"bad bus address on tx channel");
+-		else
+-			dma_error_stop(drv_data,
+-					"dma_handler: "
+-					"bad bus address on rx channel");
+-		return;
+-	}
+-
+-	/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
+-	if ((channel == drv_data->tx_channel)
+-		&& (irq_status & DCSR_ENDINTR)
+-		&& (drv_data->ssp_type == PXA25x_SSP)) {
+-
+-		/* Wait for rx to stall */
+-		if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
+-			dev_err(&drv_data->pdev->dev,
+-				"dma_handler: ssp rx stall failed\n");
+-
+-		/* finish this transfer, start the next */
+-		dma_transfer_complete(drv_data);
+-	}
+-}
+-
+-static irqreturn_t dma_transfer(struct driver_data *drv_data)
+-{
+-	u32 irq_status;
+-	void __iomem *reg = drv_data->ioaddr;
+-
+-	irq_status = read_SSSR(reg) & drv_data->mask_sr;
+-	if (irq_status & SSSR_ROR) {
+-		dma_error_stop(drv_data, "dma_transfer: fifo overrun");
+-		return IRQ_HANDLED;
+-	}
+-
+-	/* Check for false positive timeout */
+-	if ((irq_status & SSSR_TINT)
+-		&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
+-		write_SSSR(SSSR_TINT, reg);
+-		return IRQ_HANDLED;
+-	}
+-
+-	if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
+-
+-		/* Clear and disable timeout interrupt, do the rest in
+-		 * dma_transfer_complete */
+-		if (!pxa25x_ssp_comp(drv_data))
+-			write_SSTO(0, reg);
+-
+-		/* finish this transfer, start the next */
+-		dma_transfer_complete(drv_data);
+-
+-		return IRQ_HANDLED;
+-	}
+-
+-	/* Opps problem detected */
+-	return IRQ_NONE;
+-}
+-
+ static void reset_sccr1(struct driver_data *drv_data)
+ {
+ 	void __iomem *reg = drv_data->ioaddr;
+@@ -681,7 +426,7 @@ static void int_error_stop(struct driver_data *drv_data, const char* msg)
+ 	reset_sccr1(drv_data);
+ 	if (!pxa25x_ssp_comp(drv_data))
+ 		write_SSTO(0, reg);
+-	flush(drv_data);
++	pxa2xx_spi_flush(drv_data);
+ 	write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
+
+ 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
+@@ -709,7 +454,7 @@ static void int_transfer_complete(struct driver_data *drv_data)
+ 	 */
+
+ 	/* Move to next transfer */
+-	drv_data->cur_msg->state = next_transfer(drv_data);
++	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
+
+ 	/* Schedule transfer tasklet */
+ 	tasklet_schedule(&drv_data->pump_transfers);
+@@ -789,10 +534,20 @@ static irqreturn_t ssp_int(int irq, void *dev_id)
+ {
+ 	struct driver_data *drv_data = dev_id;
+ 	void __iomem *reg = drv_data->ioaddr;
+-	u32 sccr1_reg = read_SSCR1(reg);
++	u32 sccr1_reg;
+ 	u32 mask = drv_data->mask_sr;
+ 	u32 status;
+
++	/*
++	 * The IRQ might be shared with other peripherals so we must first
++	 * check that are we RPM suspended or not. If we are we assume that
++	 * the IRQ was not for us (we shouldn't be RPM suspended when the
++	 * interrupt is enabled).
++	 */
++	if (pm_runtime_suspended(&drv_data->pdev->dev))
++		return IRQ_NONE;
++
++	sccr1_reg = read_SSCR1(reg);
+ 	status = read_SSSR(reg);
+
+ 	/* Ignore possible writes if we don't need to write */
+@@ -820,106 +575,12 @@ static irqreturn_t ssp_int(int irq, void *dev_id)
+ 	return drv_data->transfer_handler(drv_data);
+ }
+
+-static int set_dma_burst_and_threshold(struct chip_data *chip,
+-				struct spi_device *spi,
+-				u8 bits_per_word, u32 *burst_code,
+-				u32 *threshold)
++static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
+ {
+-	struct pxa2xx_spi_chip *chip_info =
+-			(struct pxa2xx_spi_chip *)spi->controller_data;
+-	int bytes_per_word;
+-	int burst_bytes;
+-	int thresh_words;
+-	int req_burst_size;
+-	int retval = 0;
+-
+-	/* Set the threshold (in registers) to equal the same amount of data
+-	 * as represented by burst size (in bytes).  The computation below
+-	 * is (burst_size rounded up to nearest 8 byte, word or long word)
+-	 * divided by (bytes/register); the tx threshold is the inverse of
+-	 * the rx, so that there will always be enough data in the rx fifo
+-	 * to satisfy a burst, and there will always be enough space in the
+-	 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
+-	 * there is not enough space), there must always remain enough empty
+-	 * space in the rx fifo for any data loaded to the tx fifo.
+-	 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
+-	 * will be 8, or half the fifo;
+-	 * The threshold can only be set to 2, 4 or 8, but not 16, because
+-	 * to burst 16 to the tx fifo, the fifo would have to be empty;
+-	 * however, the minimum fifo trigger level is 1, and the tx will
+-	 * request service when the fifo is at this level, with only 15 spaces.
+-	 */
+-
+-	/* find bytes/word */
+-	if (bits_per_word <= 8)
+-		bytes_per_word = 1;
+-	else if (bits_per_word <= 16)
+-		bytes_per_word = 2;
+-	else
+-		bytes_per_word = 4;
+-
+-	/* use struct pxa2xx_spi_chip->dma_burst_size if available */
+-	if (chip_info)
+-		req_burst_size = chip_info->dma_burst_size;
+-	else {
+-		switch (chip->dma_burst_size) {
+-		default:
+-			/* if the default burst size is not set,
+-			 * do it now */
+-			chip->dma_burst_size = DCMD_BURST8;
+-		case DCMD_BURST8:
+-			req_burst_size = 8;
+-			break;
+-		case DCMD_BURST16:
+-			req_burst_size = 16;
+-			break;
+-		case DCMD_BURST32:
+-			req_burst_size = 32;
+-			break;
+-		}
+-	}
+-	if (req_burst_size <= 8) {
+-		*burst_code = DCMD_BURST8;
+-		burst_bytes = 8;
+-	} else if (req_burst_size <= 16) {
+-		if (bytes_per_word == 1) {
+-			/* don't burst more than 1/2 the fifo */
+-			*burst_code = DCMD_BURST8;
+-			burst_bytes = 8;
+-			retval = 1;
+-		} else {
+-			*burst_code = DCMD_BURST16;
+-			burst_bytes = 16;
+-		}
+-	} else {
+-		if (bytes_per_word == 1) {
+-			/* don't burst more than 1/2 the fifo */
+-			*burst_code = DCMD_BURST8;
+-			burst_bytes = 8;
+-			retval = 1;
+-		} else if (bytes_per_word == 2) {
+-			/* don't burst more than 1/2 the fifo */
+-			*burst_code = DCMD_BURST16;
+-			burst_bytes = 16;
+-			retval = 1;
+-		} else {
+-			*burst_code = DCMD_BURST32;
+-			burst_bytes = 32;
+-		}
+-	}
+-
+-	thresh_words = burst_bytes / bytes_per_word;
++	unsigned long ssp_clk = drv_data->max_clk_rate;
++	const struct ssp_device *ssp = drv_data->ssp;
+
+-	/* thresh_words will be between 2 and 8 */
+-	*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
+-			| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
+-
+-	return retval;
+-}
+-
+-static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
+-{
+-	unsigned long ssp_clk = clk_get_rate(ssp->clk);
++	rate = min_t(int, ssp_clk, rate);
+
+ 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
+ 		return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
+@@ -934,7 +595,6 @@ static void pump_transfers(unsigned long data)
+ 	struct spi_transfer *transfer = NULL;
+ 	struct spi_transfer *previous = NULL;
+ 	struct chip_data *chip = NULL;
+-	struct ssp_device *ssp = drv_data->ssp;
+ 	void __iomem *reg = drv_data->ioaddr;
+ 	u32 clk_div = 0;
+ 	u8 bits = 0;
+@@ -976,8 +636,8 @@ static void pump_transfers(unsigned long data)
+ 			cs_deassert(drv_data);
+ 	}
+
+-	/* Check for transfers that need multiple DMA segments */
+-	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
++	/* Check if we can DMA this transfer */
++	if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
+
+ 		/* reject already-mapped transfers; PIO won't always work */
+ 		if (message->is_dma_mapped
+@@ -1000,21 +660,20 @@ static void pump_transfers(unsigned long data)
+ 	}
+
+ 	/* Setup the transfer state based on the type of transfer */
+-	if (flush(drv_data) == 0) {
++	if (pxa2xx_spi_flush(drv_data) == 0) {
+ 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
+ 		message->status = -EIO;
+ 		giveback(drv_data);
+ 		return;
+ 	}
+ 	drv_data->n_bytes = chip->n_bytes;
+-	drv_data->dma_width = chip->dma_width;
+ 	drv_data->tx = (void *)transfer->tx_buf;
+ 	drv_data->tx_end = drv_data->tx + transfer->len;
+ 	drv_data->rx = transfer->rx_buf;
+ 	drv_data->rx_end = drv_data->rx + transfer->len;
+ 	drv_data->rx_dma = transfer->rx_dma;
+ 	drv_data->tx_dma = transfer->tx_dma;
+-	drv_data->len = transfer->len & DCMD_LENGTH;
++	drv_data->len = transfer->len;
+ 	drv_data->write = drv_data->tx ? chip->write : null_writer;
+ 	drv_data->read = drv_data->rx ? chip->read : null_reader;
+
+@@ -1031,25 +690,22 @@ static void pump_transfers(unsigned long data)
+ 		if (transfer->bits_per_word)
+ 			bits = transfer->bits_per_word;
+
+-		clk_div = ssp_get_clk_div(ssp, speed);
++		clk_div = ssp_get_clk_div(drv_data, speed);
+
+ 		if (bits <= 8) {
+ 			drv_data->n_bytes = 1;
+-			drv_data->dma_width = DCMD_WIDTH1;
+ 			drv_data->read = drv_data->read != null_reader ?
+ 						u8_reader : null_reader;
+ 			drv_data->write = drv_data->write != null_writer ?
+ 						u8_writer : null_writer;
+ 		} else if (bits <= 16) {
+ 			drv_data->n_bytes = 2;
+-			drv_data->dma_width = DCMD_WIDTH2;
+ 			drv_data->read = drv_data->read != null_reader ?
+ 						u16_reader : null_reader;
+ 			drv_data->write = drv_data->write != null_writer ?
+ 						u16_writer : null_writer;
+ 		} else if (bits <= 32) {
+ 			drv_data->n_bytes = 4;
+-			drv_data->dma_width = DCMD_WIDTH4;
+ 			drv_data->read = drv_data->read != null_reader ?
+ 						u32_reader : null_reader;
+ 			drv_data->write = drv_data->write != null_writer ?
+@@ -1058,7 +714,8 @@ static void pump_transfers(unsigned long data)
+ 		/* if bits/word is changed in dma mode, then must check the
+ 		 * thresholds and burst also */
+ 		if (chip->enable_dma) {
+-			if (set_dma_burst_and_threshold(chip, message->spi,
++			if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
++							message->spi,
+ 							bits, &dma_burst,
+ 							&dma_thresh))
+ 				if (printk_ratelimit())
+@@ -1077,70 +734,21 @@ static void pump_transfers(unsigned long data)
+
+ 	message->state = RUNNING_STATE;
+
+-	/* Try to map dma buffer and do a dma transfer if successful, but
+-	 * only if the length is non-zero and less than MAX_DMA_LEN.
+-	 *
+-	 * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
+-	 * of PIO instead.  Care is needed above because the transfer may
+-	 * have have been passed with buffers that are already dma mapped.
+-	 * A zero-length transfer in PIO mode will not try to write/read
+-	 * to/from the buffers
+-	 *
+-	 * REVISIT large transfers are exactly where we most want to be
+-	 * using DMA.  If this happens much, split those transfers into
+-	 * multiple DMA segments rather than forcing PIO.
+-	 */
+ 	drv_data->dma_mapped = 0;
+-	if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
+-		drv_data->dma_mapped = map_dma_buffers(drv_data);
++	if (pxa2xx_spi_dma_is_possible(drv_data->len))
++		drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
+ 	if (drv_data->dma_mapped) {
+
+ 		/* Ensure we have the correct interrupt handler */
+-		drv_data->transfer_handler = dma_transfer;
+-
+-		/* Setup rx DMA Channel */
+-		DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
+-		DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
+-		DTADR(drv_data->rx_channel) = drv_data->rx_dma;
+-		if (drv_data->rx == drv_data->null_dma_buf)
+-			/* No target address increment */
+-			DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
+-							| drv_data->dma_width
+-							| dma_burst
+-							| drv_data->len;
+-		else
+-			DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
+-							| DCMD_FLOWSRC
+-							| drv_data->dma_width
+-							| dma_burst
+-							| drv_data->len;
+-
+-		/* Setup tx DMA Channel */
+-		DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
+-		DSADR(drv_data->tx_channel) = drv_data->tx_dma;
+-		DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
+-		if (drv_data->tx == drv_data->null_dma_buf)
+-			/* No source address increment */
+-			DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
+-							| drv_data->dma_width
+-							| dma_burst
+-							| drv_data->len;
+-		else
+-			DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
+-							| DCMD_FLOWTRG
+-							| drv_data->dma_width
+-							| dma_burst
+-							| drv_data->len;
+-
+-		/* Enable dma end irqs on SSP to detect end of transfer */
+-		if (drv_data->ssp_type == PXA25x_SSP)
+-			DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
++		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
++
++		pxa2xx_spi_dma_prepare(drv_data, dma_burst);
+
+ 		/* Clear status and start DMA engine */
+ 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
+ 		write_SSSR(drv_data->clear_sr, reg);
+-		DCSR(drv_data->rx_channel) |= DCSR_RUN;
+-		DCSR(drv_data->tx_channel) |= DCSR_RUN;
++
++		pxa2xx_spi_dma_start(drv_data);
+ 	} else {
+ 		/* Ensure we have the correct interrupt handler	*/
+ 		drv_data->transfer_handler = interrupt_transfer;
+@@ -1150,6 +758,13 @@ static void pump_transfers(unsigned long data)
+ 		write_SSSR_CS(drv_data, drv_data->clear_sr);
+ 	}
+
++	if (is_lpss_ssp(drv_data)) {
++		if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
++			write_SSIRF(chip->lpss_rx_threshold, reg);
++		if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
++			write_SSITF(chip->lpss_tx_threshold, reg);
++	}
++
+ 	/* see if we need to reload the config registers */
+ 	if ((read_SSCR0(reg) != cr0)
+ 		|| (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
+@@ -1176,31 +791,12 @@ static void pump_transfers(unsigned long data)
+ 	write_SSCR1(cr1, reg);
+ }
+
+-static void pump_messages(struct work_struct *work)
++static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
++					   struct spi_message *msg)
+ {
+-	struct driver_data *drv_data =
+-		container_of(work, struct driver_data, pump_messages);
+-	unsigned long flags;
+-
+-	/* Lock queue and check for queue work */
+-	spin_lock_irqsave(&drv_data->lock, flags);
+-	if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
+-		drv_data->busy = 0;
+-		spin_unlock_irqrestore(&drv_data->lock, flags);
+-		return;
+-	}
+-
+-	/* Make sure we are not already running a message */
+-	if (drv_data->cur_msg) {
+-		spin_unlock_irqrestore(&drv_data->lock, flags);
+-		return;
+-	}
+-
+-	/* Extract head of queue */
+-	drv_data->cur_msg = list_entry(drv_data->queue.next,
+-					struct spi_message, queue);
+-	list_del_init(&drv_data->cur_msg->queue);
++	struct driver_data *drv_data = spi_master_get_devdata(master);
+
++	drv_data->cur_msg = msg;
+ 	/* Initial message state*/
+ 	drv_data->cur_msg->state = START_STATE;
+ 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
+@@ -1213,34 +809,27 @@ static void pump_messages(struct work_struct *work)
+
+ 	/* Mark as busy and launch transfers */
+ 	tasklet_schedule(&drv_data->pump_transfers);
+-
+-	drv_data->busy = 1;
+-	spin_unlock_irqrestore(&drv_data->lock, flags);
++	return 0;
+ }
+
+-static int transfer(struct spi_device *spi, struct spi_message *msg)
++static int pxa2xx_spi_prepare_transfer(struct spi_master *master)
+ {
+-	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
+-	unsigned long flags;
+-
+-	spin_lock_irqsave(&drv_data->lock, flags);
+-
+-	if (drv_data->run == QUEUE_STOPPED) {
+-		spin_unlock_irqrestore(&drv_data->lock, flags);
+-		return -ESHUTDOWN;
+-	}
+-
+-	msg->actual_length = 0;
+-	msg->status = -EINPROGRESS;
+-	msg->state = START_STATE;
++	struct driver_data *drv_data = spi_master_get_devdata(master);
+
+-	list_add_tail(&msg->queue, &drv_data->queue);
++	pm_runtime_get_sync(&drv_data->pdev->dev);
++	return 0;
++}
+
+-	if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
+-		queue_work(drv_data->workqueue, &drv_data->pump_messages);
++static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
++{
++	struct driver_data *drv_data = spi_master_get_devdata(master);
+
+-	spin_unlock_irqrestore(&drv_data->lock, flags);
++	/* Disable the SSP now */
++	write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
++		    drv_data->ioaddr);
+
++	pm_runtime_mark_last_busy(&drv_data->pdev->dev);
++	pm_runtime_put_autosuspend(&drv_data->pdev->dev);
+ 	return 0;
+ }
+
+@@ -1287,10 +876,18 @@ static int setup(struct spi_device *spi)
+ 	struct pxa2xx_spi_chip *chip_info = NULL;
+ 	struct chip_data *chip;
+ 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
+-	struct ssp_device *ssp = drv_data->ssp;
+ 	unsigned int clk_div;
+-	uint tx_thres = TX_THRESH_DFLT;
+-	uint rx_thres = RX_THRESH_DFLT;
++	uint tx_thres, tx_hi_thres, rx_thres;
++
++	if (is_lpss_ssp(drv_data)) {
++		tx_thres = LPSS_TX_LOTHRESH_DFLT;
++		tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
++		rx_thres = LPSS_RX_THRESH_DFLT;
++	} else {
++		tx_thres = TX_THRESH_DFLT;
++		tx_hi_thres = 0;
++		rx_thres = RX_THRESH_DFLT;
++	}
+
+ 	if (!pxa25x_ssp_comp(drv_data)
+ 		&& (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
+@@ -1330,8 +927,6 @@ static int setup(struct spi_device *spi)
+ 			chip->gpio_cs = -1;
+ 		chip->enable_dma = 0;
+ 		chip->timeout = TIMOUT_DFLT;
+-		chip->dma_burst_size = drv_data->master_info->enable_dma ?
+-					DCMD_BURST8 : 0;
+ 	}
+
+ 	/* protocol drivers may change the chip settings, so...
+@@ -1345,23 +940,37 @@ static int setup(struct spi_device *spi)
+ 			chip->timeout = chip_info->timeout;
+ 		if (chip_info->tx_threshold)
+ 			tx_thres = chip_info->tx_threshold;
++		if (chip_info->tx_hi_threshold)
++			tx_hi_thres = chip_info->tx_hi_threshold;
+ 		if (chip_info->rx_threshold)
+ 			rx_thres = chip_info->rx_threshold;
+ 		chip->enable_dma = drv_data->master_info->enable_dma;
+ 		chip->dma_threshold = 0;
+ 		if (chip_info->enable_loopback)
+ 			chip->cr1 = SSCR1_LBM;
++	} else if (ACPI_HANDLE(&spi->dev)) {
++		/*
++		 * Slave devices enumerated from ACPI namespace don't
++		 * usually have chip_info but we still might want to use
++		 * DMA with them.
++		 */
++		chip->enable_dma = drv_data->master_info->enable_dma;
+ 	}
+
+ 	chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
+ 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
+
++	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
++	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
++				| SSITF_TxHiThresh(tx_hi_thres);
++
+ 	/* set dma burst and threshold outside of chip_info path so that if
+ 	 * chip_info goes away after setting chip->enable_dma, the
+ 	 * burst and threshold can still respond to changes in bits_per_word */
+ 	if (chip->enable_dma) {
+ 		/* set up legal burst and threshold for dma */
+-		if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
++		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
++						spi->bits_per_word,
+ 						&chip->dma_burst_size,
+ 						&chip->dma_threshold)) {
+ 			dev_warn(&spi->dev, "in setup: DMA burst size reduced "
+@@ -1369,7 +978,7 @@ static int setup(struct spi_device *spi)
+ 		}
+ 	}
+
+-	clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
++	clk_div = ssp_get_clk_div(drv_data, spi->max_speed_hz);
+ 	chip->speed_hz = spi->max_speed_hz;
+
+ 	chip->cr0 = clk_div
+@@ -1382,32 +991,32 @@ static int setup(struct spi_device *spi)
+ 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
+ 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
+
++	if (spi->mode & SPI_LOOP)
++		chip->cr1 |= SSCR1_LBM;
++
+ 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
+ 	if (!pxa25x_ssp_comp(drv_data))
+ 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
+-			clk_get_rate(ssp->clk)
++			drv_data->max_clk_rate
+ 				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
+ 			chip->enable_dma ? "DMA" : "PIO");
+ 	else
+ 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
+-			clk_get_rate(ssp->clk) / 2
++			drv_data->max_clk_rate / 2
+ 				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
+ 			chip->enable_dma ? "DMA" : "PIO");
+
+ 	if (spi->bits_per_word <= 8) {
+ 		chip->n_bytes = 1;
+-		chip->dma_width = DCMD_WIDTH1;
+ 		chip->read = u8_reader;
+ 		chip->write = u8_writer;
+ 	} else if (spi->bits_per_word <= 16) {
+ 		chip->n_bytes = 2;
+-		chip->dma_width = DCMD_WIDTH2;
+ 		chip->read = u16_reader;
+ 		chip->write = u16_writer;
+ 	} else if (spi->bits_per_word <= 32) {
+ 		chip->cr0 |= SSCR0_EDSS;
+ 		chip->n_bytes = 4;
+-		chip->dma_width = DCMD_WIDTH4;
+ 		chip->read = u32_reader;
+ 		chip->write = u32_writer;
+ 	} else {
+@@ -1438,93 +1047,100 @@ static void cleanup(struct spi_device *spi)
+ 	kfree(chip);
+ }
+
+-static int init_queue(struct driver_data *drv_data)
++#ifdef CONFIG_ACPI
++static int pxa2xx_spi_acpi_add_dma(struct acpi_resource *res, void *data)
+ {
+-	INIT_LIST_HEAD(&drv_data->queue);
+-	spin_lock_init(&drv_data->lock);
+-
+-	drv_data->run = QUEUE_STOPPED;
+-	drv_data->busy = 0;
+-
+-	tasklet_init(&drv_data->pump_transfers,
+-			pump_transfers,	(unsigned long)drv_data);
+-
+-	INIT_WORK(&drv_data->pump_messages, pump_messages);
+-	drv_data->workqueue = create_singlethread_workqueue(
+-				dev_name(drv_data->master->dev.parent));
+-	if (drv_data->workqueue == NULL)
+-		return -EBUSY;
++	struct pxa2xx_spi_master *pdata = data;
++
++	if (res->type == ACPI_RESOURCE_TYPE_FIXED_DMA) {
++		const struct acpi_resource_fixed_dma *dma;
++
++		dma = &res->data.fixed_dma;
++		if (pdata->tx_slave_id < 0) {
++			pdata->tx_slave_id = dma->request_lines;
++			pdata->tx_chan_id = dma->channels;
++		} else if (pdata->rx_slave_id < 0) {
++			pdata->rx_slave_id = dma->request_lines;
++			pdata->rx_chan_id = dma->channels;
++		}
++	}
+
+-	return 0;
++	/* Tell the ACPI core to skip this resource */
++	return 1;
+ }
+
+-static int start_queue(struct driver_data *drv_data)
++static struct pxa2xx_spi_master *
++pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
+ {
+-	unsigned long flags;
+-
+-	spin_lock_irqsave(&drv_data->lock, flags);
+-
+-	if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
+-		spin_unlock_irqrestore(&drv_data->lock, flags);
+-		return -EBUSY;
++	struct pxa2xx_spi_master *pdata;
++	struct list_head resource_list;
++	struct acpi_device *adev;
++	struct ssp_device *ssp;
++	struct resource *res;
++	int devid;
++
++	if (!ACPI_HANDLE(&pdev->dev) ||
++	    acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
++		return NULL;
++
++	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
++	if (!pdata) {
++		dev_err(&pdev->dev,
++			"failed to allocate memory for platform data\n");
++		return NULL;
+ 	}
+
+-	drv_data->run = QUEUE_RUNNING;
+-	drv_data->cur_msg = NULL;
+-	drv_data->cur_transfer = NULL;
+-	drv_data->cur_chip = NULL;
+-	spin_unlock_irqrestore(&drv_data->lock, flags);
+-
+-	queue_work(drv_data->workqueue, &drv_data->pump_messages);
++	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++	if (!res)
++		return NULL;
+
+-	return 0;
+-}
++	ssp = &pdata->ssp;
+
+-static int stop_queue(struct driver_data *drv_data)
+-{
+-	unsigned long flags;
+-	unsigned limit = 500;
+-	int status = 0;
+-
+-	spin_lock_irqsave(&drv_data->lock, flags);
+-
+-	/* This is a bit lame, but is optimized for the common execution path.
+-	 * A wait_queue on the drv_data->busy could be used, but then the common
+-	 * execution path (pump_messages) would be required to call wake_up or
+-	 * friends on every SPI message. Do this instead */
+-	drv_data->run = QUEUE_STOPPED;
+-	while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) {
+-		spin_unlock_irqrestore(&drv_data->lock, flags);
+-		msleep(10);
+-		spin_lock_irqsave(&drv_data->lock, flags);
++	ssp->phys_base = res->start;
++	ssp->mmio_base = devm_request_and_ioremap(&pdev->dev, res);
++	if (!ssp->mmio_base) {
++		dev_err(&pdev->dev, "failed to ioremap mmio_base\n");
++		return NULL;
+ 	}
+
+-	if (!list_empty(&drv_data->queue) || drv_data->busy)
+-		status = -EBUSY;
++	ssp->clk = devm_clk_get(&pdev->dev, NULL);
++	ssp->irq = platform_get_irq(pdev, 0);
++	ssp->type = LPSS_SSP;
++	ssp->pdev = pdev;
+
+-	spin_unlock_irqrestore(&drv_data->lock, flags);
++	ssp->port_id = -1;
++	if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
++		ssp->port_id = devid;
+
+-	return status;
+-}
++	pdata->num_chipselect = 1;
++	pdata->rx_slave_id = -1;
++	pdata->tx_slave_id = -1;
+
+-static int destroy_queue(struct driver_data *drv_data)
+-{
+-	int status;
++	INIT_LIST_HEAD(&resource_list);
++	acpi_dev_get_resources(adev, &resource_list, pxa2xx_spi_acpi_add_dma,
++			       pdata);
++	acpi_dev_free_resource_list(&resource_list);
+
+-	status = stop_queue(drv_data);
+-	/* we are unloading the module or failing to load (only two calls
+-	 * to this routine), and neither call can handle a return value.
+-	 * However, destroy_workqueue calls flush_workqueue, and that will
+-	 * block until all work is done.  If the reason that stop_queue
+-	 * timed out is that the work will never finish, then it does no
+-	 * good to call destroy_workqueue, so return anyway. */
+-	if (status != 0)
+-		return status;
++	if (use_dma)
++		pdata->enable_dma = pdata->rx_slave_id >= 0 && pdata->tx_slave_id >= 0;
+
+-	destroy_workqueue(drv_data->workqueue);
++	return pdata;
++}
+
+-	return 0;
++static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
++	{ "INT33C0", 0 },
++	{ "INT33C1", 0 },
++	{ "80860F0E", 0 },
++	{ },
++};
++MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
++#else
++static inline struct pxa2xx_spi_master *
++pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
++{
++	return NULL;
+ }
++#endif
+
+ static int pxa2xx_spi_probe(struct platform_device *pdev)
+ {
+@@ -1535,11 +1151,21 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
+ 	struct ssp_device *ssp;
+ 	int status;
+
+-	platform_info = dev->platform_data;
++	platform_info = dev_get_platdata(dev);
++	if (!platform_info) {
++		platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
++		if (!platform_info) {
++			dev_err(&pdev->dev, "missing platform data\n");
++			return -ENODEV;
++		}
++	}
+
+ 	ssp = pxa_ssp_request(pdev->id, pdev->name);
+-	if (ssp == NULL) {
+-		dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
++	if (!ssp)
++		ssp = &platform_info->ssp;
++
++	if (!ssp->mmio_base) {
++		dev_err(&pdev->dev, "failed to get ssp\n");
+ 		return -ENODEV;
+ 	}
+
+@@ -1558,19 +1184,21 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
+
+ 	master->dev.parent = &pdev->dev;
+ 	master->dev.of_node = pdev->dev.of_node;
++	ACPI_HANDLE_SET(&master->dev, ACPI_HANDLE(&pdev->dev));
+ 	/* the spi->mode bits understood by this driver: */
+-	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
++	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
+
+-	master->bus_num = pdev->id;
++	master->bus_num = ssp->port_id;
+ 	master->num_chipselect = platform_info->num_chipselect;
+ 	master->dma_alignment = DMA_ALIGNMENT;
+ 	master->cleanup = cleanup;
+ 	master->setup = setup;
+-	master->transfer = transfer;
++	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
++	master->prepare_transfer_hardware = pxa2xx_spi_prepare_transfer;
++	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
+
+ 	drv_data->ssp_type = ssp->type;
+-	drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
+-						sizeof(struct driver_data)), 8);
++	drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
+
+ 	drv_data->ioaddr = ssp->mmio_base;
+ 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
+@@ -1581,7 +1209,7 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
+ 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
+ 	} else {
+ 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
+-		drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
++		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
+ 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
+ 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
+ 	}
+@@ -1597,35 +1225,17 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
+ 	drv_data->tx_channel = -1;
+ 	drv_data->rx_channel = -1;
+ 	if (platform_info->enable_dma) {
+-
+-		/* Get two DMA channels	(rx and tx) */
+-		drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
+-							DMA_PRIO_HIGH,
+-							dma_handler,
+-							drv_data);
+-		if (drv_data->rx_channel < 0) {
+-			dev_err(dev, "problem (%d) requesting rx channel\n",
+-				drv_data->rx_channel);
+-			status = -ENODEV;
+-			goto out_error_irq_alloc;
++		status = pxa2xx_spi_dma_setup(drv_data);
++		if (status) {
++			dev_warn(dev, "failed to setup DMA, using PIO\n");
++			platform_info->enable_dma = false;
+ 		}
+-		drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
+-							DMA_PRIO_MEDIUM,
+-							dma_handler,
+-							drv_data);
+-		if (drv_data->tx_channel < 0) {
+-			dev_err(dev, "problem (%d) requesting tx channel\n",
+-				drv_data->tx_channel);
+-			status = -ENODEV;
+-			goto out_error_dma_alloc;
+-		}
+-
+-		DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
+-		DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
+ 	}
+
+ 	/* Enable SOC clock */
+-	clk_enable(ssp->clk);
++	clk_prepare_enable(ssp->clk);
++
++	drv_data->max_clk_rate = clk_get_rate(ssp->clk);
+
+ 	/* Load default SSP configuration */
+ 	write_SSCR0(0, drv_data->ioaddr);
+@@ -1640,41 +1250,26 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
+ 		write_SSTO(0, drv_data->ioaddr);
+ 	write_SSPSP(0, drv_data->ioaddr);
+
+-	/* Initial and start queue */
+-	status = init_queue(drv_data);
+-	if (status != 0) {
+-		dev_err(&pdev->dev, "problem initializing queue\n");
+-		goto out_error_clock_enabled;
+-	}
+-	status = start_queue(drv_data);
+-	if (status != 0) {
+-		dev_err(&pdev->dev, "problem starting queue\n");
+-		goto out_error_clock_enabled;
+-	}
++	lpss_ssp_setup(drv_data);
++
++	tasklet_init(&drv_data->pump_transfers, pump_transfers,
++		     (unsigned long)drv_data);
+
+ 	/* Register with the SPI framework */
+ 	platform_set_drvdata(pdev, drv_data);
+ 	status = spi_register_master(master);
+ 	if (status != 0) {
+ 		dev_err(&pdev->dev, "problem registering spi master\n");
+-		goto out_error_queue_alloc;
++		goto out_error_clock_enabled;
+ 	}
+
+-	return status;
++	pm_runtime_forbid(&pdev->dev);
+
+-out_error_queue_alloc:
+-	destroy_queue(drv_data);
++	return status;
+
+ out_error_clock_enabled:
+-	clk_disable(ssp->clk);
+-
+-out_error_dma_alloc:
+-	if (drv_data->tx_channel != -1)
+-		pxa_free_dma(drv_data->tx_channel);
+-	if (drv_data->rx_channel != -1)
+-		pxa_free_dma(drv_data->rx_channel);
+-
+-out_error_irq_alloc:
++	clk_disable_unprepare(ssp->clk);
++	pxa2xx_spi_dma_release(drv_data);
+ 	free_irq(ssp->irq, drv_data);
+
+ out_error_master_alloc:
+@@ -1687,37 +1282,23 @@ static int pxa2xx_spi_remove(struct platform_device *pdev)
+ {
+ 	struct driver_data *drv_data = platform_get_drvdata(pdev);
+ 	struct ssp_device *ssp;
+-	int status = 0;
+
+ 	if (!drv_data)
+ 		return 0;
+ 	ssp = drv_data->ssp;
+
+-	/* Remove the queue */
+-	status = destroy_queue(drv_data);
+-	if (status != 0)
+-		/* the kernel does not check the return status of this
+-		 * this routine (mod->exit, within the kernel).  Therefore
+-		 * nothing is gained by returning from here, the module is
+-		 * going away regardless, and we should not leave any more
+-		 * resources allocated than necessary.  We cannot free the
+-		 * message memory in drv_data->queue, but we can release the
+-		 * resources below.  I think the kernel should honor -EBUSY
+-		 * returns but... */
+-		dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
+-			"complete, message memory not freed\n");
++	pm_runtime_get_sync(&pdev->dev);
+
+ 	/* Disable the SSP at the peripheral and SOC level */
+ 	write_SSCR0(0, drv_data->ioaddr);
+-	clk_disable(ssp->clk);
++	clk_disable_unprepare(ssp->clk);
+
+ 	/* Release DMA */
+-	if (drv_data->master_info->enable_dma) {
+-		DRCMR(ssp->drcmr_rx) = 0;
+-		DRCMR(ssp->drcmr_tx) = 0;
+-		pxa_free_dma(drv_data->tx_channel);
+-		pxa_free_dma(drv_data->rx_channel);
+-	}
++	if (drv_data->master_info->enable_dma)
++		pxa2xx_spi_dma_release(drv_data);
++
++	pm_runtime_put_noidle(&pdev->dev);
++	pm_runtime_disable(&pdev->dev);
+
+ 	/* Release IRQ */
+ 	free_irq(ssp->irq, drv_data);
+@@ -1749,11 +1330,11 @@ static int pxa2xx_spi_suspend(struct device *dev)
+ 	struct ssp_device *ssp = drv_data->ssp;
+ 	int status = 0;
+
+-	status = stop_queue(drv_data);
++	status = spi_master_suspend(drv_data->master);
+ 	if (status != 0)
+ 		return status;
+ 	write_SSCR0(0, drv_data->ioaddr);
+-	clk_disable(ssp->clk);
++	clk_disable_unprepare(ssp->clk);
+
+ 	return 0;
+ }
+@@ -1764,18 +1345,15 @@ static int pxa2xx_spi_resume(struct device *dev)
+ 	struct ssp_device *ssp = drv_data->ssp;
+ 	int status = 0;
+
+-	if (drv_data->rx_channel != -1)
+-		DRCMR(drv_data->ssp->drcmr_rx) =
+-			DRCMR_MAPVLD | drv_data->rx_channel;
+-	if (drv_data->tx_channel != -1)
+-		DRCMR(drv_data->ssp->drcmr_tx) =
+-			DRCMR_MAPVLD | drv_data->tx_channel;
++	pxa2xx_spi_dma_resume(drv_data);
+
+ 	/* Enable the SSP clock */
+-	clk_enable(ssp->clk);
++	clk_prepare_enable(ssp->clk);
++
++	lpss_ssp_setup(drv_data);
+
+ 	/* Start the queue running */
+-	status = start_queue(drv_data);
++	status = spi_master_resume(drv_data->master);
+ 	if (status != 0) {
+ 		dev_err(dev, "problem starting queue (%d)\n", status);
+ 		return status;
+@@ -1783,20 +1361,38 @@ static int pxa2xx_spi_resume(struct device *dev)
+
+ 	return 0;
+ }
++#endif
++
++#ifdef CONFIG_PM_RUNTIME
++static int pxa2xx_spi_runtime_suspend(struct device *dev)
++{
++	struct driver_data *drv_data = dev_get_drvdata(dev);
++
++	clk_disable_unprepare(drv_data->ssp->clk);
++	return 0;
++}
++
++static int pxa2xx_spi_runtime_resume(struct device *dev)
++{
++	struct driver_data *drv_data = dev_get_drvdata(dev);
++
++	clk_prepare_enable(drv_data->ssp->clk);
++	return 0;
++}
++#endif
+
+ static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
+-	.suspend	= pxa2xx_spi_suspend,
+-	.resume		= pxa2xx_spi_resume,
++	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
++	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
++			   pxa2xx_spi_runtime_resume, NULL)
+ };
+-#endif
+
+ static struct platform_driver driver = {
+ 	.driver = {
+ 		.name	= "pxa2xx-spi",
+ 		.owner	= THIS_MODULE,
+-#ifdef CONFIG_PM
+ 		.pm	= &pxa2xx_spi_pm_ops,
+-#endif
++		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
+ 	},
+ 	.probe = pxa2xx_spi_probe,
+ 	.remove = pxa2xx_spi_remove,
+diff --git a/drivers/spi/spi-pxa2xx.h b/drivers/spi/spi-pxa2xx.h
+new file mode 100644
+index 0000000..5adc2a1
+--- /dev/null
++++ b/drivers/spi/spi-pxa2xx.h
+@@ -0,0 +1,221 @@
++/*
++ * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
++ * Copyright (C) 2013, Intel Corporation
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ */
++
++#ifndef SPI_PXA2XX_H
++#define SPI_PXA2XX_H
++
++#include <linux/atomic.h>
++#include <linux/dmaengine.h>
++#include <linux/errno.h>
++#include <linux/io.h>
++#include <linux/interrupt.h>
++#include <linux/platform_device.h>
++#include <linux/pxa2xx_ssp.h>
++#include <linux/scatterlist.h>
++#include <linux/sizes.h>
++#include <linux/spi/spi.h>
++#include <linux/spi/pxa2xx_spi.h>
++
++struct driver_data {
++	/* Driver model hookup */
++	struct platform_device *pdev;
++
++	/* SSP Info */
++	struct ssp_device *ssp;
++
++	/* SPI framework hookup */
++	enum pxa_ssp_type ssp_type;
++	struct spi_master *master;
++
++	/* PXA hookup */
++	struct pxa2xx_spi_master *master_info;
++
++	/* PXA private DMA setup stuff */
++	int rx_channel;
++	int tx_channel;
++	u32 *null_dma_buf;
++
++	/* SSP register addresses */
++	void __iomem *ioaddr;
++	u32 ssdr_physical;
++
++	/* SSP masks*/
++	u32 dma_cr1;
++	u32 int_cr1;
++	u32 clear_sr;
++	u32 mask_sr;
++
++	/* Maximun clock rate */
++	unsigned long max_clk_rate;
++
++	/* Message Transfer pump */
++	struct tasklet_struct pump_transfers;
++
++	/* DMA engine support */
++	struct dma_chan *rx_chan;
++	struct dma_chan *tx_chan;
++	struct sg_table rx_sgt;
++	struct sg_table tx_sgt;
++	int rx_nents;
++	int tx_nents;
++	void *dummy;
++	atomic_t dma_running;
++
++	/* Current message transfer state info */
++	struct spi_message *cur_msg;
++	struct spi_transfer *cur_transfer;
++	struct chip_data *cur_chip;
++	size_t len;
++	void *tx;
++	void *tx_end;
++	void *rx;
++	void *rx_end;
++	int dma_mapped;
++	dma_addr_t rx_dma;
++	dma_addr_t tx_dma;
++	size_t rx_map_len;
++	size_t tx_map_len;
++	u8 n_bytes;
++	int (*write)(struct driver_data *drv_data);
++	int (*read)(struct driver_data *drv_data);
++	irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
++	void (*cs_control)(u32 command);
++
++	void __iomem *lpss_base;
++};
++
++struct chip_data {
++	u32 cr0;
++	u32 cr1;
++	u32 psp;
++	u32 timeout;
++	u8 n_bytes;
++	u32 dma_burst_size;
++	u32 threshold;
++	u32 dma_threshold;
++	u16 lpss_rx_threshold;
++	u16 lpss_tx_threshold;
++	u8 enable_dma;
++	u8 bits_per_word;
++	u32 speed_hz;
++	union {
++		int gpio_cs;
++		unsigned int frm;
++	};
++	int gpio_cs_inverted;
++	int (*write)(struct driver_data *drv_data);
++	int (*read)(struct driver_data *drv_data);
++	void (*cs_control)(u32 command);
++};
++
++#define DEFINE_SSP_REG(reg, off) \
++static inline u32 read_##reg(void const __iomem *p) \
++{ return __raw_readl(p + (off)); } \
++\
++static inline void write_##reg(u32 v, void __iomem *p) \
++{ __raw_writel(v, p + (off)); }
++
++DEFINE_SSP_REG(SSCR0, 0x00)
++DEFINE_SSP_REG(SSCR1, 0x04)
++DEFINE_SSP_REG(SSSR, 0x08)
++DEFINE_SSP_REG(SSITR, 0x0c)
++DEFINE_SSP_REG(SSDR, 0x10)
++DEFINE_SSP_REG(SSTO, 0x28)
++DEFINE_SSP_REG(SSPSP, 0x2c)
++DEFINE_SSP_REG(SSITF, SSITF)
++DEFINE_SSP_REG(SSIRF, SSIRF)
++
++#define START_STATE ((void *)0)
++#define RUNNING_STATE ((void *)1)
++#define DONE_STATE ((void *)2)
++#define ERROR_STATE ((void *)-1)
++
++#define IS_DMA_ALIGNED(x)	IS_ALIGNED((unsigned long)(x), DMA_ALIGNMENT)
++#define DMA_ALIGNMENT		8
++
++static inline int pxa25x_ssp_comp(struct driver_data *drv_data)
++{
++	if (drv_data->ssp_type == PXA25x_SSP)
++		return 1;
++	if (drv_data->ssp_type == CE4100_SSP)
++		return 1;
++	return 0;
++}
++
++static inline void write_SSSR_CS(struct driver_data *drv_data, u32 val)
++{
++	void __iomem *reg = drv_data->ioaddr;
++
++	if (drv_data->ssp_type == CE4100_SSP)
++		val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
++
++	write_SSSR(val, reg);
++}
++
++extern int pxa2xx_spi_flush(struct driver_data *drv_data);
++extern void *pxa2xx_spi_next_transfer(struct driver_data *drv_data);
++
++/*
++ * Select the right DMA implementation.
++ */
++#if defined(CONFIG_SPI_PXA2XX_PXADMA)
++#define SPI_PXA2XX_USE_DMA	1
++#define MAX_DMA_LEN		8191
++#define DEFAULT_DMA_CR1		(SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE)
++#elif defined(CONFIG_SPI_PXA2XX_DMA)
++#define SPI_PXA2XX_USE_DMA	1
++#define MAX_DMA_LEN		SZ_64K
++#define DEFAULT_DMA_CR1		(SSCR1_TSRE | SSCR1_RSRE | SSCR1_TRAIL)
++#else
++#undef SPI_PXA2XX_USE_DMA
++#define MAX_DMA_LEN		0
++#define DEFAULT_DMA_CR1		0
++#endif
++
++#ifdef SPI_PXA2XX_USE_DMA
++extern bool pxa2xx_spi_dma_is_possible(size_t len);
++extern int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data);
++extern irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data);
++extern int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst);
++extern void pxa2xx_spi_dma_start(struct driver_data *drv_data);
++extern int pxa2xx_spi_dma_setup(struct driver_data *drv_data);
++extern void pxa2xx_spi_dma_release(struct driver_data *drv_data);
++extern void pxa2xx_spi_dma_resume(struct driver_data *drv_data);
++extern int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
++						  struct spi_device *spi,
++						  u8 bits_per_word,
++						  u32 *burst_code,
++						  u32 *threshold);
++#else
++static inline bool pxa2xx_spi_dma_is_possible(size_t len) { return false; }
++static inline int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
++{
++	return 0;
++}
++#define pxa2xx_spi_dma_transfer NULL
++static inline void pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
++					  u32 dma_burst) {}
++static inline void pxa2xx_spi_dma_start(struct driver_data *drv_data) {}
++static inline int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
++{
++	return 0;
++}
++static inline void pxa2xx_spi_dma_release(struct driver_data *drv_data) {}
++static inline void pxa2xx_spi_dma_resume(struct driver_data *drv_data) {}
++static inline int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
++							 struct spi_device *spi,
++							 u8 bits_per_word,
++							 u32 *burst_code,
++							 u32 *threshold)
++{
++	return -ENODEV;
++}
++#endif
++
++#endif /* SPI_PXA2XX_H */
+diff --git a/include/linux/pxa2xx_ssp.h b/include/linux/pxa2xx_ssp.h
+index f366320..467cc63 100644
+--- a/include/linux/pxa2xx_ssp.h
++++ b/include/linux/pxa2xx_ssp.h
+@@ -155,6 +155,14 @@
+ #define SSACD_ACDS(x)		((x) << 0)	/* Audio clock divider select */
+ #define SSACD_SCDX8		(1 << 7)	/* SYSCLK division ratio select */
+
++/* LPSS SSP */
++#define SSITF			0x44		/* TX FIFO trigger level */
++#define SSITF_TxLoThresh(x)	(((x) - 1) << 8)
++#define SSITF_TxHiThresh(x)	((x) - 1)
++
++#define SSIRF			0x48		/* RX FIFO trigger level */
++#define SSIRF_RxThresh(x)	((x) - 1)
++
+ enum pxa_ssp_type {
+ 	SSP_UNDEFINED = 0,
+ 	PXA25x_SSP,  /* pxa 210, 250, 255, 26x */
+@@ -164,6 +172,7 @@ enum pxa_ssp_type {
+ 	PXA168_SSP,
+ 	PXA910_SSP,
+ 	CE4100_SSP,
++	LPSS_SSP,
+ };
+
+ struct ssp_device {
+@@ -206,6 +215,15 @@ static inline u32 pxa_ssp_read_reg(struct ssp_device *dev, u32 reg)
+ 	return __raw_readl(dev->mmio_base + reg);
+ }
+
++#ifdef CONFIG_ARCH_PXA
+ struct ssp_device *pxa_ssp_request(int port, const char *label);
+ void pxa_ssp_free(struct ssp_device *);
++#else
++static inline struct ssp_device *pxa_ssp_request(int port, const char *label)
++{
++	return NULL;
++}
++static inline void pxa_ssp_free(struct ssp_device *ssp) {}
++#endif
++
+ #endif
+diff --git a/include/linux/spi/pxa2xx_spi.h b/include/linux/spi/pxa2xx_spi.h
+index c73d144..82d5111 100644
+--- a/include/linux/spi/pxa2xx_spi.h
++++ b/include/linux/spi/pxa2xx_spi.h
+@@ -28,6 +28,15 @@ struct pxa2xx_spi_master {
+ 	u32 clock_enable;
+ 	u16 num_chipselect;
+ 	u8 enable_dma;
++
++	/* DMA engine specific config */
++	int rx_chan_id;
++	int tx_chan_id;
++	int rx_slave_id;
++	int tx_slave_id;
++
++	/* For non-PXA arches */
++	struct ssp_device ssp;
+ };
+
+ /* spi_board_info.controller_data for SPI slave devices,
+@@ -35,6 +44,7 @@ struct pxa2xx_spi_master {
+  */
+ struct pxa2xx_spi_chip {
+ 	u8 tx_threshold;
++	u8 tx_hi_threshold;
+ 	u8 rx_threshold;
+ 	u8 dma_burst_size;
+ 	u32 timeout;
+@@ -50,103 +60,5 @@ struct pxa2xx_spi_chip {
+
+ extern void pxa2xx_set_spi_info(unsigned id, struct pxa2xx_spi_master *info);
+
+-#else
+-/*
+- * This is the implemtation for CE4100 on x86. ARM defines them in mach/ or
+- * plat/ include path.
+- * The CE4100 does not provide DMA support. This bits are here to let the driver
+- * compile and will never be used. Maybe we get DMA support at a later point in
+- * time.
+- */
+-
+-#define DCSR(n)         (n)
+-#define DSADR(n)        (n)
+-#define DTADR(n)        (n)
+-#define DCMD(n)         (n)
+-#define DRCMR(n)        (n)
+-
+-#define DCSR_RUN	(1 << 31)	/* Run Bit */
+-#define DCSR_NODESC	(1 << 30)	/* No-Descriptor Fetch */
+-#define DCSR_STOPIRQEN	(1 << 29)	/* Stop Interrupt Enable */
+-#define DCSR_REQPEND	(1 << 8)	/* Request Pending (read-only) */
+-#define DCSR_STOPSTATE	(1 << 3)	/* Stop State (read-only) */
+-#define DCSR_ENDINTR	(1 << 2)	/* End Interrupt */
+-#define DCSR_STARTINTR	(1 << 1)	/* Start Interrupt */
+-#define DCSR_BUSERR	(1 << 0)	/* Bus Error Interrupt */
+-
+-#define DCSR_EORIRQEN	(1 << 28)	/* End of Receive Interrupt Enable */
+-#define DCSR_EORJMPEN	(1 << 27)	/* Jump to next descriptor on EOR */
+-#define DCSR_EORSTOPEN	(1 << 26)	/* STOP on an EOR */
+-#define DCSR_SETCMPST	(1 << 25)	/* Set Descriptor Compare Status */
+-#define DCSR_CLRCMPST	(1 << 24)	/* Clear Descriptor Compare Status */
+-#define DCSR_CMPST	(1 << 10)	/* The Descriptor Compare Status */
+-#define DCSR_EORINTR	(1 << 9)	/* The end of Receive */
+-
+-#define DRCMR_MAPVLD	(1 << 7)	/* Map Valid */
+-#define DRCMR_CHLNUM	0x1f		/* mask for Channel Number */
+-
+-#define DDADR_DESCADDR	0xfffffff0	/* Address of next descriptor */
+-#define DDADR_STOP	(1 << 0)	/* Stop */
+-
+-#define DCMD_INCSRCADDR	(1 << 31)	/* Source Address Increment Setting. */
+-#define DCMD_INCTRGADDR	(1 << 30)	/* Target Address Increment Setting. */
+-#define DCMD_FLOWSRC	(1 << 29)	/* Flow Control by the source. */
+-#define DCMD_FLOWTRG	(1 << 28)	/* Flow Control by the target. */
+-#define DCMD_STARTIRQEN	(1 << 22)	/* Start Interrupt Enable */
+-#define DCMD_ENDIRQEN	(1 << 21)	/* End Interrupt Enable */
+-#define DCMD_ENDIAN	(1 << 18)	/* Device Endian-ness. */
+-#define DCMD_BURST8	(1 << 16)	/* 8 byte burst */
+-#define DCMD_BURST16	(2 << 16)	/* 16 byte burst */
+-#define DCMD_BURST32	(3 << 16)	/* 32 byte burst */
+-#define DCMD_WIDTH1	(1 << 14)	/* 1 byte width */
+-#define DCMD_WIDTH2	(2 << 14)	/* 2 byte width (HalfWord) */
+-#define DCMD_WIDTH4	(3 << 14)	/* 4 byte width (Word) */
+-#define DCMD_LENGTH	0x01fff		/* length mask (max = 8K - 1) */
+-
+-/*
+- * Descriptor structure for PXA's DMA engine
+- * Note: this structure must always be aligned to a 16-byte boundary.
+- */
+-
+-typedef enum {
+-	DMA_PRIO_HIGH = 0,
+-	DMA_PRIO_MEDIUM = 1,
+-	DMA_PRIO_LOW = 2
+-} pxa_dma_prio;
+-
+-/*
+- * DMA registration
+- */
+-
+-static inline int pxa_request_dma(char *name,
+-		pxa_dma_prio prio,
+-		void (*irq_handler)(int, void *),
+-		void *data)
+-{
+-	return -ENODEV;
+-}
+-
+-static inline void pxa_free_dma(int dma_ch)
+-{
+-}
+-
+-/*
+- * The CE4100 does not have the clk framework implemented and SPI clock can
+- * not be switched on/off or the divider changed.
+- */
+-static inline void clk_disable(struct clk *clk)
+-{
+-}
+-
+-static inline int clk_enable(struct clk *clk)
+-{
+-	return 0;
+-}
+-
+-static inline unsigned long clk_get_rate(struct clk *clk)
+-{
+-	return 3686400;
+-}
+-
+ #endif
+ #endif
+--
+1.7.10.4
+
-- 
1.7.10.4



More information about the linux-yocto mailing list